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Abstract—In this paper, an agent-based model is proposed
to improve the electricity market efficiency by using different
Demand Response Programs (DRPs). In the proposed model, the
strategic self-scheduling of each market player in the electricity
market and consequent market interactions are considered by
using a game theoretic model powered by a security constrained
unit commitment. The tariffs of price-based DRPs and the
amount of incentive in the incentive-based DRPs are optimized.
Furthermore, a market power index and the operation cost are
used to evaluate the market efficiency by using a multi-objective
decision-making approach. The results show that different types
of DRPs differently affect the oligopolistic behavior of market
players, and the potential of market power in power systems can
be mitigated by employing the proposed model for DRP opti-
mization. Numerical studies reveal that, applying combinational
DRPs is more efficient when the regulatory body considers both
economic and market power targets.

Index Terms—Demand response programs (DRPs), multi-
objective decision-making (MODM), market power, oligopoly
electricity market.

NOMENCLATURE

A. Indexes (Sets)

b, b′ Bus.
c Customer.
i Genco.
l Branch.
t, t′(T ) Time.

B. Functions and Operators

∆ Change in variable amount.
∂ Partial differential.
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C. Parameters

ai, bi, ci Coefficients of units cost function.
Bshl ,Bsrl Shunt and series admittance of branch l.
Bsrl Series admittance of branch l.
dinit Initial demand.
dContractt Amount of flexibility contracted demand.
Et,t Self-elasticity of demand-price.
Et,t′ Cross-elasticity of demand-price.
Fmaxl Power flow limit in normal state.
F cg,maxl Power flow limit in contingency state.
Gshl ,Gsrl Shunt and series conductance of branch l.
Gsrl Series conductance of branch l.
MCi Marginal cost.
MDi Minimum down time.
MUi Minimum up time.
Nc Number of customers.
Ni Number of Gencos.
Pmaxi Maximum power generation of unit i.
Pmini Minimum power generation of unit i.
Qmaxi Maximum reactive power of unit i.
Qmini Minimum reactive power of unit i.
RDi Ramp down constraint.
RUi Ramp up constraint.
SDi Shut-down cost.
SRt Required spinning reserve.
SUi Start-up cost.
V maxb Maximum voltage magnitude limit.
V minb Minimum voltage magnitude limit.
V cg,maxb Maximum voltage magnitude after contingency.
V cg,minb Minimum voltage magnitude after contingency.
δmaxb Maximum voltage angle limit of bus b.
δminb Minimum voltage angle limit of bus b.
δcg,maxb Maximum voltage angle limit after contingency.
δcg,minb Minimum voltage angle limit after contingency.
λinit Initial price/tariff.

D. Variables

Bt Customer’s benefit function.
dt Final demand.
Fl,t Power flow in normal state.
F cgl,t Power flow in contingency state.
Inct Rate of incentive of reducing the demand.
OC Total operation cost.
Pl,t,Ql,t Active and reactive power flow of branch l.
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PDAi,t Power generation of Genco i in the day-ahead
energy market.

PResi,t Amount of participation of Genco i in the reserve
market.

Pent Rate of penalty of not reducing the demand.
Ql,t Reactive power flow of branch l.
Qi,t Reactive power of unit i.
Si Share of Genco i of the total generation.
SWALI Share weighted average Lerner index.
ui,t Variable of unit commitment.
Utit Customer’s utility function.
Vb,t,V

cg
b,t Voltage magnitude before and after contingency.

V cgb,t Voltage magnitude after contingency.
yi,t, zi,t Auxiliary binary variables of unit commitment.
δb,t,δ

cg
b,t Voltage angle before and after contingency.

δcgb,t Voltage angle of bus b after contingency.
λt Price/tariff.
λDAi,t Price of day-ahead energy market.
λResi,t Price of reserve market.
ςt Incentive function.
ξt Penalty function.
∆dt Change in the demand.

I. INTRODUCTION

A. Aims and Motivation

POWER systems have been, on one hand, experiencing
a growing concern of environmental pollution because

most of the electric power comes from non-renewable energy
sources, which are major sources of greenhouse gases. On
the other hand, power systems should be able to meet the in-
creasing demand for electricity with an acceptable standard of
reliability, quality and security. In order to satisfactorily fulfill
the aforementioned conflicting requirements, power systems
are evolving towards smart grids relying on new telecommu-
nication and technological advances. In smart grids, demand
response (DR) will play a key role in the following years. DR
empowers consumers to participate in the electricity markets
[1] and contribute their share towards efficient operation of
electricity grids. In other words, different Demand Response
Programs (DRPs) are effective tools used by electricity market
operators and regulatory bodies to operate electricity grids
more efficiently.

One of the main objectives of regulatory bodies is to
improve the electricity market efficiency. There are many
structural and behavioral options for the improvement. Increas-
ing the number of market participants and increasing the price-
elasticity of consumers are two main structural options [2].
Changing the rules and the regulation of electricity markets,
such as changing the tariffs, are behavioral options of regula-
tory bodies that enhance market efficiency [3]. In this context,
DR plays a crucial role because it can increase the customers
elasticity in the long-term as well as the operational impacts
on the load shape Therefore, the market operator can employ
DRPs to improve market efficiency and mitigate market power.

