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Abstract—With the integration of new power production 
technologies and the growing focus on dispersed production, 
there has been a paradigm change in the electricity sector, 
mostly under a renewable and sustainable way. 
Consequentially, challenges for profitability as well as correct 
management of the electricity sector have increased its 
complexity. The use of forecasting tools that allow a real and 
robust approach makes it possible to improve system operation 
and thus minimizing costs associated with the activities of the 
electric sector. Hence, the forecasting approaches have an 
essential role in all stages of the electricity markets. In this 
paper, a hybrid probabilistic forecasting model (HPFM) was 
developed for short-term electricity market prices (EMP), 
combining Wavelet Transform (WT), hybrid particle swarm 
optimization (DEEPSO), Adaptive Neuro-Fuzzy Inference 
System (ANFIS), together with Monte Carlo Simulation 
(MCS). The proposed HPFM was tested and validated with 
real data from the Spanish and Pennsylvania-New Jersey-
Maryland (PJM) markets, considering the next week ahead. 
The model was validated by comparing the results with 
previously published results using other methods. 

Keywords—Adaptive neuro-fuzzy inference system; 
Electricity market prices; Forecasting; Particle swarm 
optimization; Monte Carlo simulation.  

I. INTRODUCTION 
In competitive and liberalized markets, where 

renewable incorporation is prominent, the natural renewable 
stochasticity is completely echoed in the players’ decisions, 
bringing additional challenges for a sustainable, profitable, 
and reliable operation of the electricity structure [1].  

Moreover, the integration of microgeneration together 
with the natural evolution of renewable energy technologies 
leads to a paradigm shift of the electricity sector. This, in 
addition to other factors, make forecasting EMP tools 
needed more than demand series forecasting tools [2]. 

One way to increase the sector flexibility is by 
integrating innovative storage systems, where the main goal 
is to manage the unpredictable behavior of renewables. 
However, this is highly costly, the lifetime is limited, and in 
most of the cases prototypal systems are used [3]-[5]. The 
study of forecasting EMP has grown as one of the biggest 
research areas [6].  

EMP forecasting is a critical and inevitable task for 
agents participating in all various activities of electricity 
markets. 

This is especially the case with the advance of smart 
grids, aforementioned paradigm shift in electricity sector, 
and the necessary and unavoidable mitigation of human 
footprint impact [7]. As scientific literature shows, EMP 
forecasting models are categorized into several techniques 
[8] cordially divided in different time horizons:  

1) Very-short-term (few seconds to few hours);  
2) Short-term (few hours to few days); and 
3) Long-term (few days to few months) [9]. 
From those techniques, in the case of hard computing, 

the most known models are related with auto-regressive 
integrated moving average (ARIMA), with or without pre-
processing data [10], where a huge amount of physical data 
is needed, and an exact modelling of the structure is 
mandatory.  

In contrast, soft computing models generally use an 
auto-learning procedure from historical information to 
recognize expected data with outlines present in the 
historical data. A wide range of models can be found, 
mostly related with neural network (NN) philosophy such as 
[11], [12] and hybrid models [13]-[16], where their goals are 
to take opportunity of the best features from the sets 
techniques that compose the forecasting model. 

Nowadays, the efforts of the scientific community are 
focused on innovative probabilistic forecasting models, 
where the hybridization of different methods is common, 
but with the goal of more realistic and spread outputs [17]-
[20]. To validate the accuracy and applicability of proposed 
forecasting models, the usage of similar historical datasets is 
necessary, not with the goal of tuning the model, but to 
prove its advantages among other proposed models.  

For example, in [16] a hybrid forecasting model was 
presented and applied to forecast different time horizons 
(i.e., for the next day- and week-ahead EMP), considering 
different sets of historical data from two electricity markets 
commonly used to validate forecasting models.  

In [7] a hybrid forecasting model was presented, 
combining WT, DEEPSO, and ANFIS methods to forecast 
the EMP series for the Spanish market (2002, 2006), and 
PJM market (2006), whereas different forecasting windows 
(i.e., between 24 hours and 168 hours ahead) with a 1-hour 
time-step. The model was validated by comparing with 
previous approaches considering the same real and historical 
data. 
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In [12] a hybrid forecasting approach was presented 
considering a pre-processing technique combining PSO, and 
fuzzy neural networks techniques to forecast and classify the 
EMP of Spanish electricity market. In the same trend of 
research, in [1], a forecasting model was proposed 
composed by the support vector network with an ANFIS 
network in order to analyze the information of the Nordpool 
power market in Denmark. 

