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Abstract—The coordination of various energy vectors under
the concept of multi-energy system (MES) has introduced new
sources of operational flexibility to system managers. In this
paper, the behavior of multi-energy players (MEP) who can trade
with more than one energy carrier to maximize their profits
and mitigate their operational risks has been investigated. The
MES is represented based on a multi-layer structure, namely the
energy market, MEP, the local energy system (LES), and multi-
energy demand. In such environment, a MEP aggregates LES and
participates in the wholesale electricity market, simultaneously to
maximize its profit. The decision-making conflict of the MEP with
other energy players for the aggregation of LES and participation
in the electricity market is modeled based on a bi-level approach.
Numerical results show the behavior of the MEP as a prosumer
in the electricity market to produce smoother demand and price
profiles. Results reveal a mutual effect of local and wholesale
equilibrium prices by increasing the share of the MEP.

Index Terms—Electricity market, mathematical program-
ming with equilibrium constraints (MPEC), multi-energy player
(MEP), multi-energy system (MES).

NOMENCLATURE

0

A. Acronyms

AB Auxiliary boiler
CHP Combined heat and power
ES Electric storage
HS Heat storage
KKT Karush-Kuhn-Tucker conditions
LES Local energy system
MED Multi-energy demand
MEP Multi-energy player

This work was supported by FEDER funds through COMPETE 2020 and
by Portuguese funds through FCT, under Projects SAICT-PAC/0004/2015
- POCI-01-0145-FEDER-016434, POCI-01-0145-FEDER-006961, UID/EEA/
50014/2013, UID/CEC/50021/2013, and UID/EMS/00151/2013. Also, the
research leading to these results has received funding from the EU Seventh
Framework Programme FP7/2007-2013 under grant agreement no. 309048.

M. Yazdani-Damavandi and M. Shafie-khah are with C-MAST,
University of Beira Interior, Covilh̃a 6201-001, Portugal (e-mails:
maziar.yazdani.d@gmail.com; miadreza@gmail.com).

N. Neyestani is with INESC TEC, Porto 4200-465, Portugal (e-mail:
ni.neyestani@gmail.com).

J. Contreras is with E.T.S. de Ingenieros Industriales, University of Castilla
La Mancha, 13071 Ciudad Real, Spain (e-mail: Javier.Contreras@uclm.es).

J.P.S. Catalão is with INESC TEC, Porto 4200-465, Portugal, also with C-
MAST, University of Beira Interior, Covilh 6201-001, Portugal, and also with
INESC-ID, Instituto Superior Tcnico, University of Lisbon, Lisbon 1049-001,
Portugal (e-mail: catalao@ubi.pt).

MES Multi-energy system
MG Micro-grid
MPEC Mathematical programming with equilibrium

constraints
RER Renewable energy resource

B. Subscripts

e Electricity
g Natural gas
h Heat
i Index of LES
j Index of retailer
k Index of Genco
t Time interval
ω Set of scenarios

C. Superscripts

AB Auxiliary boiler
Agg Aggregator
Bid Bidding of electricity producers
CHP Combined heat and power
cha Heat/electric storage charging
dcha Heat/electric storage discharging
Du Dual problem
E Equality constraints
ES Electric storage
EM Energy market
Forecast Forecasted amount of RER
Genco Generation company
HS Heat storage
in Input energy to MEP, HS or ES
LES Local energy system
MEP Multi-energy player
MED Multi-energy demand
N Non-equality constraints
Offer Offering of electricity consumers
out Output energy from MEP, HS, or ES
Pr Primal problem
PV Photovoltaic array
Ret. Retailer company
Trans Transformer
Wind Wind generation
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D. Parameters and Variables

e, E The amount of stored energy in ES or HS
g,G Amount of natural gas supply
p, P Amount of electricity generation
q,Q Amount of heat production
T Time period
ρ Scenario probability
λ Dual variables for equality constraints
µ, µ Dual variables for the lower and upper limits of

non-equality constraints
ξ Dual variables for equality constraints in specific

time intervals
γ Charge/discharge rate
η Efficiency
π,Π Energy price
κ Shadow price for energy balance equation of elec-

tricity market
E Vector of equality constraints
N Vector of non-equality constraints
T Vector of equality constraints in specific time
X Vector of decision variables for dual problems

I. I NTRODUCTION

A. Motivation and Aim

EMERGING technologies and change in the business
paradigm of the energy sector have introduced new chal-

lenges and opportunities to energy system managers supplying
future energy needs [1]. The development of distributed energy
resource (DER) technologies, e.g., energy converters and stor-
age, has increased the dependency of energy carriers. On the
other hand, the establishment of new business environments
and the participation of more players in the energy system’s
decision-making process have increased the dependency on
stakeholders’ decision variables.

In order to address these issues, the concept of multi-
energy systems (MES) has been introduced. The MES concept
addresses the integration of various energy carriers (e.g.,
electricity, natural gas, district heating, etc.) and their operation
from both technical and economical points of view to enable
energy and information interaction in different levels [2]. In
such system, multi-energy players (MEP) play a crucial role
to aggregate demand side energy resources for enhancing the
operational flexibility of the system. A MEP is defined as
an energy player who can trade with more than one energy
carrier to increase its total profit and mitigate its operational
risk [3]. MEP can link different energy markets and substitute
energy consumption/production between them. As a result, it
can act as a flexible source in the market place. Therefore,
increasing the share of the MEP in each energy market brings
opportunities for both MEP and different market operators
and affects their decision-making parameters in the short- and
long-term.

The main aim of this paper is to investigate the role of
the MEP as a mediator between demand side resources and
the wholesale electricity market. In this market the MEP is
a strategic prosumer who can modify the market equilibrium
price by changing the amount of its energy exchange with the

market. Moreover, to have a realistic behavior for the MEP,
it is considered as an energy aggregator who interacts with
energy carriers with demand side energy resources based on
a leader-follower aggregation framework.

B. Literature Review

In the literature, MES are defined as energy systems with
more than one energy carrier [4]. A MES is divided into two
main parts, namely, operation centers and interconnectors.

Operation centers represent the integration of energy re-
sources (e.g., energy converters and storage) and intercon-
nectors are energy transmitters between operation centers,
such as gas pipelines and power lines. Surveys on MES are
concentrated on two areas. In the first area, the management
of a single operation center is investigated and new models
are developed for integrating new energy elements, uncertain
resources, and decision-making frameworks in various time
domains. In [5] and [6], optimal operation frameworks for res-
idential and industrial energy hubs are designed, respectively.
The integration of renewable energy resources (RER), demand
response (DR) programs, plug-in electric vehicles (PEV) and
storage is considered in [7]–[10], respectively. Moreover, [11]
and [12] evaluate the energy hub approach’s proficiency in the
long run.