DRPs can reduce the risk of participation in the electricity
markets for small market players, as well as improving the

reliability and efficiency of the power system. Although partic-
ipation of customers in DRPs can be a profitable option from
power systems’ point of view, it can significantly affect the
strategic behavior of generations companies (Gencos), espe-
cially in oligopoly environments. On this basis, this paper aims
at studying the impacts of different DRPs on the oligopolistic
behavior of Gencos in a day-ahead electricity market and
finding the optimal DRP in terms of market efficiency.

B. Literature Review and Background

Many reports have analyzed the oligopoly electricity market
models [4], [5]. In [6] and [7], two strategic game models,
one for studying the electricity markets and another one for
assessing the interactions of market participants are reported.
In [8], the market clearing prices are achieved by means of
a heuristic method, within a hydrothermal power exchange
market. But, the power flow formulations in the optimization
of oligopolistic market models are rarely reported [9]. This is
due to the fact that network constraints determine a complex
market clearing mechanism and lead to non-differentiable and
non-concave functions. As an example, in [10], the calcula-
tions of Nash equilibrium is presented for wholesale electricity
markets. The impact of DR has not been addressed in the
mentioned electricity market models.

In [11], the interaction among utility companies and respon-
sive demands has been presented in a smart grid by considering
the demand response problem as a non-cooperative game. In
[12], a linear supply function has been employed for demand
response bidding; however, the impact of DRPs on the market
power has not been addressed, since the problem has been
modeled from the demand side’s viewpoint.

In the demand response schemes, the electric utility provides
incentives and benefits to consumers in order to compensate
their flexibility in DR events or in the timing of energy
consumption [13]. In [14], the impact of market structure on
the elasticity of the demand for electricity is analyzed and a
matrix of self- and cross-elasticities is introduced to describe
the consumers behavior. In this paper, the mentioned matrix
is employed to model the impact of different DRPs on the
customers behavior. The effect of DR on the power system
load shape has been investigated by an economic model of
price responsive demand in [15]. In [16], a price-based DR has
been applied to the power systems. In [17], a model has been
reported for implementation of Emergency Demand Response
Program (EDRP) and Interruptible/Curtailabe (I/C) services
in the unit commitment (UC) problem. For implementing
DRPs in the electricity markets, usually different objectives are
considered; sometimes, these principles contradict each other,
hence they cannot be optimized simultaneously. Power system
regulatory bodies try to use multi-objective decision analysis
to overcome this issue [18], [19]. In [19], a multi-attribute
method based on goal programming has been utilized to find
the priority of DR programs. However, finding the optimal
tariffs as well as incentive and penalty rates has not been
addressed.
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C. Contributions

Although many reports in the literature have studied the
oligopolistic power market, impact of both incentive-based and
price-based DRPs on the self-scheduling of market players in
an oligopoly electricity market has not been addressed. This
paper models the strategic behavior of Gencos in an oligopoly
day-ahead electricity market where a part of customers partic-
ipates in incentive-based and price-based DRPs. To this end,
an agent-based game-theoretic model is employed and impacts
of several DRPs including Real Time Pricing (RTP), Time of
Use (TOU), EDRP, I/C and Critical Peak Pricing (CPP) on the
strategic behavior of market players are investigated.

Since the implementation of DRPs can affect the operational
behavior of market players in different hours of a day, in
this paper, the electricity market is modeled in a period of
twenty-four hours, in contrary to most of previous studies
where the game theoretic model of the electricity market is
based on one single hour. Therefore, the proposed model
enables to investigate the self-scheduling problem considering
the startup and shut down costs, minimum on/off times, and
ramp up/down rates.

In addition, the optimal DRP in terms of market efficiency is
obtained to increase the level of competition in the electricity
market. To this end, the tariffs of the mentioned price-based
programs and the amount of incentive and penalty in EDRP
and I/C services are optimized. To this end, the proposed
model aims at improving the electricity market efficiency
by optimizing the mentioned DRPs and selecting the best
DRP by means of an MODM approach based on ε-constraint
method. The operation cost and a market power index are
considered as objectives of the mentioned MODM approach.
The contributions of this paper can be summarized as below:
• Modeling the oligopolistic electricity market by consider-

ing the participation of customers in both incentive-based
and price-based DRPs

• Finding the optimal DRP among different DRPs in terms
of improving the market efficiency by employing an
MODM approach

D. Paper Organization

Section II describes the models of DRPs. Section III devotes
to the agent-based model of the electricity market including the
MODM approach. Numerical studies are presented in Section
IV. In Section V concluding remarks are drawn.

II. MODELING THE DEMAND RESPONSE PROGRAMS

DRPs aim at making consumers more sensitive to varia-
tions of electricity prices over hours. DRPs encourage the
consumers to change their electricity use in response to
fluctuations of price over the time, or to offer incentives,
or to charge penalties that are considered to provide lower
use during high electricity prices or when the power system
reliability is threatened. DRPs have been categorized into two
groups, so-called, price-based, and incentive-based programs.

