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Abstract—Gas-fired units and power-to-gas facilities provide lge L,
pivotal backups for power systems with volatile renewable gener-  pc
ations. The deepened system interdependency calls for elaborate g

; - iy €T,
consideration of network models of both natural gas and power g Gg g
systems, as well as uncertain factors. This paper proposes a ¢ < S

ENS

data-driven distributionally robust optimization model for the
optimal gas-power flow problem with uncertain wind generation. M
The concept of zonal line pack and line pack reserve are raised p

to topologically distinguish fuel suppliers of gas-fired units and T/S
ensure gas system operating security during reserve deployment. N/G
Wind power uncertainty is described by an ambiguity set, i.e., a /

family of candidate distributions around an empirical distribution L.
in the sense of Wasserstein distance. A convex optimization
based solution procedure is developed, which entails solving only
second-order cone programs. Computational results validate the
effectiveness of the proposed models and methods.

Index Terms—Convex optimization, distributionally robust In
optimization, optimal gas-power flow, risk, Wasserstein distance. fj[/ o
Ve
NOMENCLATURE
A. Sets and Indices Qet
teT Time periods. Pd.t
neN Non-gas units. Pwt
gEG Gas-fired units. ot/ Tni.
de. € D, Electricity loads.
dy € D, Gasloads. Twl, /Td.l.
weW Wind farms.
le € L, Power transmission lines. Dbi.
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Gaspipelines.

Gasactive pipeline sets.

Gasnetwork nodes.

Gas wells.

Samples of wind generation outputs.
Ambiguity Set.

The set of all probability distributions.
Number of time periods/samples.
Number of non-gas/gas-fired units.
Numberof power transmission lines.

B. Parameters

Costfunctions of non-gas units [$/MW].
Upward/downward regulation costs functions
of non-gas units [$/MW].

Upward/downward regulation costs functions
of line pack [$/(Sm - h™1)].

Gasproduction costs coefficients [$/Sin
Electricity demands [MW].

Forecasting outputs of wind farms [MW].
Pawver transfer distribution factors of gas-
fired/non-gas units [-].

Pawver transfer distribution factors of wind
farms/electricity loads [-].

Capacity limits of power transmission lines
[MW].

Operatingstatus of gas-fired/non-gas units [-].
Upper/lover capacity limits of gas-fired units
[MW].

Upper/lover capacity limits of non-gas units
[MW].

Rampinglimits of gas-fired units [MW/h].
Rampinglimits of non-gas units [MW/h].
Productionlimits of gas wells [Sm - h™'].
Pressurdimits of gas nodes [Pa].
Gasdemands [Sth-h™'].
Efficiency of gas-fired units [-].
Electricity-to-gas conversion
[Sm®/(MWh)].

Gasconsumption coefficients [-].
Weymouth equation coefficientsgnt)?/(Pa-
h)2].

Line pack coefficients [SryPal.
Compressiorfactors of compressors [-].

constant



@, Maximal allowed gas in-flows of compressorsbut simpler constraints, such as linear ones [8] and second-

[Sm?/h]. order cones (SOCs) [9]. Nevertheless, these convex relaxation
Puw Installedcapacities of wind farms [MW]. models are generally inexact and offer infeasible solutions.
Bw/Ba, /6. Penaltieof wind power curtailment/electricity A sequential algorithm is proposed ii(] to enhance the
load shedding/line overload [$/MW]. feasibility of OGPF solutions, and a feasible and local solution
0 Radius of the Wasserstein ambiguity set [-]. can be refined in most occasions.
Beyond the deterministic OGPF formulations, tackling un-
C. Decision Variables certainty is another important issue in OGPF, because of the
Dt/ Dnt Outputsof gas-fired/non-gas units [MW]. increasing level of renewable generation in the integrated gas-
et Outputsof gas wells [Sri - h™1]. electric systems. Scenario based stochastic program (SP) is
Vit Pressuref gas nodes [Pa]. used in [L1] to capture the wind generation outputs uncertainty,
qlgt Average flow of gas pipelines [Smh~]. where the coordinated scheduling of the gas-electric system
qli?nt/qinit In-/out-flows of gas pipelines [Sin h~1]. is analyzed. In [12J, uncertain Winq generation outputs and
mgl . ? Line pack [SM] demand are described by uncertainty sets, and the schedul-
r tir} Upward/downward reserves of gas-fired unitd'9 problem of the integrated energy system Is formul_a_t ed
g [MW] and solved based on robust optimization (RO). Inheriting
T Upward/downward reserves of non-gas unit'g\dvantages from both SP and RO, distributionally robust opti-

[MW] mization (DRO) is developed recently, where a distributional

C - uncertainty set is constructed, containing a family of candidate
ag/a Resere participation factors of gas-fired/non-7,. =~ ™" o .
gt/ Cnt P P g distributions for the uncertain data. Since DRO approaches are

gas units [. lly data-driven, it is | tive than classical RO
mf’j/mf”t_ Line pack reserve purchased by gas-fired unit‘%Sua y data-driven, 1L 1S less conservative than classica
g g (s - h~1] y explore the statistical properties, and makes no reference

_ . to the exact probability distributionlB]. Recently, DRO has
n}lyt/%lgt Upper/laver bounds of line pack [Sfh . been successfully applied to power system operation problems,
Uz;t/vz;t P.res.surebounds of head node of passivg . as unit commitment [14], reserve procuremési,[and

pipelines [Pa]. optimal power flow 6], yet DRO based OGPF studies have
not been reported so far.

D. Random Variables In this paper, a risk-based OGPF model is proposed. It is

Dut Actual outputs of wind farms [MW]. built upon a data-driven distributionally robust framework that
hedges against inexact probability distribution of wind power
|. INTRODUCTION output, and referred to DROGPF for short. Compared with the

ITH the increasing share of gas-fired units in the ele€Xisting works, the salient features of our work are:

tricity generation industry [1] as well as the promotion 1) |n the proposed DROGPF model, the sum of operational
of the emerging power-to-gas technology globalBj, [the cost and risk are minimized. The former consists of energy
integration of the power systems and the natural gas systegasieration and reserve commitment costs; the latter incor-
has entered a new era. Opportunities and benefits have bggftes penalties on load shedding, wind power curtailment
brought by the technical trend, yet the existence of challengggd line overload. Randomness of wind generation outputs is
are undeniable. Inspiring works have been done and tak@@deled by a distributional uncertainty set, and the distance
positive effects on smoothing and accelerating the gas-powgiiween candidate distributions and a reference distribution is
integration from operationd], planning #i] as well as market ng greater than a threshold in the sense of Wasserstein distance
[5] perspectives, to name just a few. [17]; the reference distribution can be constructed from limited