In the second area, a set of operation centers and their
corresponding interconnectors are considered in an interactive
environment and the developed models are investigated from
economic, technical, and environmental aspects. In [13], an
optimal energy scheduling and energy interaction for a set of
operation centers is proposed. The model is extended in [14]
and an evolutionary method is implemented to increase the
accuracy of results and the speed of convergence. Furthermore,
in [15], a decentralized control model is proposed for a set
of energy hubs to coordinate their operation. A game-based
approach among energy hubs for DR provision is suggested
in [16]. In order to analyze the impact of a high penetration
wind resources on interdependent MES, a robust optimization
approach is used in [17]. Numerical results determine the
role of the power system to mitigate the uncertainty of wind
resources by substituting the energy demand of one carrier
with the demand of another energy carrier. On the other hand,
authors in [18] have shown that it is possible to increase the
utilization factor of wind resources in power system operation
with MES facilities. In other words, the power system acts as
a link between RER and MES that can help decreasing the
uncertainty of these resources by using the inherent flexibility
of MES.

Besides MES, the microgrid (MG) concept has been devel-
oped in the literature to cover some other aspects of the future
energy systems. The main feature of a MG is the stand-alone
operation capability in contingency modes that can increase
the system’s reliability indices. However, this capability needs
the deployment of energy resources with more capacity than
the average consumption of MG. These resources provide the
opportunity to trade the energy surplus in a normal operation
mode. Therefore, MG is able to increase the operator’ total
profit as well as their own. Likewise, MG can be considered
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as a MES. However, MG is reliability-oriented while a MES
is related to the enhancement of the system’s efficiency. Due
to the above-mentioned similarity, MG studies have been also
surveyed.

Reference [19] proposes a scheduling framework for a
single MG that is equipped with a combination of cooling,
heating and power (CCHP) units and RER. Different behaviors
of CCHP’s energy carriers and the uncertainty of RER are
covered by a multi-time scale framework along with the time
horizon. Moreover, for a set of MGs, the authors in [20]
have used an agent-based framework to model the cooperation
environment among MGs. Regarding this topic, an energy
retail market is proposed in [21] to fill the gap between the
wholesale market and the demand-side players (i.e., MG). In
addition, the authors in [22] have developed a multi-leader
multi-follower Stackelberg game to manage energy trading
among MGs analyzing its equilibrium point. Employing more
than one energy carrier has changed the behavior of MEP
compared to MG operators. Thus, new models for evaluating
the behavior of MEP in future energy systems are required.

Numerous reports have addressed offering strategies and
competition models in electricity markets. A large number of
the models present the behavior of market players by means
of game theory [23], [24]. A stochastic game-theoretic model
based on an adaptive Q-learning algorithm is reported in [25].
In [26], a game-theoretic market model is developed based
on multi-agent systems to model the behavior of renewable
power producers and DR providers. The ability of the demand
to cover wind power imbalances is also addressed in the
literature [27]. The optimal offering strategy of a hybrid power
plant containing a wind power producer and a DR provider
is reported in [28]. The model can increase the correlation
among the offers and the load curve and, consequently, can
decrease the undispatchable nature of wind power and reduce
the variability of the renewable-based power systems.

Reference [3] proposes an cooperative framework in a MES
for modeling the aggregation of a set of static (without inter-
temporal constraints) facilities. Although many studies have
been oriented to model the MES environment, the aggregation
of demand side energy resources under the MEP concept to
participate in the electricity wholesale market have not been
addressed yet. The aggregation of a set of energy carriers
introduces more flexibility to a MEP for the participation in the
electricity market. Moreover, using interactive models instead
of centralized or tariff based models for aggregation of demand
side energy resources, can increase the level of operational
flexibility and the utilization of local energy resources on the
demand side.

C. Contributions and Paper Organization

In this paper, the behavior of a MEP that is an aggregator
of a set of demand side energy resources is studied in an elec-
tricity wholesale market. Moreover, the impact of increasing
the MEP share in electricity wholesale market is investigated.
The contributions of this paper are as follows:

• Modeling the strategic behavior of an MEP in an elec-
tricity wholesale market within a bi-level decision making
problem;

• Considering the MEP as a medium to allow demand-side
resources to participate in the market in an aggregated
manner for electricity, gas, and heat energy carriers and
model their behavior through a bi-level decision making
problem;

• Evaluating the impact of a high penetration of MEP on
the equilibrium of the electricity wholesale market and
the local aggregation of demand-side energy resources
and the cross impact of these two sets of equilibrium
points.

The rest of the paper is organized as follows. In Section
II the problem and its solution are described. The models
for MEP and LES decision making problems are presented
in Sections II and III, respectively. The electricity market
problem is explained in Section IV. A Numerical study and
concluding remarks are presented in Sections V and VI,
respectively.

II. PROBLEM STATEMENT

In this paper, the MES is considered as a multi-layer
structure and consists of four layers, namely, energy market,
MEP, local energy system (LES), and multi-energy demand
(MED). The multi-layer structure represents the behavior and
scale of each energy player in the proposed MES. The role
of each energy player in the proposed framework and their
interacting energy variables and parameters are shown in Fig.
1. A short description of each layer follows [3]:

• The energy market consists of individual energy carrier
markets linked by the MEP.

• The MEP is an energy aggregator who interacts with a
set of LES and participates in energy markets.

• LES is a local energy network equipped with demand
side energy resources delivering required energy services
to MED.

• MED is the lowest level in this multi-layer structure
and can be a set of end-users consuming various energy
carriers.

As it is shown in Fig. 1 the main variables that couple all
the players are the energy carriers’ prices. It is assumed that,
in the long-term, the players will revise their strategies based
on the energy carriers prices, which are determined based on
the strategies of other players.

In order to investigate the impact of the MEP on the
energy market performance, a bi-level programming approach
is implemented in this paper (Fig. 2). On the upper level,
there is a MEP who is able to trade energy (electricity and
natural gas) in the energy markets and also with the LES who
serve exogenous demands for energy (electricity, natural gas,
and heat) in their own areas. The objective of the MEP is to
determine the optimal trading quantities in order to maximize
its own profit subject to energy balance constraints.

On the lower level, each LES acts as a prosumer that needs
to decide the amount of energy of each carriers to be supplied
either from the MEP or distributed resources. In addition
to the energy balance constraints, each LES faces physical
constraints for the operation of installed equipment. In general,
in a leader-follower optimization model, the leader enforces
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Fig. 1: Interaction of MEP with LES and the wholesale electricity market.

the price and the follower determines the quantity. In such
models the equilibrium price equals to the marginal cost of
energy production for the LES.

On the lower level, there are Gencos and retailers whose
offers and bids are cleared by a welfare-maximizing inde-
pendent system operator (ISO). The shadow price of the
energy balance constraint of the ISO is the market-clearing
price in the electricity market. In this paper both lower-level
problems (ISO and LES) are formulated, linearly. Therefore,
they may be replaced by their Karush–Kuhn–Tucker (KKT)
conditions to turn the bi-level model into a mathematical
programming with equilibrium constraints (MPEC). This is
further simplified into an mixed-integer linear problem (MILP)
by using disjunctive constraints and strong duality to resolve
nonlinearities in the constraints and objective function of the
MPEC. Numerical results show how market-clearing prices are
affected by a greater penetration of MEP. However, the overall
energy production is more restricted to the local operations’
considerations than to the wholesale electricity market price.

III. M ULTI -ENERGY PLAYER ’ S DECISION MAKING

PROBLEM

In the proposed framework, MEP and LES are decision
makers who decide about their energy interactions. MEP
aggregates LES and exchanges energy with the MEP based
on the equilibrium price.