Assuming that the customer’s electricity demand at hour t is
changed from dini

t , initial amount of demand, to dt, due to price

changes or an incentive payment or a penalty consideration,
the impacts of DRPs on a customer’s consumption can be
formulated as below:

∆dt = dt − dini
t (1)

where ∆dt, the change in the demand, is a free variable which
can obtain both negative and positive values. dini

t is the initial
amount of demand and dt denotes the final demand after
implementation of DRPs.

The amount of incentive, ςt, is expressed as:

ςt = Inct (dini
t − dt) (2)

where Inct ≥ 0 and ςt ≥ 0 are the rate of incentive and
the incentive function to reduce the demand, respectively.
Similarly, the amount of penalty, ξt, can be formulated as:

ξt = Pent
(
dContractt − (dini

t − dt)
)

(3)

where Pent ≥ 0 and ξt ≥ 0. dContractt represents the amount
of contracted flexibility. It means that the consumer is obliged
to reduce his demand by a certain amount under the risk of
being penalized. In other words, if the customer does not
reduce its consumption to dContractt , he is penalized by the
rate of Pent.

The customer’s benefit, B, at hour t can be as follows [20]:

Bt = Utit − dt λt + ςt − ξt (4)

where Utit is the customer’s utility at hour t that is a function
of amount of demand, dt. Utit denotes the value of d kWh
of electricity for the consumers. Particularly, the customer’s
utility indicates the production income for industrial cus-
tomers, while it is the productivity for commercial demands.
λt denotes the price/tariff at time slot t. The second term in (4)
is related to the electricity cost in hour t. Last two terms are
related to the amounts of incentive and penalty, respectively.

In order to represent the customer’s sensitivity to change
in electricity tariffs, incentives or penalties, the current paper
uses the concept of elasticity of demand. Elasticity is defined
as the load’s reaction to the electricity price. As the elasticity
increases, the load sensitivity to price increases as well. In fact,
the elasticity is used to estimate the load reduction and load
recovery by DR participants. The price elasticity of demand
in t-th time slot versus t′-th time slot can be defined as (5).

Demand can indeed react to change in electricity tariffs in
one of followings. A set of loads is reduced without recovering
it later, so-called fixed loads. Such loads have sensitivity just
in a single period and it is called self-elasticity, i.e., E(t, t).
This value is always negative. Some other loads can shift from
peak periods to off-peak periods as required, namely shiftable
loads. Such behavior is called multi period sensitivity and is
evaluated by cross-elasticity, i.e., E(t, t′). This value is always
positive [20]. The correlation of demand in different time slots
is modeled by using the concept of the cross-elasticity, in fact
multiple time periods are correlated to each other according
to the cross-elasticity concept.

E(t, t′) =
∂dt
∂λt′

.
λinit′

dinit
(5)
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where λini denotes the initial tariff of electricity before

implementing the DRPs,
∂dt
∂λt′

= constant and{
E(t, t′) ≤ 0 if t = t′

E(t, t′) ≥ 0 if t 6= t′
(6)

Using the second order Taylor Series expansion of the
customer’s utility function, the quadratic utility function of
consumers based on their demand can be obtained as (7).

Utit = Utiinit + λinit (∆dt)

(
1 +

∆dt
2Et,tdinit

)
(7)

where Et,t is the self-elasticity of demand-price [14].
Ref. [20] showed that the single period price-based eco-

nomic load model is obtained as shown in (8).

dt = dini
t + Et,t

dini
t

λini
t

(
λt − λini

t + Inct − Pent
)

(8)

According to the concept of the cross-elasticity, [20] showed
that a change in the electricity price in hour t′ might cause
the load variation in hour t as represented in (9).

dt = dini
t +

T∑
t′=1,t′ 6=t

(
Et,t′

dini
t

λini
t′

(
λt′ − λini

t′ + Inct′ − Pent′
))

(9)
As a result of the combination of (8) and (9), the compre-

hensive DR model will be obtained as (10) [20].

dt = dini
t + Et,t

dini
t

λini
t

(
λt − λini

t + Inct − Pent
)

+
T∑

t′=1,t′ 6=t

(
Et,t′

dini
t

λini
t′

(
λt′ − λini

t′ + Inct′ − Pent′
)) (10)

Eq. (10) shows the optimal amount of demand from cus-
tomers’ point of view by participating in DRPs considering
given electricity tariffs, λt, incentive, Inct, and penalty, Pent.
It should be noted that, the technical and behavioral constraints
of customers are reflected in the elasticity, since the calculating
methods of elasticity are based on analysis of real data and
customers surveys [21]. The tariffs, incentive and penalty rates
have been considered as given parameters in the literature.
However, in this paper the mentioned parameters are modeled
as decision variables and the optimal tariffs, incentive and
penalty rates are obtained from the regulatory body’s view-
point. Moreover, in the DRPs, the tariff of each time slot and
penalty rate should be limited to a certain interval to avoid
the sharp rises of customers electricity purchasing cost and
penalty. On this basis, the following constraints are considered
for the electricity tariffs and penalty rate.

λt ≤ λmaxt (11)

Pent ≤ Penmax (12)

Fig. 1. The proposed electricity market model.