As one of the most fundamental problems in the integrategstorical data, and can be inexact.

gas-electric system operation, optimal gas-power flow (OGPF) , . .
has been widely discussed by the literature. The security con-z) Insp|red_ by 18], th.e concept of zonal line pack IS
strained OGPF with steady-state gas flow model is propose {rgposed, which 'topolog|cally .deflnes. the ga's.fuel suppliers
[6], where the nonconvex Weymouth equation is approximat Y reserves prowde_d by gas-fired units. Add_monal gas TUE|
by a piecewise linear function, and the OGPF problem is C&é}ns_tralnts, c_alled line pack reserve availability constral_nts_,
as a mixed integer linear program (MILP). To incorporat@re mcluded in the prpposed DROGPF modells.o as to I|m|t
the slow gas dynamics, also known as the line pack, Whi&"i‘,s'f'red reserves besides t.he regulation capab|I|ty.of gas-fired
is described by partial differential equations, linear discretifts- It offer; amore prac;UcaI way to analyze the impacts of
approximation is employed in7] and the OGPF is solved reserve provision of gas-fl_red unl_ts on the gas system, as the
via an MILP. Though §] and [7] have provided viable dynamics in gas systems is relatively slow.
options for the OGPF problem, large-scale instances remair8) A second-order cone program (SOCP) based algorithm
computational challenging, as the number of integer variablissdeveloped to solve the proposed DROGPF problem. The
grows rapidly with growing system sizes. Recent OGPF workemputation time grows linearly with respect to the scale of
have leveraged more tractable convex optimization techniqube test system as well as the sample dataset, indicating the
by replacing the nonconvex Weymouth equations with relax@domising scalability of the proposed methods.



[I. MATHEMATICAL FORMULATION The production costs of gas-fired units are included in the
_ gas production costs by adding their fuel demands in nodal
A. Deterministic OGPF gas balancing conditions1l§)-(1f) are power system related
In this work, we assume there exists one utility whaonstraints, and (1g)-(1o) are gas system related constraints.
has fully control authority over both the electricity and gaSpecifically, (Lb) indicates the system-wide power balancing
systems, which is in line with the settings d@]][ [7], [12], condition. (1c) gives the power flow limits on transmission
[19]. The mathematical formulation of the deterministic OGPknes. (1d) presents generation capacity limits for gas-fired
problem is given as below, where the direct current lossaad non-gas units.1€) and (1f) are ramping down and up
power flow model is adopted for the power system and tl®nstraints for units, respectively. The outputs of gas wells

line pack effect in the gas system is considered: are bounded by l{g). The nodal gas balancing conditions
are depicted by 1h). (Li) defines the line pack within a

minZ (Z Fr (Pnt) +ZQetht> (1a) pipeline, where the subscripi% and 13 representthe head

® T \en e and tail nodes of pipelind,, respectively. {j) interprets

the line pack dynamics7]. (1k) depicts the average gas
s.t. Zpgt + Z Pnt + Z Pwt = Z Pd.t; VtE€T, flow within a pipeline. Particularly, the pipelines with and

= neN wew de€De (1b) without compressors are called active and passive pipelines,
respectively. For active pipelines, the gas consumed by the
‘ Z TglPgt + Z TnlePnt + Z TwlePwt = compressors are reflected Ry aheadf the gas in-flow terms
9€9 neN weWw (1c) in(1h)[20]. (1I) is the Weymouth equation, which captures the
Z T, 1. Pdot| < Pi,, Ve € Lo, VEET, relationship between the average gas flow and nodal pressures
d.€D. for a passive pipeline.1(n) and (n) limit the compression

ratio and gas flow of an active pipeline, respectiv@¥][ (10)
(1d) suggests the pressure limits at gas system nodp¥ collects
{}={g.n},VneN VgegVteT, all the decision variables for problen)(
Due to the existence of the nonconvex Weymouth equation,
(1e) problem () can hardly be solved by commercial solvers.
{}=A{gn},VneN Vge g vteT, Fortunately, the topologies of transmission-level gas networks
_ + _ - are usually radial 42]. Moreover, according to gas system
P+t = Peye S uppPly (L mugy)Pey, (1f)  operation practice, the gas flow directions do not change intra-

U{3tPry S PLye S ULHDP()

Pyt — Pt S ugy e Py + (D= ugy )b,

{}=A{g;n},VneN Vge g VteT, day [23]. Then, (1I) can be reduced as
L S et S e Ve E WET, in (9 (qlgt)2 = ¢lg ((Ul_}?t)Q - (Ulgt)2> ) (2a)
eegig)qet - dgee%(ig)ngt - lgé%(mqlgt = Vi > vy, Wl € Lg/L5, WET, (2b)
o. Z Dot/ — Z (1- Xlg)qzy;tt7 (1h) where we assume the notations of the initial and terminal

nodes ofl, are consistent with the positive directions of
gas flows. Note that?) is still nonconvex. A convexification
Vig €14, VEET, method will be introduced in Sectioil-A.

Remark 1: At the present stage, most existing coupled
electricity-gas systems have two operating entities, who run
Muge =, 11 + g™, — g2t Vi, €Ly, VEET, (1) the power systgn_w and the gas system, res_pectively. Neverj[he-

9 9 less, several driving forces have been continuously promoting
Gt = (szt +ql°“tt> /2, ¥, € Ly, VET, (1K) the integration of power-gas systems and might facilitate a
g g unified entity who has operation authority for both power and
gas systems in the near future, which are

gEBy(ig) lgeelg(ig)

mige =, (Vg + vz Vlg € Ly, VEET, (1)

« The deepening interdependency between power systems

(an : )
. , and gas systems. According to [1], the proportion of gas
< Af ¢ .

gt = iy Vit Vlg € Lg, VEET, (1m) demand used for power generation over the total gas

0< g <, Vi, € Lo, vteT, (1n) consumption has reached 40% globally in 2012 and will

! i . keep increasing in the next years. Meanwhile, quite a few
i, S Wigr < Uiy, Vig €Iy, VE € T, (10) power-to-gas (P2G) demonstration plants have been built

P — {pgt,pm,qeuq;ft, qi’;‘f, Q1,0 M1 Uiy} (1p) worldwide, suggesting growing electricity demands from

gas systems.