The MEP purchases electricity from the electricity market
at the market equilibrium price and natural gas from the gas
market at a predetermined price. It also exchanges electricity,
gas, and heat at the equilibrium price with LES. The objective
function of the MEP is shown in (1). The first two terms
are the costs of the MEP in the electricity and gas markets,
respectively. The remaining terms are related to the incomes of
the MEP at the distribution level from trading electricity, gas
and heat with LES at the energy equilibrium prices. Therefore,
the decision vector of the MEP for aggregation of LES is:
[

πMEP
e,t , πMEP

g,t , πMEP
h,t

]

.

Fig. 2: Bi-level optimization problem for participation of the MEP in the local
and wholesale energy markets.

max

{

f(x) =
∑

t

[

− (pMEP,in
t − pMEP,out

t )κEM
t

−gMEP
t πMEP

g,t +
∑

i



(p̂LES,in
i,t − p̂LES,out

i,t )πAgg
e,i,t

+ĝLES
i,t πAgg

g,i,t + (q̂LES,in
i,t − q̂LES,out

i,t )πAgg
h,i,t





]

}

(1)
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The MEP operator should maintain the energy balance for
electricity, gas and heat (2)-(4). For the gas energy carrier,
the amount of gas input to the MEP,gMEP

t , must be
less thanG

MEP
, which is related to the capacity of its

interconnectors with the upstream gas network, as shown in
(5). G

MEP
determines the capacity of gas pipelines to supply

MEP required natural gas during operational period.

(pMEP,in
t − pMEP,out

t )−
∑

i

(p̂LES,in
i,t − p̂LES,out

i,t ) = 0 (2)

gMEP
t −

∑

i

ĝLES
i,t = 0 (3)

∑

i

(q̂LES,in
i,t − q̂LES,out

i,t ) = 0 (4)

gMEP
t ≤ G

MEP
(5)

Equations (6)-(10) determine the expected amount of en-
ergy exchange variables for LES. The expected amounts are
calculated based on the amount of energy exchange in each
scenario and the scenarios’ probability.

p̂LES,in
i,t =

∑

ω

ρωp
LES,in
i,ω,t (6)

p̂LES,out
i,t =

∑

ω

ρωp
LES,out
i,ω,t (7)

q̂LES,in
i,t =

∑

ω

ρωq
LES,in
i,ω,t (8)

q̂LES,out
i,t =

∑

ω

ρωq
LES,out
i,ω,t (9)

ĝLES
i,t =

∑

ω

ρωg
LES
i,ω,t (10)

IV. L OCAL ENERGY SYSTEMS’ D ECISION-MAKING

PROBLEM

A. Operational Problem of the Local Energy System

The LES is equipped with a combined heat and power
(CHP) unit, auxiliary boiler (AB), heat storage (HS), RER,
and electric storage (ES). Each LES trades at equilibrium
prices with the MEP and delivers the required services to
the MED to maximize its profit (11). The first three terms
of the LES objective function determine the incomes from the
energy sold (electricity, gas and heat) to MED. The remaining
terms are similar to the ones of the MEP, the costs from
trading energy with the MEP in the aggregation equilibrium
price. These terms are the coupling variables between the
MEP and the LES. The decision vector of the LES is:
[

pLES,in
i,ω,t , pLES,out

i,ω,t , qLES,in
i,ω,t , qLES,out

i,ω,t , gLES
i,ω,t

]

.

max

{

gi(xi) =
∑

t

[

PMED
i,t ΠMEP

e,i,t +GMED
i,t ΠMEP

g,i,t

+QMED
i,t ΠMEP

h,i,t −
∑

i



(pLES,in
i,ω,t − pLES,out

i,ω,t )πAgg
e,i,t

− gLES
i,ω,t π

Agg
g,i,t − (qLES,in

i,ω,t − qLES,out
i,ω,t )πAgg

h,i,t





]

}

(11)

The LES operational constraints are based on [29] and [30]
follows:

1) LES energy balance: Equations (12)-(14) determine the
energy balance for electricity, gas, and heat, respectively.

ELES,1
i,ω,t : PMED

i,t − pLES,in
i,ω,t ηTrans

e,i + pLES,out
i,ω,t /ηTrans

e,i

+pES,in
i,ω,t − pES,out

i,ω,t − pCHP
i,ω,t

−pWind
i,ω,t − pPV

i,ω,t = 0 : λMED
e,i,ω,t (12)

ELES,2
i,ω,t : GMED

i,t − gLES
i,ω,t + gCHP

i,ω,t + gAB
i,ω,t = 0 : λMED

g,i,ω,t

(13)

ELES,3
i,ω,t : QMED

i,t − qLES,in
i,ω,t ηLES

h,i + qLES,out
i,ω,t /ηLES

h,i

+qHS,in
i,ω,t − qHS,out

i,ω,t

−qCHP
i,ω,t − qAB

i,ω,t = 0 : λMED
h,i,ω,t (14)

2) Input energy constraints: Input/output energy carriers
to/from LES are limited by their interconnectors, capacities.

NLES,1
i,ω,t , NLES,2

i,ω,t : 0 ≤ pLES,in
i,ω,t ≤ P

LES

i

: µLES,in

e,i,ω,t
, µLES,in

e,i,ω,t (15)

NLES,3
i,ω,t , NLES,4

i,ω,t : 0 ≤ pLES,out
i,ω,t ≤ P

LES

i

: µLES,out

e,i,ω,t
, µLES,out

e,i,ω,t (16)

NLES,5
i,ω,t , NLES,6

i,ω,t : 0 ≤ qLES,in
i,ω,t ≤ Q

LES

i

: µLES,in

h,i,ω,t
, µLES,in

h,i,ω,t (17)

NLES,7
i,ω,t , NLES,8

i,ω,t : 0 ≤ qLES,out
i,ω,t ≤ Q

LES

i

: µLES,out

h,i,ω,t
, µLES,out

h,i,ω,t (18)

NLES,9
i,ω,t , NLES,10

i,ω,t : 0 ≤ gLES
i,ω,t ≤ G

LES

i

: µLES

g,i,ω,t
, µLES

g,i,ω,t (19)

3) CHP constraints: CHP produces electricity and heat
by consuming natural gas (20), (21). CHP output heat and
electricity should be within its operational limits (22), (23). It
should be noted that, for the CHP unit, ramp rate, MUT, and
MDT constraints are neglected.

ELES,4
i,ω,t : PCHP

i,ω,t − ηCHP
e,i gCHP

i,ω,t = 0 : λCHP
e,i,t (20)

ELES,5
i,ω,t : qCHP

i,ω,t − ηCHP
h,i gCHP

i,ω,t = 0 : λCHP
h,i,t (21)

NLES,11
i,ω,t , NLES,12

i,ω,t : 0 ≤ pCHP
i,ω,t ≤ P

CHP

i

: µCHP

e,i,ω,t
, µCHP

e,i,ω,t (22)

NLES,13
i,ω,t , NLES,14

i,ω,t : 0 ≤ qCHP
i,ω,t ≤ Q

CHP

i

: µCHP

h,i,ω,t
, µCHP

h,i,ω,t (23)



0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2688344, IEEE
Transactions on Power Systems

6

4) AB Constraints: AB produces the required heat by
consuming natural gas (24). The output heat of AB should
be lower than its maximum capacity (25).