III. MODELING THE ELECTRICITY MARKET

In order to consider the reality of market behavior, an
oligopoly market model is proposed in this paper. To this
end, a multi-agent framework is presented. In the first level
of the agent-based model, market players maximize their own
profits. The supply function equilibrium (SFE) is employed
due to high precision to model the game theory [11], thus
each Genco decides on both price and quantity. The Gencos
have no information of each other. Hence, from the Gencos’
point of view, the market model is an incomplete information
game [9]. In addition to the Gencos, in the first level, the
behavior of customers participating in a DRP is also modeled
as presented in Section II. In the second level, the system
operator minimizes its objective function.

The interaction between these two levels is carried out by
using an iteration-based game. On this basis, each Genco agent
receives the daily price of the energy and reserve markets from
the previous iteration. All agents solve their self-scheduling
problem to maximize the profit and individually offer their
suggestion to electricity markets. The demand is also updated
due to the daily prices of the previous iteration. The learning
process is based on the hypothesis that each agent can observe
the final market loads and prices related to previous iterations,
in addition to the results of the auctions. Therefore, the price
loop is repeated until the prices of the agents are equal
to market clearing ones. It should be noted that using the
iteration-based game theory can help the market simulator to
find the process of converging to the market equilibrium point.
Based on this, the regulation body can observe the dynamic
of market participants’ strategic behavior. More details of the
iteration-based game theory are presented in [22].

A schematic of the proposed model is illustrated in Fig.
1. The details of the proposed electricity market model are
expressed as follows.

A. Genco’s model

The objective function of each Genco corresponds to max-
imizing its own profit, participating in day-ahead energy and
reserve markets. To this end, each Genco considers the nodal
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prices of the electricity market to determine the optimum
strategic behavior in twenty-four hours. The objective function
of Genco i is formulated as below:

Max

PDA
i,t ,λDA

i,t ,P
Res
i,t ,λRes

i,t ,ui,t

{GencoProfit} =

Max
T∑
t=1


PDAi,t λ

DA
i,t + PResi,t λResi,t

−ai P 2
i,t − bi Pi,t − ci ui,t

−SUi yi,t − SDi zi,t


(13)

Subject to:
Pmin
i ui,t ≤ Pi,t ≤ Pmax

i ui,t (14)

The first line of (13) denotes the income of Genco from taking
part in day-ahead energy and reserve markets. The second line
represents the operational costs of the unit. ai, bi and ci are co-
efficients of cost function of Genco i. ui,t is the binary variable
of unit commitment of generator i, and Pi,t=PDAi,t +PResi,t . The
last two terms denote start-up and shut-down costs. Constraint
(14) presents the limitation of power generation in each hour.
yi,t and zi,t are auxiliary variables to determine start-up and
shut down times as formulated in (15)-(16).

ui,t − ui,t−1 = yi,t − zi,t (15)

yi,t + zi,t ≤ 1 (16)

The unit ramp up and down constraints are formulated by
(17)-(18).

Pi,t − Pi,t−1 ≤ RUi + Pmin
i yi,t (17)

Pi,t−1 − Pi,t ≤ RDi + Pmin
i zi,t (18)

The minimum on and off time constraints are expressed by
(19)-(20).

yi,t +

MUi−1∑
j=1

zi,t+j ≤ 1 (19)

zi,t +

MDi−1∑
j=1

yi,t+j ≤ 1 (20)

B. Regulatory body model

In order to model the market behavior in twenty-four
hours, the market clearing price and quantity are determined
by solving a security constrained unit commitment (SCUC)
problem. On this basis, once entering the Gencos’ offers to
the SCUC problem, the most economic solution from the
ISO’s viewpoint is obtained, considering network and security
limits. The solution consists of commitment and generation
of Gencos, as well as locational market prices. In [23], it is
shown that minimizing the total cost (or maximizing the social
welfare) cannot prevent the market players from exercising the
market power, and consequently, employing some behavioral
market power indexes is crucial.

Instead of minimizing either the operation cost or market
power, using the multi-objective problem enables the regu-
latory body to find a tradeoff between these two important
factors. On this basis, in the proposed MODM problem,
two objective functions are considered. The first objective
function is the total operation cost, while the second one is
the Share Weighted Average Lerner Index (SWALI). SWALI
is an expanded Lerner index that indicates the market power
of the entire power system.

The Lerner index is a well-known operational index of
market power that is calculated by the difference between
price and marginal cost expressed as a percentage of price
[24]. The Lerner index can measure the market power of each
single Genco, while in order to measure the market power of
all the power system, SWALI is introduced. The introduction
of SWALI is based on the concept that if a big Genco has the
potential of market power it can deteriorate the power system
efficiency more than a small Genco with the same Lerner
index. SWALI in completely competitive markets is equal to
zero, because the Lerner index of each Genco is equal to zero.
In uncompetitive markets, SWALI tends to the number of time
slots, because the weighed Lerner index of Gencos is equal to
one.

The total operation cost and SWALI are formulated as
shown in (21) and (22), respectively.

Objective Function I = OC =
T∑
t=1

Ni∑
i=1

(
PDAi,t λ

DA
i,t + PResi,t λResi,t

)
+

T∑
t=1

Nc∑
c=1

Inct(d
ini
c,t − dc,t)

−
T∑
t=1

Nc∑
c=1

Pent
(
dcontractc,t − (dini

c,t − dc,t)
)

(21)

Objective Function II = SWALI =
T∑
t=1

Ni∑
i=1

Si
(
λDAi,t −MCi

)
/λDAi,t

(22)

In (21), the first line represents the operation cost resulted
from generation and reserve of Gencos. The first term of the
second line of (21) denotes the cost of incentive payment
to customers who successfully response to incentive-based
programs. The second term is the income of penalty received
from customers who do not reduce their demand according to
the contract.

