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Abstract—In smart grid, demand response (DR) programs can
be deployed to encourage electricity consumers towards schedul-
ing their controllable demands to off-peak periods. Motivating the
consumers to participate in a DR program is a challenging task,
as they experience a confidential discomfort cost by modifying
their load demand from the desirable pattern to the scheduled
pattern. Meanwhile, to balance the load and generation, the
independent system operator (ISO) requires to motivate the
suppliers towards modifying their generation profiles to follow the
changes in the load demands. Additionally, to protect the entities’
privacy, the ISO needs to apply an effective well-designed pricing
scheme. In this paper, we focus on proposing a decentralized
DR framework considering the operating constraints of the grid.
In our proposed framework, each individual entity responds
to the control signals called conjectured prices from the ISO
to modify its demand or generation profile with the locally-
available information. We formulate the centralized problem of
the ISO that jointly minimizes the suppliers’ generation cost
and the consumers’ discomfort cost. We also discuss how the
ISO determines the conjectured prices to motivate the entities
towards an operating point that coincides with the solution to the
centralized problem. The performance of the proposed algorithm
is evaluated on a modified IEEE 14-bus in reducing the suppliers’
and consumers’ cost, as well as the transmission lines congestion.

Keywords: demand response, discomfort cost, power flow prob-
lem, decentralized algorithm.

I. INTRODUCTION

One of the fundamental goals of the stable and efficient
operation of power networks is to balance the supply and
load demand [1]. Conventionally, a major portion of the
demand has been supplied by bulk power plants [2]. This
task is the responsibility of the independent system operator
(ISO) to determine the proper generation levels to maintain
the optimal operation of the power networks [3]. Nowadays,
with the deployment of intelligent devices and communication
infrastructure in smart grid, the demand side is able to play an
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Instituto Superior Técnico, University of Lisbon, Lisbon 1049-001, Portugal.

email: bahramis@ece.ubc.ca, amini@cmu.edu, miadreza@ubi.pt, cata-
lao@ubi.pt.

active role in the energy management task to balance demand
and supply [4]–[6]. In particular, a well-designed price-based
demand response (DR) program can motivate consumers to-
wards modifying their demand voluntarily in reaction to the
electricity price fluctuations in the market [7], [8].

The responses of different consumers in a DR program
mainly depend on their load demand flexibility. In particular,
each consumer incurs a discomfort cost by changing its
load demand from the desired pattern (without DR) to the
scheduled pattern (with DR). In this paper, we use a simple
but effective model, namely the weighted distance between
the scheduled and the desired load profiles to model the
consumer’s discomfort cost. We take advantage of the weight
coefficients for each hour to capture the consumers’ discomfort
level based on the changes in the load demand in the DR
program. Nevertheless, the values of the weight coefficients
are private information for the consumers. Thus, the ISO is
not able to manage the load demand directly in a centralized
manner. Instead, the ISO requires to incentivize the consumers
toward load shifting using locally available information. It
should also encourage suppliers to modify their generation
levels to balance the generation and demand.

There have been some efforts in the power system operation
literature to tackle the above-mentioned challenges. We divide
the related works into two threads. The first thread of the
literature is concerned with DR programs and their role in the
power system operation analysis. Parvania et al. [9] presented
a stochastic DR model based on a two-stage stochastic mixed-
integer programming in wholesale electricity market. Aghaei
et al. [10] studied the effect of DR programs on improving
the power system’s reliability. Parvania et al. [11] proposed
a hierarchical bidding framework for DR programs consid-
ering the customer preferences. Shi et al. [12] proposed a
DR scheme for residential households considering the AC
power flow constraints in distribution networks. Amini et
al. [13] presented a mixed-integer linear programming to
optimize the energy scheduling of home appliances. Li et
al. [14] formulated the DR problem as an OPF problem,
whose objective is to maximize the aggregate consumer payoff
and minimize the power line losses. These studies, however,
have not considered either the consumers’ discomfort from
participating in DR program or a decentralized approach to
preserve the consumers’ privacy.

The second thread of the literature is concerned with
modeling the interactions between multi-supplier and multi-
consumers in the DR programs. Chai et al. [15] studied the
DR problem in the system with multiple utility companies
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and multiple residential customers. Deng et al. [16] proposed
a distributed real-time DR algorithm considering multiple
utility companies to determine each consumer’s demand and
each utility company’s supply. To this end, they deployed
dual decomposition method to perform the energy allocation.
Disfani et al. [17] proposed a distributed algorithm to solve
DCOPF problem for radial power networks. Mahrjan et al.
[18] studied the DR program based on a Stackelberg game
between utility companies and customers. Haider et al. [19]
proposed a novel DR scheme based on adaptive consumption
level pricing to optimize customers’ energy consumption and
bill payment. Although the mentioned works focused on
modeling the consumers’ and suppliers’ models, they have
neglected the network constraints.