ELES,6
i,ω,t : qAB

i,ω,t − ηAB
e,i g

AB
i,ω,t = 0 : λAB

h,i,ω,t (24)

NLES,15
i,ω,t , NLES,16

i,ω,t : 0 ≤ qAB
i,ω,t ≤ Q

AB

i

: µAB

h,i,ω,t
, µAB

h,i,ω,t (25)

5) HS Constraints: In (26) it is determined that the heat
balance of HS is based on its energy exchange with LES,
while (27) and (28) restrict this exchange based on the
charge/discharge rates of HS that is correspondent to the
average power values in the relevant hourly intervals. The
stored energy in HS should be lower than the maximum
capacity of HS (29). To preserve the energy conservation law
in the time horizon, in (30) and (31) it is assumed that the
stored energy in HS is equal in the first and last time intervals,
being half of its maximum capacity.

ELES,7
i,ω,t : eHS

i,ω,t − eHS
i,ω,t−1 + qHS,in

i,ω,t ηHS
h,i

− qHS,out
i,ω,t /ηHS

h,i = 0 : λHS
h,i,ω,t, ∀t > 1 (26)

NLES,17
i,ω,t , NLES,18

i,ω,t : 0 ≤ qHS,in
i,ω,t ≤ γHS

i

: µHS,in

h,i,ω,t
, µHS,in

h,i,ω,t (27)

NLES,19
i,ω,t , NLES,20

i,ω,t : 0 ≤ qHS,out
i,ω,t ≤ γHS

i

: µHS,out

h,i,ω,t
, µHS,out

h,i,ω,t (28)

NLES,21
i,ω,t , NLES,22

i,ω,t : 0 ≤ eHS
i,ω,t ≤ E

HS

i

: µHS

h,i,ω,t
, µHS

h,i,ω,t (29)

TLES,1
i,ω,t : eHS

i,ω,t =
E

HS

i

2
: ξHS

h,i,ω,t, ∀t = 1 (30)

TLES,2
i,ω,t : eHS

i,ω,t =
E

HS

i

2
: ξHS

h,i,ω,t, ∀t = T (31)

6) ES Constraints: ES constraints are modeled similar to
HS. Equations (32)-(37) show the corresponding constraints.

ELES,8
i,ω,t = eES

i,ω,t − eES
i,ω,t−1 + pES,in

i,ω,t ηES
e,i

− pES,out
i,ω,t /ηES

e,i = 0 : λES
e,i,ω,t, ∀t > 1 (32)

NLES,23
i,ω,t , NLES,24

i,ω,t : 0 ≤ pES,in
i,ω,t ≤ γES

i

: µES,in

e,i,ω,t
, µES,in

e,i,ω,t (33)

NLES,25
i,ω,t , NLES,26

i,ω,t : 0 ≤ pES,out
i,ω,t ≤ γES

i

: µES,out

e,i,ω,t
, µES,out

e,i,ω,t (34)

NLES,27
i,ω,t , NLES,28

i,ω,t : 0 ≤ eES
i,ω,t ≤ E

ES

i

: µES

e,i,ω,t
, µES

e,i,ω,t (35)

TLES,3
i,ω,t : eES

i,ω,t =
E

ES

i

2
: ξES

e,i,ω,t, ∀t = 1 (36)

TLES,4
i,ω,t : eES

i,ω,t =
E

ES

i

2
: ξES

e,i,ω,t, ∀t = T (37)

7) RER Constraints: For renewable-based LES, RER gen-
eration is limited to its forecasted amount in each scenario,
(38) and (39). The scenario generation procedure is explained
in Appendix C.

NLES,29
i,ω,t , NLES,30

i,ω,t : 0 ≤ pPV
i,ω,t ≤ P

PV,Forecast

i,ω,t

: µPV

e,i,ω,t
, µPV

e,i,ω,t (38)

NLES,31
i,ω,t , NLES,32

i,ω,t : 0 ≤ pWind
i,ω,t ≤ P

Wind,Forecast

i,ω,t

: µWind

e,i,ω,t
, µWind

e,i,ω,t (39)

B. MPEC Formulation of the LES Decision-Making Problem

The MEP’s decision making process as the aggregator form
of LES resources may result in different outcomes rather than
the individually operation of each LES. As a result, in this
study, a bi-level problem is considered where, on the lower
level the operation problems of LESs are considered and,
on the upper level, the MEP interaction with the market is
formulated. To transform the bi-level problem (1)-(39), where
the upper level is given by (1)-(5) and the lower level by (11)-
(39), into a single-level MILP problem, we use MPEC ( [31]
and [32]). The proposed procedure is as follows:

• Transforming the lower-level problem into a convex and
linear one;

• Replacing the lower-level problem with its KKT optimal-
ity conditions;

• Applying the strong duality theorem to linearize the non-
linear terms of the upper-level problem.

The formulation in (12)-(39) is convex and linear; there-
fore, in (40) it is shown that the Lagrangian of the LES
problem and (41)-(44) are its KKT optimality conditions.
Equation (41) represents a set of stationary conditions for
the LES that represents the first order derivatives of the
LES Lagrangian with respect to its primal decision variables.
Equations (42) and (43) are the primal optimality conditions
for the LES equality conditions in normal and predetermined
time intervals, respectively. These conditions are determined
according to the first order derivatives of the LES Lagrangian
with respect to its dual decision variables. The equation (44)
shows the complementarity conditions for the LES lower-
level problem. The linearized form of (44) and the upper-
level objective function are explained in Appendixes A and
B, respectively.
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LLES
i = gi(Xi)− µLES

i NLES
i (Xi) + λLES

i ELES
i (Xi)

+ξLES
i TLES

i (Xi) (40)

∂LLES
i /∂Xi = 0 (41)

∂LLES
i /∂λLES

i = ELES
i (Xi) = 0 (42)

∂LLES
i /∂ξLES

i = TLES
i (Xi) = 0 (43)

0 ≤ µLES
i ⊥ NLES

i (Xi) ≥ 0 (44)

V. M ATHEMATICAL FORMULATION OF THE ELECTRICITY

MARKET

The electricity market consists of gencos, retailers, and
the MEP, operated by the ISO. The ISO receives the energy
producers’ offers and energy consumers’ bids and clears the
market in each time interval, obtaining the energy price.

A. Modeling the MEP Strategic Behavior

The MEP is a strategic player that competes with other
players in an electricity market environment. This behavior is
modeled using bi-level optimization, where the MEP resolves
its strategy on the upper level and the impact of its decision
on electricity market parameters is determined on the lower
level. In the lower level, the ISO receives the market players’
bids/offers and clears the market to maximize social welfare
(45). The first two terms of this equation are the offers
and bids of the MEP as a simultaneous electricity producer
and consumer. The next two terms are the other electricity
market players’ strategies that consist of the Gencos’ offers
and the retailers’ bids. The decision vector of the MEP is:
[πMEP,Bid

t , πMEP,Offer
t ] and the decision vector of the lower-

level problem is:[pRet.
j,t , pGenco

k,t , pMEP,out
t , pMEP,in

t ].

max

{

h(x) =

∑

t

[

pMEP,in
t πMEP,Bid

t − pMEP,out
t πMEP,Offer

t

+
∑

j

pRet.
j,t ΠRet.,Bid

j,t −
∑

k

pGenco
k,t ΠGenco,Offer

k,t

]

}

(45)

The power balance of the electricity market is shown
in (46). The dual variable of this equation is the market
clearing price. In addition, (47)-(50) show the upper limits
of generation/demand, which are equal to the offers/bids.