Considering the widespread state-of-the-art, in this 
work a probabilistic hybrid forecasting model is elaborated 
and explored for short-term EMP, combining WT as pre-
processing data technique with DEEPSO with the goal to 
reduce the overall forecasting error by tuning the ANFIS 
requirements. Afterwards, the resulting forecasted data is 
analyzed considering an MCS; the proposed model is 
hereafter referred to as HPFM. The proposed HPFM was 
used to forecast the Spanish and PJM EMP, without 
exogenous data, considering the next week with time-step of 
1 hour. The results were compared with other proposed 
models already published considering the same historical 
data. 

The manuscript is ordered by the following sections: 
Section II describes the HPFM model. Section III shows the 
most commonly used forecasting validation tools. Section 
IV describes the cases studies and results. Finally, in Section 
V, the conclusions are provided. 

II. PROPOSED HYBRID PROBABILISTIC FORECASTING MODEL 
The proposed HPFM employs WT to capture some 

features from the random behaviour of EMP. DEEPSO, due 
to the differential process and hybrid features, brings better 
capabilities to the ANFIS structure in order to reduce the 
forecast error through tuning of ANFIS membership 
functions. The resulting data is then analyzed through MCS 
model where the goal is to have the capability of knowing 
the forecasted values range without increasing the forecast 
error. 

A. Wavelet Transform 
In current forecasting models, for the analysis of time 

series such as EMP and renewable power behavior, WT has 
been widely used because it can detect patterns and trends 
without losing the original information. Both above 
mentioned time series usually have intermittency, volatility 
and peak trends that are challenging to forecast. In this sense 
WT can be considered as a tool capable of isolating these 
trends from the non-stationary time series [17].  

Moreover, WT are successful in power quality and 
transient analysis, modeling of short-term energy system 
disturbances, and other signal analyses in continuous or 
discrete domain [16].  

Mathematically, data processing at several scales or 
resolutions is done by condensing or extending a mother 
function, allowing the illustration of the time series in period 
and occurrence domains [17]. Discrete WT (DWT), which 
has a reduced computational effort due to the scaling and 
translation process that can be done by a set of scales and 
positions, can be expressed as:  

ܹܦ ௫ܶ(݉,݊) = 2ି( ଶ⁄ ) × (ݐ)ݔ ×
்ିଵ

௧ୀ

߰ቆ
ݐ − ݊ × 2

2 ቇ (1) 

where ܶ  is the signal dimension, ܽ  represents a scale 
parameter defined by integer variable ݉ , ܾ  represents the 
translation parameter dependent on  integer variable ݊, and ݐ 
represents the index of ܶ. 

DWT computation is made for the subset of scales and 
position chosen (i.e. considering filters called 
approximations or details), highlighting the information 
hidden by the signal [8] (ݐ)ݔ. The multi-resolution used in 
this work has two signal analysis stages: decomposition and 
reconstruction, done by a set of filtering pairs.  

B. Hybrid Particle Swarm Optimization (DEEPSO) 
DEEPSO is an effective fusion mixture of evolutionary 

PSO with differential features. In this algorithm, the weight 
parameters ݓ

∗  have auto-adaptive properties which, when 
joined with the evolutionary process, result in several  
auto-adaptive indicators which produce a new result for an 
existing element ݅ of the swarm in addition with a different 
proportion between two other experienced points of the 
swarm that is under evaluation [7]. In this way, the 
formulation is summarized below [21]: 

1) Particle’s New Best Position: 
ܺ(݇) = ܺ(݇ − 1) + ܸ(݇) ;    ݅ = 1, 2, … ,ܰ (2) 

2) Particle’s Speed Update: 
ܸ(݇) = ݓ

∗ × ܸ(݇ − 1) ଵݓ+
∗ × (ܺଵ (݇ − 1)− 

− ܺଶ (݇ − 1)) + ∗ଶݓܲ × ௦௧,ܩ)
∗ − ܺ(݇ − 1)) 

(3) 

3) Particle’s Mutation Parameters Weights: 
ݓ
∗ = ݓ + ߬ܰ(0,1)  (4) 

4) Current Best Position with Normal Distribution: 
௦௧,ܩ
∗ = ௦௧,ܩ  × ቀ1  ܰ(0,1)ቁ  (5)ݓ+

5) Differential Set of Subsequent Pair of Particles 
Tested: 

݂ ቀܺଵ (݇ − 1)ቁ < ݂ ቀܺଶ (݇ − 1)ቁ  (6) 

C. Adaptive Neuro-Fuzzy Inference System 
ANFIS is by nature a hybrid model combining the best 

features of neural networks structures and fuzzy rules with 
inference features. As the extensive review of the  
state-of-the-art demonstrates, ANFIS is capable to work 
with considerable length of data using low computational 
requirements.  