Despite its importance, the possibility of adopting DR
programs to achieve an optimal operating point of power
network has not been well-investigated. In this paper, we focus
on designing a decentralized algorithm to minimize the total
cost of the system. The challenges that we address in this
paper are protecting the privacy of consumers and suppliers
by considering each individual entity’s local optimization
problem, as well as determining the appropriate control signals
for the ISO to motivate the consumers and suppliers toward
modifying their demand and generation profiles by taking
into account the network’s operating constraints. The main
contribution of this paper are as follows:

• Centralized Approach: We formulate a centralized op-
timization problem for the ISO to minimize the social
cost, i.e., the consumers’ discomfort cost and suppliers’
generation cost, subject to the power network operating
constraints. We show that the solution to the ISO’s cen-
tralized problem exists and is unique. However, the ISO
requires all the private information about the consumers’
discomfort cost and the suppliers’ generation cost to
obtain the solution to the centralized problem.

• Decentralized Approach: To maintain the privacy of the
consumers and suppliers in the DR program, we propose
a decentralized energy trading algorithm. In the proposed
algorithm, the ISO provides the entities with control
signals. In response, the consumers and suppliers obtain
their optimal load and generation levels, respectively. We
show that, under some specific control signals from the
ISO, the decentralized algorithm will converge to the
unique solution of the ISO’s centralized problem.

• Performance Evaluation: Simulation results on an IEEE
40-bus test system show that the proposed decentralized
algorithm can converge to the global optimal solution to
the centralized problem of the ISO in about 50 iterations.
The proposed algorithm also benefits both the consumers
by reducing their cost by 13.5% and the generators by
decreasing their cost by 18.8% and reducing the peak-to-
average ratio (PAR) by 15.74%. When compared with
the centralized approach, our algorithm has a significantly
lower computational time. when compared with a central-
ized method with AC power flow in different test systems,
our approach has a lower running time at the cost of 3%
to 8% error due to the DC power flow approximation.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III presents the formu-
lation for the ISO’s centralized and decentralized problems.
A distributed algorithm is proposed to solve the decentralized
problem. Section IV provides the simulation results to eval-
uate the performance of the proposed algorithm. Section V
concludes the paper.

II. SYSTEM MODEL

Consider a transmission network with a set N of buses and
a set L ⊆ N × N of lines. Each bus i ∈ N may have an
electricity supplier or load demand. Each bus is equipped with
a bus service entity (BSE), which is responsible for providing
the electric services to the suppliers and consumers connected
to that bus. Each BSE uses the two-way communication
infrastructure to exchange information about the amount of
electricity that the suppliers and consumers in that bus are
willing to either sell to or purchase from the market. The ISO
is a neutral entity aiming to provide the BSEs with a proper
access to the electricity market, as well as managing the power
flows. The planning horizon is denoted by H = {1, . . . ,H},
where H is the number of time slots with an equal length.

A. Power Network Model

The ISO considers the DC power flow to study the power
flow through the transmission lines and the generation-load
balance [20], [21]. Let δi,h denote the phase angle of the
voltage in bus i ∈ N in time slot h ∈ H. Let vector
δh = (δi,h, i ∈ N ) denote the profile of voltage phase angles
in all buses in time slot h. Let Pi,h denote the injected active
power to bus i ∈ N . Also, let Ph = (Pi,h, , i ∈ N ) denote
the vector of injected active power in all buses in time slot h.
The power balance equation in time slot h can be represented
as the following matrix equation:

Ph = BTδh, h ∈ H, (1)

where B is the network admittance matrix, and BT is the
transpose of matrix B. The entry Bi,j corresponding to row i
and column j of matrix B is

Bi,j =


∑

(i,k)∈L
bi,k, if i = j,

−bi,j , otherwise.
(2)

where bi,j represents the susceptance measured in Siemens of
transmission line (i, j) ∈ L. Let PG

i,h denote the output power
of the supplier in bus i in time slot h. Let li,h denote the load
demand in bus i in time slot h. From (1) and (2), we have the
following power balance equation:

PG
i,h−li,h =

∑
j:(i,j)∈L

bi,j(δi,h − δj,h), i ∈ N . (3)

We assume that bus one is the slack bus. Thus, we have

δ1,h = 0, h ∈ H (4)
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Let Pmax
i,j denote the maximum line flow limit of line (i, j) ∈

L. Considering (1) and (2), we can determine the line flow
constraint as follows:

−Pmax
i,j ≤ bi,j(δi,h − δj,h) ≤ Pmax

i,j , (i, j) ∈ L, h ∈ H, (5)

One can also take into account the contingency scenarios for
transmission lines outage. It is sufficient to construct the ad-
mittance matrix B corresponding to the possible contingency
scenarios and include constraints (3)−(5) for the phase angles
and power flows in the contingency scenarios.