∑

k

pGenco
k,t −

∑

j

pRet.
j,t

+ pMEP,out
t − pMEP,in

t = 0 : κEM
t (46)

NEM,1
k,t , NEM,2

k,t : 0 ≤ pGenco
k,t ≤ P

Genco

k

: µGenco

j,t
, µGenco

j,t (47)

NEM,3
j,t , NEM,4

j,t : 0 ≤ pRetailer
j,t ≤ P

Ret.

j

: µRet.

j,t
, µRet.

j,t (48)

NEM,5
t , NEM,6

t : 0 ≤ pMEP,in
t ≤ P

MEP

: µMEP,in

t
, µMEP,in

t (49)

NEM,7
t , NEM,8

t : 0 ≤ pMEP,out
t ≤ P

MEP

: µMEP,out

t
, µMEP,out

t (50)

B. MPEC Formulation of the Electricity Market

Equations (45)-(50) represent another lower-level problem
of the MEP, in this case related to the electricity market
behavior. The procedure for converting this bi-level problem is
the same as the one in Section IV.B. Equation (51) shows the
Lagrangian of the lower-level problem. Equations (52)-(54) are
the stationary conditions, primal optimality conditions and the
complementarity conditions of the electricity market problem.
The linearizing procedure for (54) and the objective function
of the MEP are presented in Appendices A and B, respectively.

LEM = h(X)− µEMNEM (X) + λEMEEM (X) (51)

∂LEM/∂X = 0 (52)

∂LEM/∂λEM = EEM (X) = 0 (53)

0 ≤ µEM ⊥ NEM (X) ≥ 0 (54)

After transforming the electricity market level, the three-
level optimization problem is converted into a single-level
MILP problem whose objective function is given in (1) after
linearizing the non-linear terms, with the set of constraints
(2)-(5), (41)-(44), and (52)-(54).

VI. N UMERICAL RESULTS

In the numerical results the behavior of the MEP to interact
with the LES and its participation in wholesale electricity
market is investigated. The model has been solved by CPLEX
10 on HP Z800 workstation with CPU: 3.47 GHz and RAM:
96 GB.
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A. Input Data Characterization

The MEP aggregates three LES and competes with 10
Gencos and 10 retailers in the electricity market. Table I shows
the input data for the LES. Table II contains the bids and
offers of the electricity market players. For all the retailers,
the offering steps are considered the same as in the base case,
whereαt is a correction factor to create the bidding steps (55)
changing the amount of the retailers’ bidding in each hour.

pRet.
j,t = αt

(

pRet.,base
j,t

)

(55)

The gas market price is $25/MWh. To avoid price spikes in
the local energy market, the price caps for electricity, heat and
gas are $130/MWh, $150/MWh, and $40/MWh, respectively.
In addition, Fig. 3 depicts the total energy consumption of the
MED.

B. Equilibrium Price for the Aggregation of LES

Fig. 4 shows the energy carrier prices for the LES and
electricity market clearing prices. As shown, due to the small
energy exchange of the MEP, it is a price taker in the electricity
market and the market price is solely determined based on
Gencos’ and retailers’ offers and bids, respectively. Fig. 5 and
6 show the power and heat balance of the MEP, respectively.
The MEP trades with three types of energy carriers whose
behaviors are as follows:

TABLE I: DATA OF LOCAL ENERGY SYSTEM.

Elements LES1 LES2 LES3

LES
Transformer 0.95 0.95 0.95
Heat Pipelines Effi-
ciency

0.9 0.9 0.9

CHP
Electricity Output 25 MW 15 MW —
Heat Output 30 MW 22 MW —
ηCHP
e , ηCHP

h
0.45, 0.35 0.47, 0.3 —

AB
Heat Output 20 MW 30 MW 15 MW
ηAB
h

0.9 0.85 0.9

HS
Energy Capacity 30 MWh — —
γHS
h

15 MW — —

η
HS,cha
h

, ηHS,dcha
h

0.81, 0.9 — —

ES
Capacity — 20 MWh —
γES
h

— 10 MW —

η
ES,cha
h

, ηES,dcha
h

0.81, 0.9 0.81, 0.9 —

RER
Wind Capacity — — 30 MW
PV Capacity — — 30 MW

TABLE II: ELECTRICITY MARKET PLAYER DATA

Genco No. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Type Oil Oil Oil Hydro Coal Oil Coal Oil Coal Nuclear
Unit Number 10 6 5 6 4 3 4 3 1 2
P

Genco
k [MW ] 12 20 30 50 75 100 155 197 350 400

Marginal Cost
[$/MWh]

40 40 65 0 23 35 20 33 19 8

Retailer No. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

P
Retailer
j [MW ] 250 250 250 250 250 250 250 250 250 250

Utility Function
[$/MWh]

75 70 65 60 57 53 50 50 45 40

Fig. 3: Total consumption of MED in the local energy system.

Fig. 4: Energy carrier prices in the local energy market and clearing prices
of the electricity market.

Fig. 5: Share of LES energy resources for MEP electricity balance.

1) Natural gas: Natural gas is a grid-bounded carrier that
cannot be produced locally and the MEP delivers the required
amount to LES. Therefore, its price always is equal to the
price cap and the MEP maximizes its profit by maximizing
the gas price.

2) Heat: Heat is a local energy carrier and is produced
only by AB and CHP units. Therefore, its price depends on
local operational considerations. In hours 2-13, while the heat
production of CHP units does not satisfy MED’s needs and
the LES use their AB (CHP units are in heat-lead mode), the
heat price is equal to the marginal cost of the AB. On the other
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Fig. 6: Share of LES energy resources for MEP heat balance.

hand, after hour 13, while the price of electricity is high and
the CHP units are in electricity-lead mode, the price of heat is
almost equal to zero and heat is produced as a supplementary
good when generating electricity in the CHP units. As a matter
of fact, producing heat is like a bonus for LES helping them
to operate their CHP units within their operational limits.

3) Electricity: Electricity can be generated locally or deliv-
ered by the MEP. The electricity price has the same behavior
as the electricity market price. Note that the aggregator’s
equilibrium price of electricity depends on the capability of
CHP units to produce cheaper electricity. In general, the
electricity price of the CHP units is high but when the LES
have large simultaneous heat and electricity demands, their
generation will be profitable. However, as these units increase
their level of electricity generation, their vacant capacities to
compete in the local market decreases. Therefore, the MEP
increases the electricity price to maximize its profit. The
profit of the MEP depends on two factors: energy quantity
and energy price. In the first period (hours 1-13), the MEP
increases its profit by decreasing the local electricity price,
forcing the CHP units to decrease their generation to increase
its own energy delivery share. On the contrary, in the second
period (14-24), when the marginal cost of the CHP unit is low,
it prefers to increase the electricity price up to the price cap,
maximizing its profit by selling electricity to the remaining
MED at the highest possible price.