In OGPF problemX), (1a) represents the out-of-the-pocket « Large-scale multi-energy utilities. Currently, there exists
costs of the integrated energy system, where the first and several large-scale multi-energy utilities who could pro-
second terms depict the generation costs of non-gas units and vide multiple types of energy including gas and electricity
gas production costs of gas wells, respectivéy [7], [12]. to their customers, such as Pacific Gas & Electric and



Public Service Elec & Gas in the USAZ2f]. Their
interests are to maximize the energy sales profits wrperiodt consists a deterministic parjt,which is associated
minimize the energy supply costs. with p,; and known in advance, and an uncertain pajt,

« Thepotential synchronization of gas and electricity mamwhich depends on the actual utilization of reserve capacity.
kets. In recent years, lots of efforts have been made Fag. 1 gives an illustration of gas supply faf;;.
synchronize the natural gas and electricity markets such
as the adjustment of electricity day and gas dag]| N
and the two markets might be totally synchronized in
the future.

B. Distributionally Robust OGPF

In practice, the wind power outputs are difficult to be
predicted accurately, while the generation schedule should be _
made in prior; in real-time dispatch, reserves are committed . ~ ==
from eligible units to compensate the discrepancy between
generation and demand; reserve capacities are restricted by

Zonal Line Pack of Zone 1

H Zonal Line Pack of Zone 2

0< rzf}t S uppbry — Pryes Fig. 1. lllustration of Zonal Line Pack.
0 <70y SPLye— U Py oy (3) In Fig. 1, gas-fired units G and G, connectto the gas
(Y={g,n},VneN,Vge G VteT system through nodes ;Nand N,, respectively. Then, the

uncertain parts of gas demands of @G,) are supported
Taking reserve provision into account, ramping limil®)X by GLine, and GLine, (GLine; and GLine,), considering
and (1f) should be modified as the relative slow dynamics of the gas system. Zonal line
pack is defined as the line packs whose head or tail node
B connects to gas-fired unit, and is indexed by to specify
“{‘}7t+1P{-} + (1*“{‘}7t+1)17{‘}v the fuel suppliers. Although line packs provide additional
Pyt +¢?}’t+1 —PLye =Ty S (4) regulation flexibility for gas systems, the total line packs
wir P (1 . ) _ should keep balance periodically, like an electricity storage
SRS, (3t) Py unit, to maintain sufficient regulation capability for the next
{}={g.n},VneN,Vge g vteT. cycle. Therefore, the concept of line pack reserve is proposed,
In practice, units adjust their outputs according to constafiftich is similar with the electricity reserve, to quantify the
ratios, which is called affine policy2p]. The deployment of IMPacts ofgg, on the gas system. The relationship between

Pyt Ty =Py g S

reserve can be modeled as qq; andcommitted line pack reserves can be cast as
e S O Dwew (Pur = Bur) <7, Ga) doomi <ag > o (pur — But) /g
{}={gn},¥neN Vg G eT, €01, (9) e )
0<apy <1, {}={g.,n},Vne N Vg€ G,Vt € T, (5b) < Y mifvgeg, vieT.
Sog+ Y o =1,VteT, (5¢) 14€61,(9)
9€g neN Meanwhile, the committed line pack reserves can not exceed

wherea .y Y, ey (Puwt — Put) Tepresenincremental output the upper and lower bounds q;’t, resulting in

of units and Ha) gives the limits of the real-time adjustments — _

within the rege)r\?e offer;5b) defines the bounds ch)r partic- Z mizt <0 Tg/g V9 EG, ET, (82)
ipation factors; %c) guarantees the deviations of the wind 1o €61, (9)

farms are fully mitigated. In addition, the power flow limits of Z mf’q’f <o- rgﬁ/ng, Vge g, VteT. (8b)
transmission lines should not be violated with the adjustments  1,e0,,(9)

of generation outputs, which implies In addition, line packs should always maintain reasonable

1S 7 (pgt tag > (put — ﬁwt)) + 3" Tt Bt levels for sustainable utilization, yielding
geg weW weW

> T (pm +ane Y (Put —ﬁwt)) — Y Tdapac

neN weW d.eD.
< Ple, Vle € Lo, VEET.

t
M+ Yy > mi <y, Vg € Ly, VEET, (99)
t*=1gev,(ly)
t
©) Myt <Mt - ST mpi vy €Ly, WeT, (9b)
The fuel consumption of gas-fired units is supplied by r=1g9e¥,(ly)

the gas system, including the uncertain fuel demands duriwherem;, ; andmlgt arethe allowable upper and lower bounds
reserve deployment. The actual fuel demand of gas-firedyuniof line packs, respectively. Considering gas system operating




Ingxl{z(z(fn<pm>+f:<r:t>+f;<rm>)+2quet+ S(HCY mED 0 mED))+

teT neN ec& lg€Ly geEY 4 (ly) geEW 4 (ly)
g9,+
HrréaMxE [ﬂde( Z (ant Z (Pwt — Puwt) T’nt) + Z (agt Z (Pwt = Puwt) Z Mgt ) )
teT neN wew geg weWw I 9€91,(9)
+
+ ﬁw( Z (ant Z (ﬁwt - pwt) - r;t> + Z (agt Z (ﬁwt pwt Z ml t /U) )
neN weW 9geG weW l €0y, (9)
Z (| Z Tnle (pnt + Qe Z (pwt - pwt)) Z Tigl, (pqt + Qgt Z Pwt — pwt )
le€Le neN geg
- +
+ Z Twl, Pwt — _ple) i|

weWw de €D,

_ + - + — mn out g9,+ 9= l h
A= {pghpnt; rgt7 Tgt) Tnts Tty Cnty Qgt, Get qlgtv ngt ) qlgty mlgtv mlgt 7m[(;t 7ml9t7mlgta Uigh Uléﬂ Ul}]t}

12

In the objective function ¥2), the first and fourth terms
security the allowable bounds of passive pipelines can lse identical to 1a); the second and third terms are regu-
calculated by lation costs for committing upward and downward reserves

from non-gas units, respectively, whefg (-) and f (-) are
miy,e = Y, (” et “lzt) Vg € Lg/Lg, ¥t €T, (108) copyex functions; the fifth and sixth terms are regulation costs
c for committing upward and downward line pack reserves,
Myt = Y, (v * vlzt) Wy € Lo/ Ly VEET,  (10D) respectively, where botfj’ (-) andf,(-) areconvex functions;
_ h c remaining terms are penalues for load shedding, wind power
(a0,0)” = ((vlét - Ulz) >’\ﬂg € Ly/Ly VEET, curtailment and line overload, respectively; apdis any
(10c) distribution in the distributional uncertainty sg#f that will
5 L\ 2 2 . be specified in Sectiohl-C; E is the expectation operator;
(a,6)” = &, <<Uz;t) - (Mg) ) Vg € Lg/Lg, Yt €T, gnd ()T is defined asmax(0,-); A gathers all the decision
(10d) Vvariables in problemi@).