B. Bus Service Entity (BSE) Model

The BSEs can be classified based on their types. We parti-
tioned the set of BSEs in the system to active flexible BSEs
and passive non-flexible BSEs. An active flexible BSE sets the
generation profile of the supplier and the demand profile of
the consumer connected to the corresponding bus. A passive
non-flexible BSE does not have any control on the generation
and load levels of its entities since the generator connected to
that bus may be non-dispatchable and the consumer may not
prefer to modify their demand profiles.

The generation cost function of supplier i in time slot h
is denoted by Ci(P

G
i,h). It is generally an increasing convex

function of the output power PG
i,h [22]. The class of polyno-

mial generation cost functions is well-known since it can be
estimated by Taylor polynomials [23]. It can be expressed as:

Ci(P
G
i,h) = αm

(
PG
i,h

)m
+ · · ·+ α1P

G
i,h + α0, (6)

where m is the degree of the function, and αm, . . . , α0 are
the coefficients [23]. The active flexible BSEi can manage the
output power the generator in bus i. Therefore, PG

i,h, h ∈ H is
a decision variable for BSEi. Whereas, PG

i,h, h ∈ H is a priori
known for a passive BSEi. The generation cost function in (6)
is a private information of the BSEi, who wants to actively
participate in the energy market. Let PG

i = (PG
i,h, h ∈ H)

denote the generation profile during the operation horizon H
for the supplier connected to bus i. The total generation cost
of the supplier in bus i is obtained as

Ci(P
G
i ) =

∑
h∈H

Ci(P
G
i,h), i ∈ N . (7)

The generation level of the supplier in bus i is within the
minimum and maximum limits PG,min

i and PG,max
i . We have

PG,min
i ≤ PG

i,h ≤ P
G,max
i , ∀ i ∈ N , ∀h ∈ H. (8)

Similar to [24], [25], one can also consider other operating
constraints (e.g., spinning reserve, ramp up/down constraints)
for the generators. In addition to controlling the output power
of the generator, the active BSEi may modify the demands of
its consumers to benefit from the electricity price fluctuations
over the time. The demand li,h in bus i in time slot h consists
of a fixed baseload demand lbi,h, as well as the flexible demand
lci,h of a set Ai of controllable loads for the consumers in bus i.

Although BSEi considers the scheduling horizon Ha,i ⊆ H
to schedule each controllable load a ∈ Ai, different control-
lable loads have different characteristics. We divide the set of
controllable loads in bus i into set A1

i ⊆ Ai of controllable

loads of type 1, and set A2
i ⊆ Ai of controllable loads of

type 2. A controllable load of type 1 has a hard deadline.
That is, it should be operated within the scheduling horizon
and turned off in other time slots. Examples include the
household’s electric vehicle (EV) and production line of an
industry. A controllable load of type 2 is more flexible, and
can be operated in the time slots out of the scheduling horizon,
but at the cost of a relatively high discomfort for the consumer,
e.g., the lighting in households, packing process in industries,
and air conditioner in commercial buildings.

Considering the demands xa,i,h of controllable loads a ∈ Ai

in time slots h ∈ H as the decision variables for BSEi, we
have the following operational constraints:

xa,i,h = 0, a ∈ A1
i , h 6∈ Ha,i, (9a)

xa,i,h ≥ 0, a ∈ A2
i , h 6∈ Ha,i, (9b)

xmin
a,i,h≤xa,i,h≤xmax

a,i,h, a ∈ A1
i ∪ A2

i , h ∈ Ha,i, (9c)

Xmin
a,i,h ≤

∑
h∈H xa,i,h ≤ Xmax

a,i , a ∈ A1
i ∪ A2

i . (9d)

Constraints (9a) and (9b) are obtained from the flexibility of
loads of types 1 and 2, respectively. Constraint (9c) indicates
limited demand variation for load a in time slot h. Constrain
(9d) indicates limited total energy demand of load a to
complete its task.