To this end, ANFIS model is composed of 5 layers: 
fuzzification process, firing strength rules, normalization, 
defuzzification and output; which are interconnected with 
the different inputs and resulting in one output. The forecast 
results in a Takagi-Sugeno structure [16]. 

D. Monte Carlo Simulation 
MCS is a powerful instrument for analysis and has been 

in use in engineering for a long time. MCS are typically 
used to model an intrinsic variable of a system in which 
analytical formula cannot be used as a complex solution 
[22].  

An example of MCS application can be found in [23] 
where the effects of renewable integration with the 
interruptions’ probability were studied; where not only the 
uncertainty of components failure was analyzed but also 
variability of renewable integration was considered. 



In this work, MCS was employed to associate and 
analyze, with the final result of the forecast, a range of 
values where the forecast can be inserted. With this, it is 
possible to have a probabilistic forecast result for further 
realistic analyses and decision making. To this end, in this 
proposed model an MCS with variable control was 
implemented,  whose concept is described as computing the 
analysis results around the values where the possible set of 
results do not diverge from the expected real values [24]. 

By considering an input data (the historical and 
forecasted data) as ܺ = ,ଵݔ) … ,  )  the set is experimentedݔ
according to its distributions. In the next step, the results of 
the output variable ܻ are computed through the performance 
function ܻ = ݃(ܺ) containing input variables. Afterwards, 
output variable samples ܻ  are generated for statistical 
studies, where the features of the output variable ܻ  are 
estimated. The basic structure of this model is shown in 
Figure 1.  

Supposing that a set of ܰ samples of random variables 
are generated, it means that all generated samples of the 
random variables constitute a set of inputs composed by,  
ݔ = ,ଵݔ) … ,(ேݔ, ݅ ∈ ܰ, for the model ܻ = ݃(ܺ), i.e. [24]:  

ݕ = ,   (ݔ)݃ ݅ = 1,2, … ,ܰ  (7) 
After obtaining the output samples, the statistical study 

can be done in order to estimate output features ܻ, i.e., the 
mean, variance, reliability, probability of failure, the 
probability density function, and the cumulative density 
function. The meanings associated with these features are 
represented in the following equations; The mean: 

തܻ =
1
ܰ ×ݕ

ே

ୀଵ

 (8) 

The variance: 

ఊଶߪ =
1

ܰ − 1 ×(ݕ − തܻ)ଶ
ே

ୀଵ

 (9) 

The probability of failure expression in case of ݃ ≤ 0: 

 = ܲ{݃ ≤ 0} ≅  = න (ݔ)ܫ ௫݂(ݔ)݀ݔ
ାஶ

ିஶ
 (10) 

where: 

(ݔ)ܫ = ൜1,        ݂݅  ݃(ݔ) ≤ 0
(ݔ)݃ ݂݅         ,0 > 0 (11) 

As the integral of the previous equation is only the 
average value of (ݔ)ܫ, the probability of failure is rewritten 
as: 

 = തܻ =
1
ܰ ×ܫ(ݔ)

ே

ୀଵ

= ܰ

ܰ  (12) 

where ܰ is the total of samples that have the performance 
function lower or equal to 0. After this step, the cumulative 
density function is: 

(ݕ)௬ܨ = ܲ(݃ ≤ (ݕ =
1
ܰ ×ܫᇱ(ݕ)

ே

ୀଵ

 (13) 

where the indicator function ܫᇱ is: 

(ݔ)′ܫ = ൜1,        ݂݅  ݃(ݔ) ≤ ݕ
(ݔ)݃ ݂݅         ,0 >  (14) ݕ

Finally, the probability density function can be obtained 
from the numerical differentiation of CDF. 

 
Fig. 1. MCS flowchart structure. 