where (10a)-(10b) determine maximum/minimum line pack
level from allowable nodal gas pressures; based on pressure
bOUﬂdS(Ulz,Ulz) at the tail node, 10c)-(10d) estimate allow-

Remark 2: Affine policy reserve utilization rule is quite
able pressures bounajsllt,vllt) at the head node to ensure poticy d

he deli bility of 4 i h popular in distributionally robust optimization based power
the delivera Idlty 0 gas IOWQl gt iolr acltlve plpbe mesl tl € system decision-making works, such 48]}, [16], [28], [29],
maximum and minimum line pack levels can be calculat it can offer tractable and equivalent reformulations under

from quite a few distributional uncertainty sets, including moment
My, = 1, (@lé +17zg) , Vg€ L, VEET, (11a) based ones and Wasserstein distance based ones. Meanwhile,

' ‘ from application perspective, affine policy is employed in

my =, (yll +Qg2) , Vige Ly, VteT, (11b) many practical decision-making frameworks of electricity in-

dustry due to its simplicity, such as auto generation control

where subscr|pt$1 and 12 representhe initial and terminal (AGC) [30]. It should be pointed out that the affine policy
nodes of an active p|pel|ne respectively. reserve utilization rule would lead to more conservative results

As p, is uncertain, (5a), (6), and (7) may be violated ifompared with the fully dispatchable reserve utilization rule
extreme conditions. The expected constraint Vio'atior&o’( in [31] A pI’aCtical and Computational efficient diStI’ibutionally
(6), and (7) are penalized in the objective function, which f@bust model for the OGPF problem using fully dispatchable
a common practice in power Systems Operatibﬂ]_[We aim reserve utilization rule would be one of our future research
to minimize the objective under the worst-case distribution girections.
the random variables, rendering the following distributionally
robust optimization model for OGPF:

o Remark 3: In accordance with16], [27], [28], the elec-

Objective: (12) tricity reserve utilization costs are not included it2}. Nev-
s.t.: (1b)-(1d), (19)-(1k), (Im)-(1o), (2)-(4), (13) ertheless, they can be easily incorporated into the proposed
(5b)-(5¢), (8)-(11). DROGPF model by replacing the terms in the second and



third lines of (12) inside the brackets with

U:::J::::;g Data-driven Pre-dispatch li{'e::;::::i Auto Re-dispatch
+ ~ + + Reserve
Z (ﬁde - ﬁnt) (ant Z (th -p Wt) - rnt) Pr\e};liircl;ed Reference Energy & Re\z;/l;i;ne Utilization &
neN wew Generation I:> Distribution Reserve |:> Generation |:> Load Shedding &
g,+ Output: Construction Scheduling Outout Wind Generation
+ N mlg’t + R utputs G
+ Z(ﬂde — Bgt) (%t Z (Pwt — Pwt) = g Z T) >
geg weW lg€04,(g)
4 Fig. 2. Decision process illustration.
+ Z (510 - 6;15) <ant Z (pwt - pwt) - T;t)
neN weWw
_ i Myt . . . . .
+ ) (Bu - ﬁgt)(agt > Bt —Put) =T Y g Wasserstein distance is well suited for hedging against the
g€ wEW 14601, (9) g perturbation of data values and has good out-of-sample per-
n Z Z gt 500 )t + B (5 X formance [17], [33]. SinceM is comprised of infinitely many
< nt { Bt (Pwt = Put) nt (Put — Put) ) distributions, the proposedld) model is not immediately
nEN wew computationally tractable, and we will provide a tractable
+Y > ap (5;5f(pwt — Puwt) "+ B (Put —pwt)+), formulation in the next section.
geGwew Remark 4: In this work, a multi-period OGPF model is

(14)  tackled. Therefore, it could be applied to either day-ahead
where 87,(3;,) and 5;rt (8;,) are the upward (downward) schedulmg or real-time I_ookahead dispatch. _ _
reserve utilization cost coefficients of non-gas and gas-fired!n practice, the real-time accommodated wind generation
generators, respectively. 14), the last two lines describe thecould be lower than its actual value, which depends on the
reserve utilization costs of non-gas and gas-fired generatdigliverable downward reserves;,r,,. If total amount of
respectively. deliverable downward reserves is insufficient, wind generation

curtailment would occur. By this means, the scheduled wind
generation outputs become decision variables. Meanwhile,
C. Construction of the Distributional Uncertainty Set wind generation curtailment is penalized in the objective func-
] o _ tion, which indicates the operator of the integrated electricity-
Before tackling the proposed model (13), it is crucial tgas system (IEGS) could weigh the benefits of wind generation
specify a meanlr]ggful and tractable distributional uncertainfy.commodation and the costs of additional electricity reserve
set. Letv := 5 2s—1 ¢ bethe empirical distribution, where for ying generation uncertainty mitigation, and then determine
£&,s =1,...,5 are samples and;. representshe Dirac the accommodated amount of wind generation.
measure org®. To restrict the statistical distance between any An illustration of the decision process is shown as Fg.
candidate distribution, € M and the empirical distribution It can be observed the decision-making of the IEGS operator
v, we define contains two stages, which are the data-driven pre-dispatch
and the auto re-dispatch, respectively. In the first stage, the
M= {“ € P :D(u,v) < 9}> IEGS operator constructs the reference distribution of wind
whered is a positive parameter, afit{ 1, /) is the Wasserstein generation outputs according to their predicted curves as well

distance between two distributiopsand, which is given by as qualified historical data, and then determines the energy and.
reserve schedule. In the second stage, reserves are automati-

D(u, v) := min {/ 1€—¢| V(d’i»dc) }7 (15) cally utilized based on their participation factors determined
gl RW xRW in the first stage as well as the total wind generation outputs
where~ is a joint distribution onRY x RW with marginals deviation. It should be noted that the deployed reserves might