Scheduling the controllable loads usually results in a dis-
comfort cost for the consumers of the BSEi. The discomfort
cost for type 1 loads only depends on the total power consump-
tion deviation from the desirable value (e.g., a consumer cares
about the total charging level of its electric vehicle). For the
scheduled power consumption profile xa,i = (xa,i,h, h ∈ H)
and desirable profile xdes

a,i = (xdes
a,i,h, h ∈ H), a viable

candidate for the discomfort cost of loads of type 1 is

Υa,i(xa,i) = ωa,i

∑
h∈Ha,i

(xa,i,h − xdes
a,i,h)2, a ∈ A1

i , (10)

where ωa,i in $/(kWh)2 is a nonnegative constant. The
discomfort cost for type 2 loads depends on both the amount
of power consumption and the time of consuming the power.
The following discomfort cost function is a viable candidate:

Υa,i(xa,i) =
∑

h∈Ha,i

ωa,i,h(xa,i,h − xdes
a,i,h)2

+
∑

h6∈Ha,i

ω′a,i,h xa,i,h, a ∈ A2
i , (11)

where ωa,i,h in $/(kWh)2 and ω′a,i,h � ωa,i,h in $/kWh are
time dependent nonnegative coefficients. By defining xi =
(xa,i, a ∈ Ai) for bus i, the total discomfort cost is

Υi(xi) =
∑

a∈A1
i∪A2

i

Υa,i(xa,i). (12)

III. PROBLEM FORMULATION

In this section, we first assume that the BSEs reveal all
information about the generation cost of the supplier and
discomfort cost of the demand in their corresponding bus to
the ISO. We propose a centralized approach to determine the
optimal operating point of the network in the energy market.
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A. Centralized Approach for the ISO

Let vector x = (xi, i ∈ N ) denote the vector of load
demand profiles of all consumers in the network. Also, let
vector PG = (PG

i , i ∈ N ) denote the vector of generation
profiles of all suppliers in the network. We define the objective
function f ISO

(
PG,x

)
of the ISO as

f ISO (PG,x
)

=
∑
i∈N

(
θiΥi(xi) + (1− θi)Ci(P

G
i )
)
, (13)

where θi, i ∈ N are the weight coefficients in the interval
[0, 1]. Minimizing f ISO

(
PG,x

)
will enable timely adjustment

of the control settings to jointly optimize the consumers’
discomfort cost and the suppliers’ generation cost. Thus, it
can improve the economic efficiency of the system operation.
We formulate the ISO’s centralized problem as

minimize
PG,x, δ

f ISO (PG,x
)

subject to constraints (3)−(5), (8), and (9). (14)

We characterize the optimal solution to problem (14) in the
following proposition.

Proposition 1: The solution to the ISO’s centralized problem
(14) exists and is unique.

Proof: Our proof involves two steps. We first show that (14)
is a convex optimization problem with closed and bounded
feasible space. Second, we show that the objective function
(13) is lower bounded. Consequently, if problem (14) has a
feasible solution, then it will have a unique minimizer.

The objective function (13) is convex with respect to
variable vector ψISO because the discomfort cost Υi(xi) is a
quadratic function (and thus a convex function) of xa,i and
the generation cost function Ci(P

G
i ) is a convex function

for (8). The constraints of problem (14) are all linear, and
by considering one bus as a slack bus (e.g., bus 1 with
δ1,h = 0, h ∈ H), the feasible space would be closed and
bounded. Therefore, problem (14) is a convex optimization
problem. In addition, all terms in the objective function (13)
are nonnegative, and thus the objective function (13) is lower
bounded by zero. The proof is completed. �

To solve problem (14), the ISO requires complete infor-
mation about the consumers’ discomfort cost and suppliers’
generation cost at all buses. However, these information are
never available to the ISO in practice. Instead of a centralized
approach, we can develop a decentralized algorithm for the
ISO to determine the unique solution of problem (14).

B. Energy Market Competition

In practice, the ISO has no direct control over the sup-
pliers’ and consumers’ behaviour. Instead, the ISO may only
influence the BSEs by using some control signals. The ISO
provides the BSE at each bus with an access to the energy
market to determine its optimal generation and load demand.
In this case, the flexible active BSEs compete with each other,
such that the costs of their supplier and demand are minimized.
In the energy market, the decision vector of BSEi is (PG

i ,xi).
In the energy market, each BSEi will purchase electricity

from the ISO with price ρcons
i,h and sell electricity to the market

with price ρgen
i,h in time slot h ∈ H. We define the row vectors

of prices as ρcons
i = (ρcons

i,h , h ∈ H) and ρcons
i = (ρgen

i,h, h ∈
H). The BSEi aims to determine the optimal decision vector
di = (PG

i ,xi) to jointly minimize the generation cost of its
supplier, the discomfort cost of its controllable demands, and
the profit from trading in the market. The objective function
of the BSEi can be expressed as

fBSE
i

(
PG

i ,xi

)
= Υi(xi) + Ci(P

G
i )

+ ρcons
i • (li)

T − ρgen
i • (PG

i )T, (15)

where • is the inner-product operation. In (15), the term ρcons
i •

(li)
T is equal to the total payment of BSEi to the ISO to

purchase electricity with amounts of li = (li,h, h ∈ H). The
term ρgen

i • (PG
i )T is equal to the total revenue of BSEi from

selling electricity with amounts of PG
i = (PG

i,h, h ∈ H). The
local optimization problem of BSEi is

minimize
PG

i ,xi

fBSE
i

(
PG

i ,xi

)
subject to constraints (8) and (9). (16)