C. Impact of a High Penetration of MEP

Fig. 7 depicts the impact of a high penetration of the MEP
on the electricity market. In this paper, the penetration rate of
the MEP is defined as the share of the MEP electricity demand
with respect to the total demand of the system.
As shown in Fig. 7, by increasing the share of MEP, electricity
prices increase in most periods (in particular during the periods
13-19). However, in hour 11, with a penetration of more than
35%, electricity prices decrease. In this hour, the MEP injects
its electricity surplus to the grid. Figs. 8 and 9 depict the
electricity and heat equilibrium prices for the aggregation
of LES for various penetration rates of MEP, respectively.
By increasing the electricity market price, the equilibrium
electricity price increases and motivates LES to use their
internal resources (CHP units and ES) to locally generate

Fig. 7: Impact of increasing the penetration rate of MEP on market prices.

electricity. Therefore, the price of heat as a supplementary
production in the CHP process decreases in the corresponding
hours.

Note that, in general, the MEP’s strategy assures the ade-
quacy of generation by using local energy resources, however,
it should be noted that these resources are affected by the local
operational constraints and their operation is correlated to their
local management. For instance, the electricity production
of CHP units and its marginal cost is related to the heat
consumption of the MED. However, in case of a contingency,
these local resources can protect the system and increase the
reliability indices; in a normal operation the local constraints
determine their capability to act as rivals of the other market
players. Therefore, in comparison with bulk generation, these
resources are not beneficial at all times.

Moreover, their marginal costs are not only related to their
levels of production but also dependent to their local opera-
tional considerations, and change along the time horizon. In
the case studied, the lowest marginal cost for CHP production
is during hours 11-13, while the MEP has the maximum heat
consumption, but the system peak occurs between hours 14-
17.

D. General Behavioral Outcomes

The main outcomes of this research regarding the behavior
of market players as follows:

1) The main goal to introduce a new player that we call MEP
is to release the hidden synergy that is possible between
energy carriers. The MEP as an energy aggregator can
exchange energy with the LES through different energy
carriers. Therefore, as shown in Figs. 5 and 6, in hour 13,
the MEP buys electricity at a high price from the LES
and sells it to the wholesale market at a low price. For
a conventional energy player (as a broker) this energy
exchange is not profitable but, for the MEP the situation
is different. The MEP trades electricity and gas with the
LES, simultaneously. Therefore, in hour 13, when it buys
electricity at a high price from the LES rather than from
the wholesale market, it sells the required gas for the
CHP units at the same time. This means that the net cost
of the generated electricity is lower than in the wholesale
market. As a matter of fact, there is a hidden flexibility
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between gas and electricity due to the use of CHP units in
the LES, but conventional players who trade just a certain
type of energy carrier cannot release this flexibility. For
the MEP who can trade with these two types of energies
at the same time this is a good opportunity to employ
this flexibility and maximize profit by selling gas to the
LES and electricity to the wholesale market at the same
time.

2) The MEP participation in the electricity market is mod-
eled as a strategic player who modifies the market price
based on its energy interaction amount with the market.
In this case, the MEP is a price-maker player using its
market power to maximize its profit by changing the
price signal, which is related to its energy interaction.
As shown in Fig. 7, with a low penetration rate, the
MEP is a price-taker player and has no influence on the
market price but, after increasing its penetration rate, it
can change the energy price during some hours. It should
be noted that, due to the role of MEP as an aggregator
of LES, the capability of the MEP to exchange energy
with the wholesale energy market is completely related
to the operational considerations of the LES. Therefore,
contrary to conventional power plants, the price-maker
capability of the MEP is not as the same at all time
intervals..

3) Due to the operational condition of the MEP, it behaves
as a marginal player in the wholesale market. Therefore,
even a small change in the equilibrium price can change
the role of the MEP from an energy producer to an energy
consumer and vice versa. As a marginal player, the MEP
may have the highest influence on the equilibrium price
and its capability is related to its flexibility to use local
resources.

4) The market power of the MEP to aggregate LES and
participate in the wholesale market is directly related to
the local operational considerations of energy resources.
For instance, the LES is equipped with CHP units. The
proficiency of these units to generate low-price electricity
is related to the LES heat consumption and the capacity of
the HS to store the excess of heat production. Therefore,
if the LES can produce cheap electricity during upstream
network peak hours, this means that the MEP is capable
to inject local surplus electricity to the wholesale market
and change the market price, otherwise it is a price-taker
player during the peak hours. Therefore, it is possible
that the MEP behaves as an electricity consumer during
peak hours increasing the energy price. On the contrary, a
suitable local operational condition may lead to a change
in the role of the MEP from consumer to energy producer
decreasing the energy price during peak hours. In other
words, a high electricity price during peak hours is not
the only issue that the MEP should consider to produce
energy locally. In general, the price of local resource gen-
eration units is higher than the bulk generation price in the
upstream network but, if the local operators use suitable
solutions (e.g. co-generation) its price can compete with
bulk resources.

Fig. 8: Impact of increasing the penetration rate of MEP on aggregator’s
electricity price.

Fig. 9: Impact of increasing the penetration rate of MEP on aggregators heat
price.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, the behavior of an MEP is investigated for a si-
multaneous behavior to aggregate a set of LES and participate
in the wholesale electricity markets. The impacts of a high
penetration of MEP on these two sets of equilibrium prices
were studied. Numerical results show that local energy price
equilibrium is related to the local energy resources of the LES.
Due to the mutual dependency of the energy carriers, LES may
have variable marginal costs for the energy production in the
operation period. This time-based marginal cost affects local
market parameters, especially when the penetration rates of the
MEP increase. The MEP also increases the total efficiency of
the system in the sense that it assures the adequate use of
generation by local resources. Note that the energy produced
by the MEP is more related to local operational considerations,
rather than the electricity market price.

To model the more realistically energy players and to show
the impact of gas price changes on MEP behavior, future
research will study the strategic behavior of the MEP in the
gas market besides the electricity market. Moreover, the other
energy players will be considered as strategic players in an
oligopolistic electricity market. The model will be extended
in the MEP level to consider the competition among a set of
MEPs to maximize their profits while exchanging energy with
the same existing LES.
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APPENDIX A
COMPLEMENTARITY CONDITIONS L INEARIZATION

The non-linear parts of the mathematical model are as
follows:

• Complementarity conditions at the LES level;
• Complementarity conditions at electricity market level;
• Non-linear terms of the MEP objective function:

pLES,in
i,t πAgg

e,i,t, pLES,out
i,t πAgg

e,i,t, gLES
i,t πAgg

g,i,t, qLES,in
i,t πAgg

h,i,t,

qLES,out
i,t πAgg

h,i,t, p
MEP,in
t κEM

t , andpMEP,out
t κEM

t .

Equations (56) and (57) show the linear form of (44). Vector
uLES
i is a set of auxiliary binary variables andM is a large

enough constant to relax the equations in the linearization
process.

0 ≤ µLES
i ≤ uLES

i MLES,Pr (56)

0 ≤ NLES
i (Xi) ≤

(

1− uLES
i

)

MLES,Du (57)

Equations (58) and (59) show the same linearization method
for the complementarity constraints of the electricity market.