1, v; €, ¢ are the integral variable; - || stands for Euclidean be insuﬁicignt in some extremg scenar?os, resulting in either
norm. ThusM contains all probability distributions whose!©@d shedding or wind generation curtailment.
Wasserstein distances to the empirical distribution are noRemark 5:In fact, distributional uncertainty sets (DUSs)
greater thard. reported by existing power system distributionally robust
Intuitively, the joint distribution on the right-hand side de(_:ision-making works can be divided into three categories,
of (15) above can be viewed as a transportation plan whidfnich are
transports probability mass fromto u. Thus, the Wasserstein 1) Moment-based DUSs, among which the first- and
metric between two distributions equals the cheapest cost second-order moment conditions are the most common.
(measured in some norrh - ||) of transporting probability In [15], [16], [28], the sets of all probability distributions
mass from one distribution to the other. Wasserstein metric are specified by the given mean and covariance of
has recently become popular in machine learning as a way the random variables, where semidefinite programmings
to measuring the distance between probability distributions, (SDPs) are tackled after model reformulations and the
and has been applied to a variety of areas including computer corresponding computational burden is relatively high.
vision, generative adversarial networks, and distributionally  [34] and [L4] drop the covariance constraint and add
robust optimization 32]. other first-order constraints in their DUSSs, leading to



. . . . . Feasible & local optimal soluti Problem (13
linear programming (LP) reformulations of the distribu- casible & local optimal solution | Provem 1% quadratic cqualities &
tionally rqbust models, which significantly reduces th £ /" nstraint convexification N | l(l)r;:;ive‘ o ble s
Computatlonal burden. + Divide each equality into a convex ~ . <
2) Kullback-Leibler (KL) divergence-based DUSs. In [35] inequality and a nonconvex one ¥
. . . « Convexify the nonconvex inequality g . R
the KL divergence-based DUS is equivalently trans using linear approximation Convex approximation of problem (13)
formed into the respective classical chance constrair| | ° Penalize constraint violation in the » Constraints: SOCs & linear
| L. . . . \ objective function / * Objective: intractable terms + penalty
under the nominal distribution but with a rescaled vio N 3 J
lation prObablllty ( Objective function reformulation ) Ve ~N
3) Wasserstein distance based DUSgg] [ adOptS the « Replace the intractable terms with E> Tralc):able&convex approximation of
problem (13)

Wasserstein metric based DUS and its tractable ref(] | their equivalent dual forms

. . * Constraints: SOCs & linear
mulation is also an LP. It should be noted that thoug + Objoctive: singlo lovel minimizationt

e - - - N
the DUS in R9] is similar to the one in our work, Solution feasibility recovery \__Penalty Y,
. . .cLu| * Increase the penalty coefficient

they are completely different works and the major dif iteratively —
ferences are: i. the model i29] is a chance-constrained \_-_Force constraint violation decrease ) Solvable by commercial solvers
programming (CCP) and the aftermath of constraint o ,
violation is not considered: ii. our work minimizesF'g' 3. The convex optimization based solution procedure.
the violation of random variable involved constraints.
The aforemention ifferen would result in Il I .

nhe ajoreme tioned differe ces wou d result tota_ A. Convexification of the DROGPF Constraints

different tractable reformulation procedures of the dis-

tributionally robust models. In the proposed DROGPF, all constraints are linear except
Among the aforementioned three types of DUSs, tHer Weymouth equations ir2@), (LOc), and {0d), in form of
moment-based ones require the smallest amount of infor- a2 = b2 _ 2 (16)
- V1 2

mation of the uncertainties, yet their conservativeness are

relatively high; the KL divergence based ones are much leshich can be cast as opposite inequalities as
conservative, however, they must assign positive probabil- W2 <2 (17a)
ity mass to each training sample and their out-of-sample =L
performances cannot be guarante@®]] The Wasserstein b} < a® + b3, (17b)
distance based DUSs overcome the deficiencies of th%ﬁere(l?a) is an SOC whose canonical form is given by
two approaches, where the qualified samples are adopted to

construct the reference distribution without assigning proba- ‘
bility weights, the parameters are chosen based on modern

measure concentration, and their tractable reformulations ae (o) n(@T , N
second-order cone or linear programming8][ Therefore, the >IVen a ve_ctor[a b1 the. linear approximation of the
proposed Wasserstein metric based DUS is more suitable ?&hthand side terms of (17b) is

the DROGPF problem from mathematical, computational and = 2 4 32 ~ 24(@)q — (a(9)2 + ngg)bz _ (béé’))% (19)
practical perspectives.

a

by < by. (18)

2

After replacing the right-hand side terms df7p) by (9) and
adding a positive slack variablgl®), (17b) can be approxi-
I1l. SOLUTION METHODOLOGY mated by a rotated quadratic cone as [37]

2 (), _ ((0)1\2 (@5 (1(0)\2 (o)
Note that the proposed DROGPF modéBj is not readily bi < 2a¥a — (a'®)" + 203702 — (b7)" + ¢ (20)

solvable by commercial solvers, due to the nonconvexitiesfFor the sake of exposition, the compact form of the proposed

in the constraints, i.e., the Weymouth equatioBa)( (10c), DROGPF model with convexified Weymouth equations is
and (L0d), which are quadratic equalities, and intractablgven in a compact form

terms in the objective function, namely, the last three lines . .
of (12), which describes the maximization of the operation il fl@)+71°¢ + max E,[0(z,&)] (21a)
loss expectation under the.\(vor§t-case distribution. st. Az <b (21b)
In what follows, a convexification method for the Weymouth _ ~
equations is introduced, and then a tractable reformulation HEngﬂ*'intCJrﬁfgt
of the proposed DROGPF objective function is derived, after
which a convex and tractable approximation of problet®)(
can be obtained. To mitigate the solution infeasibility issue Hqutw+ hi . , < (cht)Tm + Pl
caused by the constraint convexification treatment, a sequential .
convex programming based algorithm is devised to enhance Vig€Ly/Ly, VEET, 2={1,2,3}
the solution feasibility of the convexified counterpart of probwhere x is the vector of decision variables of probledsy];
lem (13) with respect to the original problem. The overalf is the vector of slack variableg; is the vector of random
solution procedure is shown in Fig. 3. variables; A and b are coefficients for the linear constraints,

<
y =

~z \T ~z \T ~z (210)
(mlgt) T+ (nlgt) ¢+

(21d)



which can be derived from constraints of problef8) except
(2a), (10c), and 10d); E7 ,, F7,, giy ™7 0 T 40 O 4

lgt?

i hi iy pi, arecoefficients for the SOC constraints
generated during Weymouth equation convexification, and can

be obtained from (2a), (10c), and (10¢f);-) expresses the sum
of the first row in (L2); 7 is the penalty coefficient andl "¢

representsghe violation penalty of Weymouth equations; and

O(z,€) = max_ay(z) &+ by(z)

1<k<K (22)

expresses the piecewise linear convex functiog ofside the
expectatioriE, in (12), wherek is the index for the piecewise
linear segment in22), K = 4(G+NT  3LT g, (x), by (x)
arecoefficients that can be derived froit) and their detailed
expressions are provided in Appendix A.