From (16), the optimization problem for each BSEi does
not directly include any signal from other BSEs’ decision
variables. Furthermore, the BSEs do not care about these
constraints in their optimization problem and only cares about
minimizing the cost of supplier and demand in their corre-
sponding buses. On the other hand, the ISO is responsible
for meeting the network constraints (3)−(5). The ISO is
able to set the prices ρcons

i and ρgen
i for all buses i ∈ N

to motivate the BSEs towards the unique solution of the
centralized problem (14). One possible technique is to use the
dual decomposition method. Let λi,h, h ∈ H, i ∈ N denote
the Lagrange multiplier associated with the equality constraint
(3). We define vector λ = (λi,h, i ∈ N , h ∈ H). Using the
defined Lagrange multipliers, we can rewrite the Lagrangian
of the objective function (13) as follows:

f ISO
Lag

(
PG,x,λ

)
=∑

i∈N

(
θiΥi(xi) + (1− θi)Ci(P

G
i )
)

+
∑
i∈N

∑
h∈H

λi,h
(
PG
i,h−li,h −

∑
j:(i,j)∈L

bi,j(δi,h − δj,h)
)
. (17)

The dual function is obtained as the minimum of f ISO
lag (·)

over the variables PG and x. That is, we have

f ISO
Dual(δ,λ) =∑
i∈N

min
PG

i ,xi

{
θiΥi(xi) + (1− θi)Ci(P

G
i ) +

∑
h∈H

λi,h
(
PG
i,h−li,h

)}
−
∑
i∈N

∑
h∈H

λi,h
( ∑
j:(i,j)∈L

bi,j(δi,h − δj,h)
)
. (18)

The dual problem of the ISO’s centralized problem is

maximize
δ,λ

f ISO
Dual(δ,λ) (19a)

subject to constraints (4) and (5). (19b)

The centralized problem (14) is convex and the constraints
are linear. Thus, the strong duality gap condition (Slater’s
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condition) is satisfied if a feasible solution exists (see [26,
Proposition 5.2.1]). That is, the optimal solution to the dual
problem (19) is equal to the optimal solution to the ISO’s
centralized problem (14) [26, Ch. 6]. We can write the
Karush–Kuhn–Tucker (KKT) conditions for the the dual prob-
lem (19) and the BSEs local problems in (16) and if they
become then the solution to the BSEs local problems coincides
with the unique solution to the ISO’s centralized problem in
(14). By performing some algebraic manipulations, we have

ρcons
i,h =

−λi,h
θi

, ρgen
i,h =

−λi,h
1− θi

, (20)

The nodal prices ρcons
i and ρgen

i are the control signals
sent by the ISO to the BSEs. Then, the BSEs communicate
this nodal prices to the consumers and suppliers in their
corresponding bus. Now, we develop a decentralized algorithm
to model the interactions among the BSEs and ISO. Fig. 1
shows the interactions among ISO and BSEs in the energy
market. Let k denote the iteration index. The superscript k for
an arbitrary variable represents its value in iteration k. Our
algorithm involves the initiation phase and trading phase.

Initiation phase: Set iteration index k to 1. The BSEi

initializes the consumers’ controllable load profile x1
i and the

supplier’s generation PG,1
i . The ISO initializes the voltage

angles δ1 and Lagrange multipliers λ1.
Trading phase: In iteration k, the BSEs and ISO update their

decision variables. This phase includes the following parts:

• Information exchange: It involves the information ex-
change between the BSEs and ISO about the consumption
profile and the generation levels. BSEi sends the total
load demand lki = (lki,h, h ∈ H) of its consumers and the
generation profile PG,k

i = (PG,k
i,h , h ∈ H) of its suppliers

in iteration k to the ISO via the communication network.
• ISO update: When the ISO receives the information

from all BSEs, it updates the voltage angles δki,h for
i ∈ N , h ∈ H and the Lagrange multipliers λk according
to the following projected gradient-based update process:

δk+1 =
[
δk + αk∇δk f ISO

Dual(δ
k,λk)

]+
, (21a)

λk+1 = λk + αk∇λk f ISO
Dual(δ

k,λk), (21b)

where∇ is the gradient operator, and [·]+ is the projection
onto the feasible set defined by constraint (19b). By
updating vector λk+1, the ISO determines the updated
values of the nodal prices ρk+1

i,h , h ∈ H as

ρcons,k+1
i,h =

−λk+1
i,h

θi
, ρgen,k+1

i,h =
−λk+1

i,h

1− θi
, (22)

The ISO sends the updated control signals ρcons,k+1
i,h and

ρgen,k+1
i,h , h ∈ H to BSEi.