0 ≤ µEM ≤ uEMMEM,Pr (58)

0 ≤ NEM (X) ≤
(

1− uEM
)

MEM,Du (59)

APPENDIX B
OBJECTIVE FUNCTION L INEARIZATION

In order to linearize the objective function, strong duality
theory is applied. The strong duality condition states that the
gap between the primal and dual optimal values is approxi-
mately zero at optimality and the primal and dual objective
functions can be equal.
pLES,in
i,t πAgg

e,i,t, p
LES,out
i,t πAgg

e,i,t, g
LES
i,t πAgg

g,i,t, q
LES,in
i,t πAgg

h,i,t, and

qLES,out
i,t πAgg

h,i,t are the terms of the LES level objective func-
tion. If the optimization problem of each lower-level problem
is considered in (60), the dual problem is presented in (62).

min {cTi Xi}

s.t. to : HiXi − bi > 0,

where ci is the vector of coefficients

⇒







Ei(Xi) : H
E
i Xi = 0

Ni(Xi) : H
N
i Xi − bN

i > 0
(60)

Xi > 0

Hi =

[

HE
i

HN
i

]

,bi =

[

0

bN
i

]

(61)

max {bT
i Λi}

Sub. to : HT
i Λi − ci 6 0 (62)

Λi > 0

Based on the dual formulation of the lower-level
optimization problem, equation (63) illustrates the strong
duality condition for the lower-level problem.

cTi Xi = bT
i Λi (63)

The detailed formulation of equation (63), that determines
the strong duality condition for the LES-level problem, is
represented in (64).

(p̂LES,in
i,t − p̂LES.out

i,t )πAgg
e,i,t + (q̂LES,in

i,t − q̂LES,out
i,t )πAgg

h,i,t+

ĝLES
i,t πAgg

g,i,t =
∑

ω

ρω

[

GMED
i,t λMED

g,i,ω,t +QMED
i,t λMED

h,i,ω,t

+ PMED
i,t λMED

e,i,ω,t − P
LES

i µLES,in
e,i,ω,t − P

LES

i µLES,out
e,i,ω,t

−Q
LES

i µLES,in
h,i,ω,t −Q

LES

i µLES,out
h,i,ω,t −G

LES

i µLES
g,i,ω,t

− P
CHP

i µCHP
e,i,ω,t −Q

CHP

i µCHP
h,i,ω,t −Q

AB

i µAB
h,i,ω,t

− P
PV,Forecast

i,ω,t µPV
e,i,ω,t − P

Wind,Forecast

i,ω,t µWind
e,i,ω,t

− γHS
h,i µ

HS,in
h,i,ω,t − γHS

h,i µ
HS,out
h,i,ω,t − E

HS

h,i µ
HS
h,i,ω,t

−
E

HS

h,i

2
ξHS
h,i,ω,t

∣

∣

∣

t=1,T
+

E
HS

h,i

2
λHS
h,i,ω,t

∣

∣

∣

t=1

− γES
e,i µ

ES,in
e,i,ω,t − γES

e,i µ
ES,out
e,i,ω,t − E

ES

e,i µ
ES
e,i,ω,t

−
E

ES

e,i

2
ξES
e,i,ω,t

∣

∣

∣

t=1,T
+

E
ES

e,i

2
λES
e,i,ω,t

∣

∣

∣

t=1

]

(64)

On the electricity market level, equation (65) shows the
detailed formulation of the strong duality condition for lin-
earizing thepMEP,in

t κEM
t and pMEP,out

t κEM
t in the MEP

objective function.

−

[

∑

j

ΠRet.,Bid
j,t pRet.

j,t −
∑

k

ΠGenco,Offer
k,t pGenco

k,t +

πMEP,Bid
t pMEP,in

t − πMEP,Offer
t pMEP,out

t

]

= −
∑

k

µGenco
k,t pGenco

k −
∑

j

µRet.
j,t pRet.

k

− µMEP,in
k,t P

MEP
− µMEP,out

k,t P
MEP

(65)

It should be noted that due to the bidding and the offering
strategies of the MEP, the non-linear terms of the MEP
objective function (i.e.pMEP,in

t κEM
t andpMEP,out

t κEM
t ) are

different from the terms presented in the ISO’s objective
function (i.e.pMEP,in

t πMEP,Bid
t andpMEP,out

t πMEP,Offer
t ).

Therefore, the following procedure is applied to replace the
non-linear terms of the MEP’s objective function with its linear
form.

Equations (66) and (67) determine the stationary condi-
tions for pMEP,in

t and pMEP,out
t , respectively. From these

equations we can calculate the amount ofπMEP,Offer
t and

πMEP,Bid
t in (65). In addition, (68)-(71) are the complemen-

tarity conditions for (49) and (50).
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∂LEM

∂pMEP,in
t

= −πMEP,Bid
t + κEM

t

− µMEP,in

t
+ µMEP,in

t = 0 =⇒

πMEP,Bid
t = κEM

t − µMEP,in

t
+ µMEP,in

t (66)

∂LEM

∂pMEP,out
t

= +πMEP,Offer
t − κEM

t

− µMEP,out

t
+ µMEP,out

t = 0 =⇒

πMEP,Offer
t = κEM

t + µMEP,out

t
− µMEP,out

t (67)

0 ≤ µMEP,in

t
⊥ pMEP,in

t ≥ 0 =⇒

µMEP,in

t
pMEP,in
t = 0 (68)

0 ≤ µMEP,in
t ⊥

(

P
MEP

− pMEP,in
t

)

≥ 0 =⇒

µMEP,in
t

(

P
MEP

− pMEP,in
t

)

= 0 =⇒

µMEP,in
t pMEP,in

t = µMEP,in
t P

MEP
(69)

0 ≤ µMEP,out

t
⊥ pMEP,out

t ≥ 0 =⇒

µMEP,out

t
pMEP,out
t = 0 (70)

0 ≤ µMEP,out
t ⊥

(

P
MEP

− pMEP,out
t

)

≥ 0 =⇒

µMEP,out
t

(

P
MEP

− pMEP,out
t

)

= 0 =⇒

µMEP,in
t pMEP,out

t = µMEP,out
t P

MEP
(71)

By substituting these relations using (65),
pMEP,in
t πMEP,Bid

t and pMEP,out
t πMEP,Offer

t are
transformed to (72) and the linear form ofpMEP,in

t κEM
t and

pMEP,out
t κEM

t as shown in (73).