In (22), MCi denotes the marginal cost of Genco i, and Si
is the share of Genco i of the total generation as defined in
(23).

Si = Pmax
i

/ Ni∑
i=1

Pmax
i (23)

In (21), the decision variables are PDAi,t , λDAi,t , PResi,t , λResi,t ,
Inct, Pent, while in (22), the decision variable is λDAi,t .
From the system operator’s perspective, some other constraints
should be taken into account as presented below:
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∑
∀i(b)

PDAi,t +
∑
l

Pl,t =
∑
∀c(b)

dc,t (24)

∑
∀i(b)

Qi,t +
∑
l

Ql,t =
∑
∀c(b)

Qc,t (25)

Ni∑
i=1

Pmax
i,t ui,t ≥

Nc∑
c=1

dc,t + SRt (26)

Qmin
i ui,t ≤ Qi,t ≤ Qmax

i ui,t (27)

Pl,t = Vb,tVb′,t(G
sr
l +Gshl )

−Vb,tVb′,t (Gsrl cos(δb − δb′) +Bsrl sin(δb − δb′))
(28)

Ql,t = −Vb,tVb,t(Bsrl +Bshl )

+Vb,tVb′,t (Bsrl cos(δb − δb′)−Gsrl sin(δb − δb′))
(29)

δmin
b ≤ δb,t ≤ δmax

b
(30)

δcg,min
b ≤ δcgb,t ≤ δ

cg,max
b

(31)

V min
b ≤ Vb,t ≤ V max

b (32)

V cg,min
b ≤ V cgb,t ≤ V

cg,max
b (33)

Fl,t =
√
P 2
l,t +Q2

l,t (34)

Fmin
l ≤ Fl,t ≤ Fmax

l (35)

F cg,min
l ≤ F cgl,t ≤ F

cg,max
l (36)

where dc,t denotes the demand of customer c at time slot t.
Ni and Nc are the total number of Gencos and customers,
respectively.

The nodal balance on bus b for active and reactive powers
is presented in (24) and (25), respectively. Inequality (26)
ensures that the committed units can supply the demand and
provide the required spinning reserve. Constraint (27) limits
the reactive power generation. Equations (28) and (29) repre-
sent the active and reactive line flows [25]. Inequalities (30)
and (31) limit the bus angle for the normal and contingency
states, respectively. Constraints (32) and (33) limit the voltage
magnitude in normal and contingency states, respectively.
Eq. (34) calculates the power flow trough network branches.
Constraints (35) and (36) limit the flows through network
branches in normal and contingency states, respectively. The
limits of (33) and (36) known as emergency ratings, are not
necessarily equal to the pre-contingency limits of (32) and (35)
that are the normal ratings.

In order to improve the computational speed of power flow,
a hybrid algorithm is employed. Based on the algorithm, in

the SCUC problem, a nonlinear AC power flow is solved in
normal condition and linearized Jacobian matrices are utilized
for contingencies. The applied formulation of power flow
calculation has been presented in [26].

It should be noted that proper and practical tariffs should at
least cover the expenses for the production of the electricity.
Since the expenses of production of electricity are included in
the operation cost, the regulator can select a solution (e.g.,
Tariffs) between the obtained solutions of the Pareto front
in such a way to avoid financial losses for Gencos. In other
words, the regulatory body can only select solutions for which
the operation cost ensures to cover the expenses required for
the production of electricity.

C. Multi-objective decision-making

In order to solve the proposed multi-objective problem,
the ε-constraint method [27] is employed to transform the
problem into a uni-objective problem. Based on ε-constraint
method, one objective is optimized while the rest of objectives
are considered as new constraints that limit the amount of
objectives to parameter ε. In this paper, Operation Cost (Φ1)
is minimized while SWALI (Φ2) is limited to parameter ε, as
presented in (37). This parameter is progressively increased
from SWALImin to SWALImax, hence one optimal solu-
tion is obtained for each value of parameter ε. The obtained
solutions form the Pareto front of the multi-objective problem.

Objective Function = Min(Φ1)

Subject to : Φ2 ≤ ε
(37)

In order to select the best compromise solution among
Pareto solutions, several methods have been addressed in
the literature such as max-min [28] and analytical hierarchy
process [29], that can be utilized by the decision maker. On
this basis, when Pareto solutions are attained, the regulatory
body can employ one of the methods to select the best solution.

It should mention that, the outlook and preference of
regulatory body conclude the best compromise solution. In
other words, since the regulatory body has concerns about
both the operation cost and the market power, it can select the
best compromise solution by considering some limits on the
operation cost and SWALI.

The proposed method aims at forming the Pareto front
for DR portfolio and selecting one or more solutions among
the Pareto solutions is only carried out to better analyze the
results. On this basis, it is assumed that the regulatory body
determines a maximum permitted value for each operation
cost and SWALI, and consequently obtains the most effective
DRP among DR portfolio. Hence, the decision-aid approach
is employed to investigate the solutions, whereas the ultimate
decision should be made by the regulatory body, not by the
analyst.