• BSE update: When BSEi receives the trading nodal prices
from the ISO, it updates its objective function in (15) as

fBSE,k+1
i

(
PG

i ,xi

)
= Υi(xi) + Ci(P

G
i )

+ ρcons,k+1
i • (li)

T − ρgen,k+1
i • (PG

i )T, (23)

and then, it solves the following convex problem to obtain

Fig. 1. Interactions of the consumers and suppliers with the ISO.

the updated profiles xk+1
i and PG,k+1

i :

(PG,k+1
i ,xk+1

i ) = argmin
(8) and (9)

fBSE,k+1
i

(
PG

i ,xi

)
(24)

• Step size update: We use a nonsummable diminishing
step size for the ISO with conditions limk→∞ αk = 0,∑∞

k=1 α
k = ∞, and

∑∞
k=1

(
αk
)2

= ∞. One example
is αk = 1

a+bk , where a and b are positive constant
coefficients.

• Update the iteration number; k := k + 1.

Remark 1: For the stopping criterion, we use the conver-
gence of the voltage angles for tolerance ξ, i.e., ||δki,h −
δk−1i,h || ≤ ξ, h ∈ H, i ∈ N , since they depend on the
generation and load level at all buses. Hence, the convergence
of the voltage angles implies the convergence of all BSEs’
decision variables.

Remark 2: Our algorithm is based on the projected gradient
method and it is guaranteed to converge for the above-
defined diminishing step size. In Section IV, we show that our
proposed algorithm can converge to the optimal solution of
centralized problem (14) in a reasonable number of iterations.
The proposed Lagrange relaxation-based algorithm works well
for the underlying ISO’s centralized problem (14) with convex
objective function and linear constraints.

Remark 3: The proposed decentralized framework is de-
signed for day-ahead electricity markets. Hence, it is not
necessary for the algorithm to be feasible in all iterations.
Nevertheless, when the algorithm converges, the solution is
feasible and satisfies the network constraints.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
distributed algorithm.

A. Simulation Setup

We divide a day into H = 24 one-hour time slots. We
simulate our approach on the IEEE 14-bus test system with 5
suppliers serving the loads scattered in different buses. The
topology of the test system is shown in Fig. 2. The test
system data can be found in [27]. To obtain different baseload
patterns for the consumers, we use a load pattern for about
5 million consumers (which includes residential, commercial,
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and industrial consumers) from Ontario, Canada power grid
database [28] from June 1 to June 21, 2016. Without loss
of generality, we scale the load pattern for each bus, such
that the average baseload becomes equal to 60% of the load
demand of that bus in [27]. To simulate the controllable load
demand of each bus, we randomly generate the desirable load
profile of 50 to 100 controllable loads of types 1 and 2 with
average demand of 2 to 25 kW at each bus. Limits xmax

a,i,h

and xmin
a,i,h for a controllable load a in bus i are set to ±30%

of the desirable demand of that load in time slot h. Limits
Xmax

a,i and Xmin
a,i for a controllable load a in bus i are set

to ±5% of the desirable total energy demand of that load.
The discomfort coefficients ωa,i and ωa,i,h, h ∈ H for each
controllable load a are randomly chosen from a truncated
normal distribution, which is lower bounded by zero and has a
mean value of ωavg

i = 15 $/(kWh)2 and a standard deviation of
0.5 $/(kWh)2. The discomfort coefficients ω′a,i,h, h ∈ H for
each controllable load a of type 2 are set to 0.5 $/(kWh)2. The
step size is αk = 1

10+0.2k . The weight coefficients θi are set
to 0.5. We perform simulations using Matlab R2016b in a PC
with processor Intel(R) Core(TM) i7-3770K CPU@3.5 GHz.

B. Algorithm Convergence

To evaluate the convergence of our proposed algorithm, we
study the required number of iterations to converge, which
can be interpreted as the number of message exchange among
the BSEs and ISO over the communication infrastructure. We
consider the convergence of the voltage angles in different
buses. As an concrete example, we provide the values of
voltage angles of buses 6, 10, 11, and 12 in Figs. 3 and 4 that
require the highest number of iterations to converge. Notice
that by solving the power flow problem, the values of the
voltage angles of all buses can be added by a constant without
changing the flow of the lines, and thus, the difference between
the voltage angles are important. Hence, we also show the
difference between the voltage angles of the connected buses
δ12 − δ6 and δ11 − δ10. We can observe that 50 iterations are
sufficient for the convergence of the algorithm. Our proposed
algorithm is based on the projected gradient method and has
O(ξ) running time for diminishing step size. We set ξ = 10−2.
The average CPU time of the algorithm is 10.7 seconds.