In problem @1), the coefficients with tildes are not constan

Specifically, they are linear functions of the initial values of

q,t,vi ¢, @nd can be calculated in advance.

B. Tractable Reformulation of the DROGPF Objective

According to Corollary 2 in 17], (21) can be replaced by
its dual as follows.

S
F@)+717¢+ N+ % > s

s=1

min
z,y,{>0

>0
sitoys > ap(x) € +bp(x), VI<k<K, se€S, (23b)

A= max {[la%, (@)1, |ay @), lajt @)l
de w e
lasi @), laly’ @)}, ¥t € T,g € Gne N, (230)
nt  :nt

le € £67 jg:>jg;tajdeajw € {172}7]lte € {17253}
(21b), (21c), (21d)

(23a)

In (23), ys,s = 1,...,5 and A\ are auxiliary variables;
9 (x), ag; (), aft: (@), aji. (@), aé.‘jtt(a:) are coefficients
and their expressioné can be found in jAppendix A.28)(the
objective function 23a) is convex, constraint23b) is linear
and @3c) is equivalent to SOCs. Evidenth23) suggests an
SOCP, which can be efficiently solved.

There aret(G+MT x 3L-T » g linearinequalities in 23b);
nevertheless, after substituting3p) andy, in (23a) by their
equivalent forms, respectively, the number of constraints
(23b) can be reduced @G + 4N + 3L.) x S x T. Details
are provided in Appendix B.

a

C. Solution Feasibility Recovery

To enhance the solution feasibility of problerB3j with
respect to problem (13), a sequential SOCP algorithm
developed. The flowchart is summarized in Algorithin
whose convergence proof can be found 38][ By properly
selecting the penalty parameter, a local optimal solution
(13) can be recovered once Algorithbiconverges. However,

Algorithm 1 S-SOCP for problem (23

1: Initialize the penalty parameters(®) 7., > 1 and
convergence parameters. Set the iteration indeg = 0.
Solve the following dual reformulation of the relaxed
OGPF problem

s
. . 1
Obj = min f(x)+ 20+ g;ys

st A >0, (21b), (21d).

(24)

The optimal solutions (values) a#€?,y(© A (Ob; ().

2. Updatecoefficients of the convexified Weymouth equation
in (21c) atz(@). Solve the following SOCP

min

L z,y,¢,A

S
1
(9T A0+ = <
flx)+7 CHM+ S§:1y (25)

st (21b),(21c),21d), ¢ >0, A >0

0 — o+ 1. The optimal solutions are(?),y() \(e) ¢(e)
with the optimal value ofDb;(@).

If (26) holds, then terminate and report the optimal so-
lution; otherwise, update(®) = min(k7(e=Y 7,.,), and

go to Step 2.

3:

\Obj(") _ Obj("_l)| <e

2
af)) Vg € Ly/L5 W ET, 2 ={1,2,3}.

Cfg’t(g) <e (
(26)

IV. I[LLUSTRATIVE EXAMPLE

In this section, we present numerical experiments on a
test system to validate the effectiveness of the proposed
methods. Experiments are carried out on a laptop with Intel
® XeonR) 3.7 GHz CPU and 64 GB memory. The proposed
algorithms are coded in MATLAB with YALMIP toolbox.
SOCPs are solved by Gurobi 7.5. Parameters of the solver
are default without particular mention.

A. System Configuration

i Fig. 4 depicts the topology of the connected infrastructure,
Where the power grid possesses 2 gas-fired units, 1 non-gas
unit, 2 wind farms, 6 transmission lines and 3 loads; the
gas system consists of 2 gas wells, 4 passive pipelines, 2
compressors and 3 loads. In Fig, we use B, G, W, PL,
PLine with subscripts to denote electricity buses, units, wind
farms, electricity loads, and transmission lines, respectively,
and N, C, GL, GW, GLine with subscripts to denote gas
nodes, compressors, gas loads, gas wells, and gas passive
pipelines, respectively. Specially, the gas fuels gf d&hd G,
obme from Ny and Ny, respectively. The hourly electricity,
gas demands, and total outputs of wind farms are presented

different from existing local algorithm for nonlinear programsin Fig. 5. Complete data of the system can be found38]]
Algorithm 1 starts from a convex relaxation model, and make3et the generation costs functigh(-) andthe reserve costs
no reference to an initial point. For the same reason, the fifahctions f,"(-), f,j(-),flj(-), fi, () asquadratic and linear

solution is very likely to be the global one of probled].

functions, respectively, and cost coefficients values can be



Ni GLine, Step 2, and calculat®(x) according to (28), which is the

GL G N, GW, out-of-sample performance af with the validation dataset
GLine, GL, Sy.
N +
GL; ' ' R(x) = Z { Z [ﬂde( Z (Oént Z (Pwt — Dot) — TjL_t)
GLines; 4 GLine, O=<— GW, Ny s€Sy N teT neN wew
N3 Ns N ~S g,+ *
@ IBs PLine, B Nea T Z (agt Z (Pwt = Piyt) = 1g Z Mg /0> )
2 geg weW 13€01,(9)
G; PLine, » PL; i
. o e we (3 (o X =) =)
B, — PLine, PLine, neN - wew .
~S _ 9,—
G p o _‘Wz +Z (agt Z (Dot — Pwt) — T Z my /U) )
PL, PL, 9€9 wew l4€01,(9)
Ny
| 235 0N () ST (SRS DY (WES'H)
Fig. 4. Topology of the Power5Gas7 system. l.el. neN wEW
4qx10% . . . . . 10%92.0 + Z”gle (pgt + gt Z (Pwt — ﬁfvt))
~ T 5 | 400000, i 9€g wew
E ] i i o i i i :\. i] =) +
j i i i i e 1.8 = e
5 e i /../2,.—-\._#\ i/./{ i N et Z Tl oot — Z TdelePdt —pze> ]}
g ¢-¢-0-¢ / i \,-’n \: < weEW de€D.
SEar P ) 1 IR (28)
057 E \ : / —-@— Electricity Load i1 3
54\ ;{J! _________ _ Wind Farm Outputs 14 3 Step 4: If 0 < Omax, SEtO = 0 + A6 and go to Step 2;
<N T Geled : | © otherwise, terminate and selgtwith the minimum f () +
' | | 12 R(z) as the best tuning value.