[

− πMEP,Bid
t pMEP,in

t + πMEP,Offer
t pMEP,out

t

]

=

−

(

κEM
t − µMEP,in

t
+ µMEP,in

t

)

pMEP,in
t

+

(

κEM
t + µMEP,out

t
− µMEP,out

t

)

pMEP,out
t =

− κEM
t pMEP,in

t − µMEP,in
t P

MEP

+ κEM
t pMEP,out

t − µMEP,out
t P

MEP
(72)

[

−κEM
t pMEP,in

t + κEM
t pMEP,out

t

]

=

−
∑

k

µGenco
k,t pGenco

k −
∑

j

µRet.
j,t pRet.

j

−
∑

k

ΠGenco,Offer
k,t pGenco

k,t +
∑

j

ΠRet.,Bid
j,t pRet.

j,t (73)

APPENDIX C
MODELING OF THERENEWABLE ENERGY RESOURCE

UNCERTAINTY

The uncertainty in the inputs from renewable energy sources
(wind generation and PV arrays) is modeled by generating ap-
propriate scenarios. In this paper, power generation is modeled
according to the hourly historical data of the site under study
(i.e., Swift Current [33]), and precise features of the generation
units. In order to characterize the random behavior of the re-
newable energy resources, a typical day with 24-h time periods
is considered. The data related to the same hours of the day are
utilized to obtain the probability distribution functions (PDFs)
corresponding to each time period. Wind speed distributions
are often characterized by Weibull distributions [34]. The PDF
of the wind speed is represented by (74), wherec > 0 and
k > 0 are the scale factor and the shape factor, respectively.

fv(v) =
k

c

(

v

c

)k−1

exp

[

−

(

v

c

)k]

(74)

The probability distribution function is divided intoNs

scenarios, and the probability of each step can be calculated
as follows:

probω =

∫ WSω+1

WSω

fv(v) dv, ω = 1, 2, ..., Ns (75)

whereWSω is the wind speed of theωth scenario. The
power generated,PGW (ω), corresponding to a specific wind
speed,WSω, can be obtained from (75) in whichA, B, and
C are constants calculated according with [34].

PGW (ω) =










0 0 ≤ WSω ≤ Vc or WSω ≥ Vc0

Pr(A+B ×WSω + C ×WS2
ω) Vc ≤ WSω ≤ Vr

Pr Vr ≤ WSω ≤ Vc0

(76)

In (76), Vc, Vc0, andVcr represent the cut-in, cut-out, and
rated speeds, respectively. The hourly solar irradiance data for
the site under study have been used to generate a Beta PDF
[35] for each time period. Therefore, the PDF of the solar
irradiance can be calculated as:

fb (s) =



























Γ(α+ β)

Γ(α) · Γ(β)
s(α−1)

(1− s)
(β−1)

: 0 ≤ s ≤ 1 ;α, β ≥ 0

0 : otherwise.
(77)

where fb(·) denotes the Beta distribution function andα
and β are the parameters of the Beta function and for each
time period, can be determined using historical data.
In the same way, the Beta PDFs are split into several segments
which the occurrence probability of each segment during any
specific hour can be expressed as follows:
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probsi =

Si+1
∫

Si

fs(s) dsi (78)

whereSi andSi+1 indicate the starting and ending points of
the intervali, respectively and probsi denotes the probability
occurrence of intervali.

The uncertainty of the whole system is characterized by the
following steps:

• Generating related PDFs
Firstly, the PDFs for solar irradiance and wind speed are
obtained using historical data (24 PDFs related to 24-h
of a typical day). These continuous PDFs are sliced into
several segments for each time period.

• Developing scenarios with their own probability
Next, different realizations of the random variables, i.e.,
solar irradiance and wind speed are generated using
the roulette wheel mechanism (RWM) [36] and Monte
Carlo simulation (MCS) [37], separately. In this case,
Ns, andNws scenarios are generated for solar irradiance
and wind speed, respectively. For example, for solar
irradiance, each scenario contains 24 values of solar
irradiance related to 24-h time period of the typical
day. It should be noted that each scenario has its own
probability of occurrence.

• Calculating the output power of the units
Then based on the characteristics of generation units,
the wind speed and solar irradiance of each state is
transformed into the output power of wind and PV-based
unit through equations (79) and (80), respectively.

Pw
y,t (vy,t) =


















0 : vy,t ≤ vcin orvy,t ≥ vcout

Pw
r ·

vy,t − vcin
vcr − vcin

: vcin ≤ vy,t ≤ vr

Pw
r : otherwise

(79)

where vcin, vcout, vr and Pw
r represent cut-in, cut-out,

rated speeds, and rated power of WT, respectively.Pw
y,t

denotes the output power of WT associated with wind
speedvy,t at time periodt and statey.

PS
y,t (sy,t) = N × FF × Vy,t × Iy,t

FF =
VMPP × IMPP

Voc × Isc
Vy,t = Voc −Kv × T c

y,t

Iy,t = sy,t
[

Isc +Ki ×
(

T c
y,t − 25

)]

T c
y,t = TA + sy,t

(

NOT − 20

0.8

)

(80)

whereT c
y,t is the cell temperature (oC); TA is the ambient

temperature (oC); Kv and Ki are voltage and current

Fig. 10: PV and Wind Scenarios for LES III in p.u.

temperature coefficients (V/oC andA/oC), respectively;
NOT denotes nominal operating temperature of the cell in
(oC); FF is fill factor; Isc andVoc indicate short circuit
current and open circuit voltage (in A and V), respec-
tively; IMPP andVMPP are, respectively, the current and
voltage at maximum power points, (A and V);PS

y,t is the
output power of the PV module;sy,t solar irradiance;t
andy are the indices of time periods and states.

• Reducing the number of scenarios
A large number of scenarios may contribute to a more ac-
curate model of the random variables. Nevertheless, this
would increase the computational burden of the problem.
Finally, a fast-forward scenario reduction method based
on Kontorwish distance [38] is used to reduce the number
of scenarios, while providing a reasonable approximation
of the random variables of the system.

The final scenarios used for PV and wind generation and the
expected values are depicted in Fig. 10.
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Covilhã, Portugal, in 2007 and 2013, respectively.
Currently, he is a Professor at the Faculty of Engi-
neering of the University of Porto (FEUP), Porto,
Portugal, and Researcher at INESC TEC, INESC-
ID/IST-UL, and C-MAST/UBI. He was the Primary
Coordinator of the EU-funded FP7 project SiNGU-

LAR (“Smart and Sustainable Insular Electricity Grids Under Large-Scale
Renewable Integration”), a 5.2-million-euro project involving 11 industry
partners. He has authored or coauthored more than 500 publications, including
171 journal papers, 303 conference proceedings papers, 29 book chapters, and
14 technical reports, with an h-index of 30 and over 3735 citations (according
to Google Scholar), having supervised more than 45 post-docs, Ph.D. and
M.Sc. students. He is the Editor of the books entitled Electric Power Systems:
Advanced Forecasting Techniques and Optimal Generation Scheduling and
Smart and Sustainable Power Systems: Operations, Planning and Economics
of Insular Electricity Grids (Boca Raton, FL, USA: CRC Press, 2012 and
2015, respectively). His research interests include power system operations
and planning, hydro and thermal scheduling, wind and price forecasting,
distributed renewable generation, demand response and smart grids.
Prof. Catal̃ao is an Editor of the IEEE TRANSACTIONS ON SMART GRID,
an Editor of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY,
an Editor of the IEEE TRANSACTIONS ON POWER SYSTEMS, and an
Associate Editor of the IET Renewable Power Generation. He was the Guest
Editor-in-Chief for the Special Section on “Real-Time Demand Response”
of the IEEE TRANSACTIONS ON SMART GRID, published in December
2012, and the Guest Editor-in-Chief for the Special Section on “Reserve and
Flexibility for Handling Variability and Uncertainty of Renewable Generation”
of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, published
in April 2016. He was the recipient of the 2011 Scientific Merit Award
UBI-FE/Santander Universities and the 2012 Scientific Award UTL/Santander
Totta. Also, he has won 4 Best Paper Awards at IEEE Conferences