We use MOSEK to solve the ISO’s centralized prob-
lem (14). The solution is the same as the decentralized
approach, but the CPU time is 30 seconds. To further elaborate
the comparison, we provide the average CPU time of our
proposed algorithm and the centralized approach for six test
systems [27] in Fig. 5. The significant lower CPU time of the
decentralized approach is due to the BSEs’ parallel update and
smaller number of decision variables in their local problems.

Finally, we use the approach in [29] that applies semidefinite
programming (SDP) to obtain the global optimal point in a
grid with AC power flow model. In addition to comparing
the algorithm running time, the global optimality of the
solution to the full AC power flow enables us to quantify the
approximation in using the DC power flow in our decentralized
algorithm. The main difference is that the AC power flow
includes the network losses. Furthermore, the SDP approach

Fig. 2. IEEE 14-bus test system used for simulations.
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in [29] returns the global optimal solution to the AC OPF. We
consider the constant power factor of 0.5 for the loads. The
calculation results show that the values of the ISO’s objective
using our algorithm with DC OPF are lower by 3% (in Polish
2383wp) to 8% (in IEEE 300-bus system) than the centralized
method with AC OPF and SDP approach due to the inclusion
of losses and optimality of the SDP method. Whereas, the
computation time is much lower in our proposed algorithm.

C. BSE’s Benefit from the Proposed Algorithm

The consumers of an arbitrary BSE can respond to the
control signals communicated by the ISO and decide to modify
their controllable load demand during the day. Fig. 6 shows the
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TABLE I
THE OPTIMAL VALUE AND AVERAGE CPU TIME FOR THE DETERMINISTIC

MULTI-STAGE ALGORITHM AND OUR PROPOSED ALGORITHM.

The proposed Algorithm Centralized algorithm
with AC OPF

Test system f ISO ($) CPU time (s) f ISO ($) CPU time (s)

IEEE 14-bus 315,140.2 10.7 331,897.2 38.5

IEEE 30-bus 682,142.8 16.8 723,081.7 82.8

IEEE 118-bus 3,180,223.7 25.6 3,282,715.7 240.2

IEEE 300-bus 18,272,124.8 42.5 19,733,892.8 320.5

Polish 2383wp 42,167,127.1 136.3 43,432,562.4 1,512.5

Polish 3012wp 63,222,649.1 182.4 71,338,462.4 1,836.8
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Fig. 6. The daily load profile for bus 2 with and without DR.

aggregate load profile in bus 2 with and without DR. We can
observe that the consumers reduce their load demand during
peak hours (from 13 pm to 20 pm) in order to reduce their
payment to the ISO. We study the impact of the discomfort
cost coefficients on the load shifting of the consumers in
different buses. Fig. 7 shows the load shift percentage (i.e., the
percentage of shifted load demand) in all buses for different
values of coefficients ωavg

i , i ∈ N . We can observe that when
ωavg
i tends to∞, the consumers will prefer not to change their

load pattern as its discomfort cost increases significantly. By
decreasing the value of ωavg

i , the consumers will shift larger
portion of their load demand from peak to off peak hours.
Load shifting helps consumers to reduce their total cost. Fig.
8 shows that the total cost of the consumers in different buses
with DR is lower by about 13.5% compared with their total
cost without DR.

The suppliers of the BSEs also update their generation
levels based on the received price signals from the ISO.
Fig. 9 represents the generation of the suppliers in different
buses. We can observe that using the proposed DR strategy
makes the generation profiles of the suppliers smoother. In
order to quantify the impact of the proposed DR algorithm
on the generation profile, we consider the peak-to-average
ratio, PARi, for the suppliers. Table II presents the value
of PARi with and without demand response, as well as the
percentage of reduction of this metric. The results shows
15.74% reduction in the PAR on average.

In addition to reducing the PAR in the generation, the
suppliers can benefit from DR program by reducing their
total cost (the generation cost minus the revenue from selling
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Fig. 7. Load shift percentage at all load buses with DR for different average
coefficients ωavg

i , i ∈ N .
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electricity). Generally, the revenue of the suppliers decreases
due to the reduction in the peak load demand and the electricity
price in most of the buses. However, the generation cost of the
suppliers will also decrease during the peak hours. Considering
both factors, Fig. 10 shows that the total cost of the suppliers
will decreases with the DR program by about 18.8%. Notice
that we have used the cost data available for the IEEE 14-bus
test system to determine the generation cost of the suppliers.
Here, revenue of suppliers were smaller than their generation
cost, and thus their total cost is positive.