IV. NUMERICAL RESULTS

In order to examine the performance of the proposed model,
three test systems; namely, IEEE six-bus, IEEE 24-bus RTS
[30] and IEEE 118-bus are employed; however, only the results
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of the IEEE 24-bus RTS are presented and analyzed in this
paper. In the test system, the maximum participation level of
customers in DRPs is equal to 20%. Moreover, the values of
self and cross price-demand elasticity are extracted from [20].

The platform that has been used to evaluate the proposed
model is a 64-bit Workstation with two Xeon E5-2687W 8C
3.10 GHz processors with 256 GB of RAM and an interface
of MATLAB R2013b (8.2.0.701) and GAMS 24.0.2 has been
utilized. Both levels of the proposed model are formulated
as mixed integer nonlinear programing, solved and proven by
DICOPT and SBB, respectively.

The hourly load of IEEE 24-bus system corresponds to a
weekend day in winter as given in [30] while the peak of the
day is assumed 2670 MW. The load curve of the IEEE 24-bus
system is divided into four periods: valley (1:00-8:00), off-
peak (9:00-16:00), peak (17:00, 20:00-24:00) and critical peak
(18:00-19:00). It should be noted that the initial electricity
price is assumed to be 15 $/MWh that equals to the mean
value of electricity prices before the DR implementation. The
amount of contracted flexibility is considered 10% and 5% of
the demand in the critical peak and peak periods, respectively,
as presented in (38) and (39).

dcontractc,t = 0.1× dinic,t t ∈ TPeak (38)

dcontractc,t = 0.05× dinic,t t ∈ TOff−peak (39)

The utilized DR portfolio contains three sets of DRPs. The
first set is the price-based DRPs including TOU, RTP and CPP.
The second set is EDRP and I/C as incentive-based DRPs. The
third set is the combination of the two sets, i.e., TOU+EDRP
and TOU+I/C.

In order to evaluate the potential of DRPs on market power,
two case studies are considered. In this respect, case 1 deals
with economic-driven scheduling, that considers the operation
cost as the uni-objective of the electricity market. However,
a trade-off between economic and market power objectives
is studied in case 2, where SWALI is also considered in the
multi-objective function. In case 2, the Pareto front is obtained
by using the ε-constraint method.

The obtained tariffs, incentives and penalties for each DRP
in both cases are presented in Table I. In RTP, the obtained
hourly market prices resulted from clearing the market are
used for the tariffs of customers. The off-peak tariff is assumed
to be an input parameter and it is considered equal to the
electricity price in base case, i.e., 15 $/MWh.

As it can be seen from Table I, the TOU tariff in case 2 has
a higher value in peak period (i.e., 40.5 $/MWh) compared
to case 1 (i.e., 37.5 $/MWh). This is due to the fact that,
when the market power is considered in the objective function,
the regulatory body aims to have lower market prices in
peak period by using DRPs which reduce the demand in the
mentioned period. This can shift more customers’ load to
the valley and off-peak periods, and consequently the market
prices in the peak hours are decreased. This fact can be
also observed from the optimal tariffs in CPP program where

Fig. 2. The obtained Pareto fronts in case 2.

the critical peak tariff in case 2 is 25% higher than case 1.
Similarly, higher incentives and penalties in case 2 compared
to case 1 reveals that one of the regulatory options for the
market power mitigation is to motivate the customers to reduce
their level of demand in the peak and critical peak hours, when
Gencos have the highest market power. According to Table
I, the third set provides a trade-off between price-based and
incentive-based programs. On this basis, the tariffs of TOU in
combinational DRPs are lower than the tariffs when TOU is
individually applied. In contrast, the incentives and penalties
in combinational DRPs are higher than those in the second
set. Although the incentive and penalty rates in the third set
are higher than the ones in the second set, the incentive-based
DRPs in the third set have a lower impact on the demand,
because some parts of the demand decrease due to the TOU
tariffs in the peak and critical peak hours. It can be revealed
from the terms of incentive and penalty costs in operation costs
for the different DRPs sets as presented in Table II.

According to Table II that, by implementing DRPs, the
total operation cost of system is meaningfully decreased in
comparison with the base case. Particularly, it can be seen
that the DRPs in the third set are more effective in terms
of operation cost reduction. Because, these DRPs motivate
the customers to change their consumption using both tariff
schemes and incentive mechanisms.

It is noteworthy that the penalty costs are negative according
to the fact that this term is considered as revenue in the
objective function from system operator’s viewpoint, i.e., (21).

The obtained Pareto fronts for the considered DR portfolio
are illustrated in Fig. 2. The Pareto front of each DRP includes
twenty solutions, obtained from applying twenty equal steps
for ε parameter. According to Fig. 2, as a result of DR
implementation, both the operation costs and SWALI are
reduced compared to base case. In the first set of DR portfolio,
the minimum values of operation cost and SWALI are related
to TOU. In the second set of DR portfolio, I/C is more effective
than EDRP in reducing both the operation cost and the market
power. This causes that, in the third set, combination of TOU
and I/C has better impacts on the market efficiency compared
to the combinational TOU and EDRP.