4 812 T(h) 16 20 24 With the optimal #, we resolve problem23) using all

_ _ _ S samples and obtain the optimal solution. Then, the out-
Fig. 5. Wind generation and energy demands of the Power5Gas7 systemof_sample performances of the proposed DROGPE model is
examined using an independent testing dataset consists' of
samples.

found in [39]. Hereinafter, this system is referred to as thg' Results

Power5Gas7 system. According to Section II.C, the empirical distributiqn is
formed by historical samples. However, it should be noted
that the candidate sample set foronly consists a relatively
small part of all the historical data, whose meteorological
; 'conditions are similar with the ones of the current decision-
where the mean values &f can be found In 39] and thg making stage. Considering the relatively high dimensionality
standard deviation of each entry §fequals its mean multi- of the random variable vector, which consists the outputs of all

pr:ylng I% scalar frahndomly Ichosen fro[iI).S, l]ll' dTO grl:ari_ntee the wind farms, there won't be too many available samples in
the vali iNess o the samples, a samp e vall Ity checking pigr, tical applications. Therefore, we assume that the decision
cedure is developed and executed during sample generat

fical i | hould sati Aker has limited data on the random variaPleand use a

Specifically, valid samples should satisfy small sample set witly = 20, which is also adopted bylp].
0<p; <Pw, VweW, teT, s, (27) The simulations are repeated by 50 times. The parameters of
_ . . R ~ Algorithm 1 are selected as® = 0.1, Tyax = 10000, & = 2,

wherep;,, is the outputs of wind farmw in sampleg®; p,, is  — 0.001, & = 0.001, and ppax = 100.

the installed capacity of wind farmo. _ 1) Comparison with Sample Average Approximatitmthe

The Wasserstein radius is selected using hold-out crosssequel, detailed comparisons are made between the aforemen-
validation method, whose detailed procedure is as follows. tigned approaches, i.e., the proposed distributionally robust

Step 1: Divide the Sample_ datasﬁlinto a training dataset, model and Samp|e average approximation (SAL’A):or the
denoted asS;, which contains70% samples ofS, and a
validation dataset, denoted &s, |nclud|ng the remamlngo% Themathematical formulation of SAA and the proposed DROGPF models

fS. Sethh —0 A =001 6 — 01 andd =0 are almost the same except that the proposed DROGPF model calculates the
ol &. S€tbp = 0, = V.04, Umax = 1. , a — Yo- ] expectation of penalized constraint violation under the worst-case distribution

Step 2: Solve problem (21), which contains a series qf of random variables, while SAA minimizes the expectation of penalties
SOCPs. withS,. and recorde f(w) under empirical distributions, which is formed by the samples. Therefore,

S ’3 p v . h (’j VL iablesoia | the SAA formulation also deals with a relaxed counterpart of the original

tep 3. Parameterize the decision V"i”a e_ )( namely problem, where the expectation of the constraint violations are penalized in
Qgty Qnty Pgty Pnts T:t, Totr T;t, Tgts mf"t ) mf"t , With & of  the objective function.
g g 9 9

B. Sample Generation and Parameter Tuning
We assumet follows a multivariate Gaussian distribution



10

TABLE |
COMPARISON OF THE PROPOSEIDROGPFMODEL AND SAA FOR THE POWER5GAS7 SYSTEM.

Average performance Penalty decrement rate (%)  OP improvement (&t
OP (3) DC ($) Penalty (§ Average Best  Worst Average Best  ovet

DROGPF 1.586 x 105 1.384 x 10° 2.023 x 10*  62.37  45.81 10.20  1.546  2.288  0.508
SAA 1.611 x 105 1.248 x 10>  3.733 x 10% - - -

)
2=

—— SAA —— DROGPF

&
=

— SAA  —— DROGPF

oy
7y

data-drven OGPF problem. Results are shown in Table -
where column 2 to column 4 describe the average perfors"|

nal Loss ($) »

=

Load Shedding Penalty (5)x

mances of the proposed DROGPF model and SAA of 505 5 / st
simulation tests, with OP and DC representing out-of-sample , ‘ ‘ j | A | ‘
. . . 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
performances (dispatch costs plus operational risk under the Seenario Index Scenario Index
testing dataset) and dispatch costs (sum of first six terms (a) Total operational loss. (b) Load shedding penalty.

in (12)), respectively, and column 5 to column 7 summarize
the mean as well as upper and lower bounds of relative OR"| ~— s — brocrr
improvement rate of the 50 simulation tests with SAA beingz']
the benchmark approach. Specifically, OP equals the sum &5107
DC and penalty for each row in Table E
From Tablel, the average OP of SAA i5.546% higher than SR PP
the proposed DROGPF model, as SAA only accounts for the " 2w 400 6000 8000 10000 00 ot 01000
designated distribution (the empirical distribution) generated
from S samples, so the result is sensitive to the perturbation
in the true distribution of uncertain data. The dispatch costs Ef. 6. Operational loss of the0* testsamples from one simulation.
SAA and the proposed DROGPF model reflect the differences
of their out-of-sample performances. From Tablthough the & 16125 x0° 1 1 1240
average dispatch costs of the proposed DROGPF model age = e Objcciﬁvc Function Value
10.91% larger than SAA, indicating the dispatch strategy isS \ —a—MRCV i oo

0 —— SAA —— DROGPF

51

Line Overload Penalty ($) =

Wind Curtaj

(c) Wind curtailment penalty. (d) Line overload penalty.

more conservative, such as committing more reserves as W§II-612 e
as preserving more capacity for heavily loaded transmissio# \

lines, its average penalty has6a.37% decrement compared el A\ »
with SAA, resulting in thel.546% improvement in out-of- £ \._./'\ !
sample performance in return. Among the 50 simulation tests; | — =

MRCV (%

cti

the OP of the proposed DROGPF is always better than SAE, Lot 2 e erere e A e ;
and the best and the worst improvement rates 22288% 5 10 Iteration 15 20
;?:p%;r)(e)i(y[o),lf\:gsgsgt%e;)(/jlellhdlca“ng the effectiveness of thEig. 7. Objective value and MRCV during iterations of one simulation.