E. Probabilistic Hybrid Forecasting Model 
The flowchart and main concept of PHFM is illustrated 

in Figure 2. In brief, the algorithm can be addressed taking 
in consideration the next steps: 

Step 1: Start the PHFM model with a historical data of 
EMP taking as window frames the forecasting time-frame 
(168 hours for each set chosen); 

Step 2: Select the historical data that will be 
decomposed by the WT; 

Step 3: Select the parameters of the DEEPSO (Table I); 
Step 4: Select the set of weeks that will be used in 

DEEPSO to obtain the necessary features to tuning and 
increase the performance of ANFIS model; 

Step 5: Select the parameters of the ANFIS (Table I); 
Step 6: Select the inputs of each iteration of the ANFIS 

method; 
Step 7: Calculate the forecasting errors with the 

different error measurements criterions to authenticate the 
advances proposed PHFM model. 

Step 7.1: If the criterion error goal is not achieved, 
start again the Step 7. 
Step 7.2: If the criterion error goal is not found in step 
7, jump to step 4 in order to find another set of 
solution. 
Step 7.3: if the best forecasting results is found, or the 
number the iteration is reached, saved the latest best 
record and go to step 8. 

Step 8: Use the inverse of WT transform to include the 
data previously filtered in the forecasted output. 

Step 9: Obtain the analysis result using the MCS; print 
the forecasting results and finish. 

III. FORECASTING VALIDATION 
In order to analyze the forecasting EMP results 

obtained by the proposed PHFM model/approach with other 
available and authenticated short-term models/approaches, 
under the same input historic EMP sets, the Mean Absolute 
Percentage Error (MAPE) measure is frequently used. 

Start

Sampling of Random Variables.
Samples of random variables generation

Numerical Analysis.
Evaluation of performance function

Statistic Analysis on Model Output.
Extraction of probabilistic information

Finish

Analysis Model.
Y = g (X)

Distribution of input 
variables
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variables
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Fig. 2. HPFM flowchart structure. 

TABLE I.  DEEPSO AND ANFIS CONSIDERATIONS 
 Parameters Sort or Magnitude 

WT 

WT direction “row” 
(Re)Decomposition level 3 
WT Mother function “Db3” , “Db4” 
Analysis noise tool “sqtwolog”,”minimaxi” 
Rescaling thresholds “one” , “sln” , “mln” 

DEEPSO 

Sharing information probability 0.1 
Early inertia weight 0.01-0.9 
Ending inertia weight 0.01-0.1 
Starting swarm cognitive 
weights 1-4 

Starting swarm spreading 
process 1-4 

Starting spreading acceleration 1-4 
Population size 168 
Minimum point of new location Set of Min. inputs 
Maximum point of new location Set of Max. inputs 
Cognitive parameter 0.1 
Iterations per simulation 50-1000 

ANFIS 

Membership rules 2-15 
Number of iteration per 
simulation 2-50 

Membership function bell “pimf” , “trimf” 

The MAPE criterion (%) is generally expressed as [11]: 

ܧܲܣܯ =
100
ܰ × 

̂| − |
̅

ே

ୀଵ

 (15) 

̅ =
1
ܰ ×

ே

ୀଵ

 (16) 

in which ̂ is the PHFM output at time ݊,   is the EMP 
data at time ݊ ̅ ,  is the EMP average result for the 
forecasting data, and ܰ  is the dimension number of input 
data.  

From the similar definition resulted from MAPE, the 
uncertainty of the PHFM is computed considering the 
(weekly) error variance: 

,ߪ
ଶ =

1
ܰ × ቆ

−̂| |
̅ − ݁ቇ

ଶே

ୀଵ

 (17) 

݁ =
1
ܰ ×

̂| − |
̅

ே

ୀଵ

 (18) 
 

IV. CASE STUDIES AND RESULTS 
The PHFM under analysis provides forecast results for 

the next week with a frame of 1 hour, considering 6 weeks 
of historical data. To this end, the proposed PHFM used the 
well-known real data from the Spanish EMP of year 2002 
and for the PJM EMP for winter season of 2006. More 
details are available in [16].  

Moreover, in coherence with published and validated 
studies, no exogenous data were taken into account, for the 
fairness and clear comparison. Figures 3-7 provide the 
numerical results for the different periods’ weeks of the year 
(spring, summer, fall and winter) of the Spanish EMP, and 
for the week of 22-28 February of the PJM market.  

 
Fig. 3. EMP results from Spring week 2002 for the Spanish market: black 
dense line represents the calculated EMP results; blue dashed line 
represents the real EMP. 