According to Fig. 2, simultaneously implementing TOU
and I/C programs is the most effective option to minimize
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TABLE I
OBTAINED OPTIMAL TARIFF, INCENTIVE AND PENALTY

Set DRPs
Case 1 Case 2

Electricity tariffs ($/MWh)
Inc Pen

Electricity tariffs ($/MWh)
Inc Pen

Valley Off-peak Peak Critical
peak Valley Off-peak Peak Critical

peak
Base case Initial load 15 - - 15 - -

1
TOU 6 15 37.5 - - 5.5 15 40.5 - -
RTP Obtained market prices - - Obtained market prices - -
CPP 15 60 - - 15 75 - -

2
EDRP 15 10 - 15 12 -

I/C 15 6 4 15 7.5 5

3
TOU+EDRP 7.5 15 30 11 - 6 15 37.5 14 -

TOU+I/C 7.5 15 30 7.5 5 6 15 37.5 9 6

TABLE II
OPERATION COSTS OF DR PORTFOLIO IN CASE 1

Base-case
Set 1 Set 2 Set 3

TOU RTP CPP EDRP I/C TOU+EDRP TOU+I/C
Fuel cost ($) 466800 431410 447700 431630 435380 428100 413190 408090

Reserve cost ($) 22960 23159 23075 23210 23154 23313 23273 23296
Incentive cost ($) 0 0 0 0 21103 19764 15819 19804
Penalty cost ($) 0 0 0 0 0 -6608 0 -3163

Operation cost ($) 489760 454570 470776 454841 479638 464571 452283 448028

both operation cost and market power objective functions.
It seems reasonable due to the fact that, TOU is a kind of
obligatory DRP implemented by the system operator, so that
the customers do not have any choice about it. Moreover, I/C
program has a mechanism to penalize the customers, if they
do not respond in the required times. Therefore, it seems that
the customers are forced to participate in DRP and as a result
the maximum benefit is attained from the system operator’s
perspective.

Comparing case 1 and case 2 reveals that considering market
power index in the objective function of the system operator
improves the effectiveness of I/C services. In other words,
implementation of I/C can be a better option than price-based
DRPs, if in addition to the operation cost, the market power is
also analyzed. This means that, the incentive-based DRP can
play more important roles by considering the market power in
the system operator objective.

It is also obvious that implementing incentive-based DRPs is
not pleasant for the system operator, because implementation
of these programs impose additional costs to the system.

The proposed method enables the regulatory body to select
a DR portfolio such a way that a trade-off between operation
cost and market power is obtained. For example, based on
the regulatory measures, if the operation cost and SWALI
respectively less than 500,000 $ and 12.5 are acceptable by
the regulatory body, among DR portfolio several compromise
solutions can be selected as presented in Table III.

As it can be seen in Table III, the considered limits for
the operation cost and SWALI cause that the list of solutions
is shortened. On this basis, RTP, CPP and EDRP are not
appropriate options to reduce the operation cost and the market
power compared to other DRPs. Each of TOU and I/C has one
acceptable solution, while the combination of TOU and EDRP
provides two solutions that can indicate this combination
works better than each of TOU and EDRP. The most effective

TABLE III
COMPROMISE SOLUTIONS AMONG DR PORTFOLIO

Set DRPs Solution Operation Cost ($) SWALI
Base case Initial load N/A - -

1
TOU #9 499,310 12.37
RTP N/A - -
CPP N/A - -

2
EDRP N/A - -

I/C #9 495,790 12.42

3
TOU+EDRP #10-11 490,375∗ 12.33∗

TOU+I/C #8-15 469,391∗∗ 11.76∗∗

∗ The average value of the two solutions of TOU+EDRP
∗∗ The average value of the eight solutions of TOU+I/C

option to optimize the objective function is TOU+I/C that
obtains eight solutions with the lowest amount of both the
operation cost and SWALI. In general, it can be concluded that
simultaneous implementation of price-based and incentive-
based DRPs is a more favorable option for regulatory bodies to
reduce the operation cost while mitigating the market power.

Fig. 3 shows the electricity market price in case 1 for
different price-based DRPs. As it can be seen, all the price-
based DRPs reduce the electricity prices in the critical peak
hours compared to the base case. Among the mentioned
DRPs, CPP has more effect on reducing the critical peak
price, following by TOU. However, by implementing CPP, the
market prices in peak and off-peak periods are higher than the
ones in the base case or by implementing other DRPs. It is
due to the fact that in CPP, only a very high tariff is applied
on the critical peak period and the rest hours of the day have
same tariff as the initial fixed-rate tariff. Therefore, for CPP
there is no difference between valley, peak and off-peak hours.
However, in TOU, the tariffs of valley and peak hours are
different, therefore, the demand and consequently the market
price in valley hours increase. In addition, since the obtained
tariffs of TOU and CPP are higher than the electricity market
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Fig. 3. Market price in case 1 considering different price-based DRPs.

Fig. 4. Market price in different cases.

prices in critical peak period, these two programs affect the
price more than RTP in which the tariff is the same as the
electricity market price.