D. ISO’s Benefit from the Proposed Algorithm

The DR program can lead to a smoother demand and
generation profiles during the day. Hence, DR program can
reduce the peak demand and generation, and thus prevent
the congestion of the transmission lines during peak-hours
by reducing the loading index. We define the branch loading
index of line (i, j) as the calculated power flow divided by the
maximum flow limit of the line. We have ζi,j =

Pi,j

Pmax
i,j

, h ∈
H, (i, j) ∈ L, where ζi,j denotes the branch loading index
of line (i, j). In order to compare the branch loading index
improvement, ζi,j for lines (1, 5), (3, 4), (10, 11) , and (12, 13)
with and without DR, at h = 16, are given in Table III. We
can observe that the proposed DR algorithm benefits the ISO
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TABLE II
PARi VALUES FOR DIFFERENT SUPPLIERS WITH AND WITHOUT DR

Bus Number 1 2 3 6 8
PARi Without DR 1.875 1.802 1.562 1.611 1.721

PARi With DR 1.512 1.509 1.325 1.385 1.474
PARi Improvement 19.3% 16.2% 15.1% 14% 14.1%
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Fig. 10. Total cost of the suppliers with and without DR program.

Fig. 11. Branch loading index in four lines at h = 16 with and without DR.

by reducing the loading of the lines; and thereby improving
the load capability of the system. Fig. 11 shows the loading
condition of the selected lines before and after implementing
the DR algorithm. We use green color for lines with branch
loading index lower than 80% operation mode, dark yellow
for lines with branch loading index between 80% to 90%, and
red color for the 91% to 100% loaded lines. Hereafter, these
three modes are referred to as normal, alert, and emergency
modes, respectively.

E. Comparing with the ADMM-based Algorithm

One can also propose an alternating direction method of
multipliers (ADMM)-based algorithm [30] that still works
with the partial Lagrange relaxation of the objective function
(13) given in (17), but with an additional penalty term, namely
the augmentation. Details on implementing the ADMM-based
decentralized algorithm can be found in [30]. In a nutshell,
for the ADMM-based algorithm, the ISO, broadcasts both the
price signals and the generation and load levels of each BSE
to other BSEs; hence, the privacy of the BSEs may not be
protected. Furthermore, the ISO should broadcast information
in series to the BSEs in each iteration, which increases the
communication delay significantly. These two drawbacks are
important, especially in practical implementation of a decen-
tralized algorithm. However, in general, the ADMM-based
algorithm can converge in a smaller number of iterations.

We provide the average CPU time in Table IV. We empha-
size that the ADMM algorithm converges to the solution of

TABLE III
BRANCH LOADING INDEX VALUES IN DIFFERENT LINES WITH AND

WITHOUT DR

Line (i, j) (1, 5) (3, 4) (12, 13) (10, 11)

ζi,j Without DR 97% 84% 93% 90%

ζi,j With DR 81% 76% 73% 84%

ζi,j Improvement 16.4% 9.5% 21.5% 6.6%

TABLE IV
THE AVERAGE CPU TIME FOR OUR PROPOSED DECENTRALIZED

ALGORITHM AND THE ADMM-BASED ALGORITHM.

Our proposed algorithm ADMM-based algorithm

Test System CPU time (s) CPU time (s)

IEEE 14-bus 10.7 7.9

IEEE 30-bus 16.8 12.1

IEEE 118-bus 25.6 18.5

IEEE 300-bus 42.5 27.6

Polish 2383wp 136.3 104.1

Polish 3012wp 182.4 134.8

the centralized problem due to the convexity of the centralized
problem and satisfying the Slater’s conditions [30]. We can
observe that the CPU time with the ADMM-based algorithm
is lower than our proposed algorithm. Using the ADMM
algorithm, however, the ISO needs to provide each BSE with
some additional information about other BSEs’ decisions. This
feature is not suitable for the energy markets, since the BSEs
usually do not prefer to reveal their strategies.

V. CONCLUSION

In this paper, we introduced a decentralized algorithm to
solve a DR-based DCOPF problem. In our model, the ISO sent
control signals to BSEs to incentivize them towards optimizing
their objectives independently, while considering the received
control signals from the ISO. The main goal of the ISO was
to minimize the aggregated generation cost of the suppliers
and the discomfort cost of the consumers simultaneously.
We evaluated the performance of the proposed decentralized
algorithm on an IEEE 14-bus test system. Simulation re-
sults confirmed that the algorithm converges after reasonable
number of iterations (about 50 iterations in less than 11
seconds). The proposed decentralized algorithm could benefit
the consumers by reducing their payment due to load shifting
from peak to off-peak hours, and the suppliers by reducing
the peak-to-average generation ratio. Finally, we evaluated the
effect of our proposed DR strategy on the branch loading. The
results confirmed the effect of our method on reducing the
loading of the transmission lines. For future work, we plan
to extend our proposed day-ahead decentralized algorithm to
real-time energy trading markets by taking into account the
uncertainties in the load and generation levels.
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