 
Fig. 4. EMP results from Summer week 2002 for the Spanish market: black 
dense line represents the calculated EMP results; blue dashed line 
represents the real EMP. 
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Fig. 5. EMP results from Fall week 2002 for the Spanish market: black 
dense line represents the calculated EMP results; blue dashed line 
represents the real EMP. 

 
Fig. 6. EMP results from Winter week 2002 for the Spanish market: black 
dense line represents the calculated EMP results; blue dashed line 
represents the real EMP. 

 
Fig. 7. EMP results from Winter week 2002 for the PJM market: black 
dense line represents the calculated EMP results; blue dashed line 
represents the real EMP. 

From the numerical results obtained it is possible to 
observe how PHFM model addressed the uncertainty of the 
different EMP and different seasons under analysis. 
Moreover, the precision of the forecasted values throughout 
the week under analysis is observed. Also, from the MCS 
analysis it is observed how the forecasting values may 
fluctuate due to the related uncertainty and stochasticity 
incorporated in the historical data. 

Tables II - IV, present the evaluation between PHFM 
with other previous hybrid models with intelligence 
features, in the scientific community, regarding MAPE 
criterion, and weakly error variance criterion, for the 
Spanish and PJM markets, in each season. 

From the errors outcomes obtained, PHFM generally 
outperform, in most of the situations under analysis, the 
hybrid models under analysis and comparison. In this sense, 
and with the introduction of exogenous data in a future 
analysis, it can be expected that the forecasting errors 
considering the same cases studies may decrease, increasing 
the robustness and expected application in real-life 
scenarios. 

The proposed PHFM was developed on a common PC 
equipped with i3-2310 CPU with 2.10GHz speed, 4GB 
RAM, using MATLAB 2016b platform. The average 
computation time to obtain a single forecasting result is 
around 1 minute. 

TABLE II.  MAPE OUTCOMES FOR SPANISH EMP (%) 

[7], [11], [16] Spring Summer Fall Winter Average 

NN (2007) 5.36 11.40 13.65 5.23 8.91 

HIS (2009)  6.06 7.07 7.47 7.30 6.97 

MICNN (2012) 4.28 6.47 5.27 4.51 5.13 

EPA (2011)  4.10 6.39 6.40 3.59 5.12 

HPM (2016) 3.70 6.16 6.28 3.55 4.92 

HEA (2014) 3.33 5.38 4.97 4.29 4.18 

PHFM (2018) 4.13 5.21 4.77 4.48 4.65 

TABLE III.  WEEKLY ERROR VARIANCE OUTCOMES FOR SPANISH 
EMP 

[7], [11], [16] Spring Summer Fall Winter Average 

NN (2007) 0.0018 0.0109 0.0136 0.0017 0.0070 

HIS (2009) 0.0049 0.0029 0.0031 0.0034 0.0036 

MICNN (2012) 0.0014 0.0033 0.0022 0.0014 0.0021 

EPA (2011) 0.0016 0.0048 0.0032 0.0012 0.0027 

HPM (2016) 0.0016 0.0037 0.0032 0.0008 0.0019 

HEA (2014) 0.0011 0.0026 0.0014 0.0008 0.0015 

PHFM (2018) 0.0016 0.0021 0.0010 0.0011 0.0014 

TABLE IV.  MAPE AND WEEKLY ERROR VARIANCE OUTCOMES FOR 
PJM EMP 

[7], [11], [16] MAPE (%) Variance 

HIS (2009) 7.30 0.0031 

EPA (2011) 6.40 0.0032 

HEA (2014) 3.08 0.0017 

PHFM (2018) 5.88 0.0026 
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V. CONCLUSION 
In this work, a PHFM approach was proposed for short-

term EMP forecasting and performed on two real markets’ 
historical data previously used in other validated published 
proposals for a fair and clear comparison. The HPFM 
outcomes represent a combination of WT (which provides 
the analysis of the data without losing its essential features), 
DEEPSO (which due to its hybrid structure provides 
augmented features of the ANFIS by modifying the inputs 
and membership functions), and MCS analysis (which 
provides a probabilistic outcome of how the forecasted 
values may be spread along the time horizon). The 
application of the proposed HPFM was shown to be 
proficient, aiding in the reduction of uncertainty. The results 
obtained from both cases studies revealed the maturity of 
the HPFM, through the observation of the outcomes from 
MAPE and weekly error variance criterions. 
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