The electricity market prices considering the combination
of TOU and I/C in cases 1 and 2 are compared in Fig. 4. In
this figure, the solution #10 of the Pareto solutions is utilized
for case 2. As it can be seen, case 2 has a better impact on
decreasing the electricity market price in both peak an critical
peak periods. The market power potential is generally high
when the electricity demand increases, therefore considering
the market power index (i.e., SWALI) as an objective function
of the system operator decreases the market prices in the peak
and critical peak hours. By comparing Fig. 4 and Fig. 3, it
can be observed that the combination of TOU and I/C in case
2 has the best influence on the market electricity price among
different DRPs, since the prices in the valley hours are as high
as the ones in TOU in case 1, while the prices are lower than
the ones in TOU in peak and critical peak periods.

Fig. 5 indicates the market share of Gencos considering the
combination of TOU and I/C in cases 1 and 2. It can be seen
that both cases 1 and 2 can significantly mitigate the market
share of Gencos 1 to 3. It should be noted that Gencos 1
and 2 are expensive Gencos, and the implementation of TOU
and I/C reduces the necessity of their generation. Genco 9 has
a high market share in the system. By considering SWALI
in the objective function of the system operator (i.e., case
2), the market share of this Genco reduces, while, in case
1, the market share of this Genco increases compared to the
base case. Since Genco 9 is not an expensive Genco, by only
considering the total cost in the objective function (i.e., case
1), the system operator increases the generation of this Genco
that makes a higher market power potential for it.

In Fig. 6, SWALI is illustrated in different DRPs in cases 1
and 2. In this figure, one of the Pareto solutions is used for the
initial load, RTP, CPP and EDRP in case 2, while the constraint

Fig. 5. Gencos’ market share in different cases.

Fig. 6. SWALI in different cases.

TABLE IV
OPTIMIZATION STATISTICS OF THE PROPOSED MODEL

Problem level No. of
constraints

No. of
Variables

No. of
iterations

Solution
time (s)

First level (for one
Genco using (13))

358 217 16.4∗ 0.015∗

Second level
(minimizing (37))

8016 4832 149729∗ 9.288∗

Total problem
(interaction

between two levels)
- - 185 4500

∗ The average of each iteration of the total problem

on SWALI (i.e., SWALI < 12.5) is not considered. TOU
and I/C are two most effective individual DRPs on SWALI,
therefore the combination of these two programs (TOU+I/C)
has the highest impact on the market power index. According
to Fig. 6, considering SWALI in the objective function can
decrease this index about 2 units in almost all DRPs. However,
it has the biggest decrease in SWALI when EDRP and I/C
(that are both incentive-based DRPs) are used. Particularly,
in EDRP and I/C, SWALI respectively decreases 13.5% and
14.9% from case 1 to case 2. It means that these incentive-
based programs have more role when the market power index
is considered in the objective function of the system operator.
It should be noted that I/C has also a significant impact on the
operation of the system when SWALI is considered. Based on
Table II, in case 1, I/C program is the third best program in
terms of operation cost (that follows TOU and CPP), while in
case 2 (according to Table III, I/C is the best individual DRP
regarding the operation cost.

In order to clarify the dimension of the mathematical
programming problem and convergence performance of the
proposed model, the optimization statistics for both levels of
the problem are presented in Table IV.
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TABLE V
GENCOS’ DATA

Genco
Unit cost coefficients

Start-up cost Pmax (MW)
ai bi ci

1 0.2917 35.07 3591.39 1460.4 192

2 0.2917 35.07 3591.39 1460.4 192

3 0.0191 14.86 552.8 1725 300

4 0.0322 19.18 1940.98 3056.7 591

5 0.0322 19.18 649.99 749 215

6 0.0628 27.22 1829 312 155

7 0.0086 30 1992.36 0 400

8 0.0086 30 1992.36 0 400

9 0.0112 14.17 927.15 2922 660

V. CONCLUSION

In this paper, a multi-agent model was proposed to improve
the market efficiency by using different DRPs. To this end,
the oligopolistic electricity market was modeled to consider
strategic self-scheduling of each market player. Market inter-
actions were taken into account by game theory and the market
transactions were cleared by an SCUC problem. Moreover,
different DRPs were investigated to find the optimal tariffs
of price-based programs as well as the incentive/penalty rate
of incentive-based programs. In the future work, the amount
of flexibility contracted demand can be also considered as
a decision variable in the model, especially in the long-
term studies. SWALI was employed to evaluate the market
efficiency and an MODM approach was employed to analyze
the solutions. The following results were drawn from the
numerical studies:
• Different types of DRPs had significant effect on the

oligopolistic behavior of market players. Based on the
obtained results, implementation of price-based DRPs
with a high tariff in peak and critical peak periods
could decrease the offered prices by the Gencos and
consequently it could mitigate the market power.

• The market operator could mitigate the potential of mar-
ket power in an electricity market by finding an optimal
DRP. Therefore, using the proposed model, before imple-
menting the DRPs, can significantly enhance the market
efficiency and mitigate market power.

• Applying combinational DRPs including both price-based
and incentive-based are more efficient when regulatory
body considers both economic and market power targets.

VI. APPENDIX

The cost coefficients of the units, the start-up cost and the
maximum power generation are presented in Table V.
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