Specifically, one simulation is selected from the repeated
50 simulation withS = 20, and its distributions of the total
operational loss as well as the penalized electricity load shed-Algorithm 1 of one simulation are plotted in Fig.. The
ding, wind curtailment, and transmission line overload witbonstraint is identified as satisfied if MRCV is below a given
10,000 test samples are demonstrated in ign Fig. 6(a), threshold, which i€.01% in this case.
the 10* scenariosre sorted and renumbered according to their From Fig. 7, Algorithm 1 converges in 20 iterations, and
operational loss performances with SAA and the proposgdcan be observed that the MRCV at the 1st iteration is
DROGPF model, respectively, which means the scenarios witf;.6%, indicating the gas system would suffer over-high or
the same index in SAA and DROGPF sorting system might neber-low pressure at the solution obtained from the relaxed
be the same. And the scenario indices in FEfp) - 6(d) are  OGPF model, in which non-convex part in form df7p) in
the same as Fig5(a). It can be observed that the operationglleymouth equation is neglected. Along with the execution
losses of SAA are much higher than the proposed DROGBFthe algorithm, the MRCV gradually decreases and meets
model, which are mainly caused by the load shedding penalli¢ threshold at the 20th iteration. Meanwhile, the objective
differences, as shown in Fi¢(b). function value at the 20th iteration has0&65% increment

2) Convergence Performancefhe sequence of objectivecompared with the relaxed model, demonstrating the necessity
value and maximum relative constraint violation (MRCV)pf the proposed solution tightness enhancement procedure.
which is defined as the positive slack variable divide the corre-3) Impacts of Nodal Pressure LimitsAccording to (0)
sponding left-hand term of the unrelaxed constraint, generaiud (11), the available amount of line pack reserve depends

S
N




11

& 1.9 x10° [ Base Case (25%~75%) 5% Compression (25%~75%) TABLE Il
5 [110% Compression (25%~75%) 15% Compression (25%~75%) COMPARISON OF THE PROPOSEIDROGPFMODEL AND SAA FOR THE
% [120% Compression (25%~75%) §§ POWER5GAS7 SYSTEM WITH .S = 100 AND S = 1000.
> 1.8 —— Median Line
=} .
% . @E Average OP§) OP improvement rat€o)
g Eizl ™’ Average Best \ofst
Z .

5
g 164 2 S =100 DROGPF  1.5749 x 10 1.120 1.764 0.327
3 SAA 1.5927 x 105 - - -
=
o1s DROGPF  1.5738 x 10° 0.300 0.471  0.223

' ' ' ' ' S = 1000
Base Case Case 1 Case 2 Case 3 Case 4 -
SAA 1.5785 x 105 - -

Fig. 8. Simulation results with different gas nodal pressure intervals.

similar out-of-sample performance with SAA when the sample

onthe lower and upper bounds of line pack, which are lar efet 's sufficient large.
PP pack, gely ) Computational Efficiency Analysidn the sequel, we

influenced by the gas pressure limits. Therefore, the economic"'_’I " d model and alaorithm to a | D
impact of gas pressure limits on the distributionally robu&PP'Y the proposed modet and aigorithm to a larger test system,

dispatch strategy are analyzed to provide decision support \%’PiCh comprises a modified IEEE 118-bus power network and

the determination of proper nodal pressure limits. Specifical ,mod|fled version of the Belglan h|gh-calor|f|g 20-node gas
we compress the allowable pressure intervals of gas no work. The power network includes 30 gas-fired generator,

symmetrically, e.g.<% compression means the upper an ﬁ non-gastgenlfratorts,_ 18623 transmﬁsm;(slmes Z.ind 90 Ilgads.
lower pressure limits of gas nodes are modified as € gas network contains 2 gas welis, passive pipelines,
3 compressors and 9 loads. Refer 89] for the topology

ﬁg) =0, — <% X (v, —v; ), Vig € I, (29%) as well as parameters of the test system, the working status
, of generators, load demands and forecasted wind generation
Ez) =, + %X (Ui, —,), Vig € Iy (29b) out%uts curves. According to Section Il. B, the nu?nber of
50 repeated simulations are executed 56§, 10%, 15%, and auxiliary linear constraints generated during the dualization of
20% compression of allowable pressure interval, respectivelfie expectation of the maximization term Ri@), which is the
the training, validation, and testing datasets for the five cag@gjor computational burden of the proposed DROGPF model,
remain unchanged. Optimal values and out-of-sample perfi§-not related with the number of wind farms. Therefore,
mances are compared with the base case simulations, as shdwtind farms rather than more are considered in the test
in Fig. 8. system. Hereinafter, the test system is referred to as the
In the test system, reserves offered by non-gas units &tewerl18Gas20 system.
more expensive than line pack reserves considering unit transThree sizes of sample sets are prepared for the proposed
formation and energy conversion efficiency. On this accoul®ROGPF model and the benchmark SAA approach, which
when the allowable nodal pressure intervals become narronae S = 20, S = 50, and S = 100, respectively. The
the power system has to commit more reserves from non-gasulations are repeated 100 times for each sample set size
units as the line pack reserves, the fuel of gas-fired units durisefting. The simulation environment, solver settings, as well
regulation, might be insufficient, indicating the integrateds algorithmic parameters are identical to previous ones. The
energy system may suffer from higher dispatch costs, or worsesults are summarized in Tablé, where ACP is short for
larger operational risk due to the lack of reserve capacities.duerage computational performance.
Fig. 8, it can be observed that the out-of-sample performancesrom Tablelll, the average out-of-sample performance of
increase as the allowable nodal pressure intervals becoie proposed DROGPF model is still better than SAA for the
narrower, which confirms the previous inference. Power118Gas20 system, indicating the effectiveness of the
4) Impacts of Dataset Sizeln the sequel, the proposedproposed methods. Similar with the results in Tablethe
models and methods are tested on larger sample sets, whyge between the performances of the proposed DROGPF and
S =100 and S = 1000, respectively. The sample generatiorBAA gets smaller while the sample dataset size grows.4the
and parameter tuning approach are identical to Section IV. 7" columnof Table Ill describe the numbers of auxiliary
The simulation is repeated by 50 times f¥r= 100 and.S = variables and constraints in the proposed DROGPF and SAA
1000, respectively. The results are gathered in Tdble models, while the other decision variables and constraints of
From Tablell, it can be observed that the average outhe two models are the same. It should be noted fljain
of-sample performance of the proposed DROGPF model Tiable lll is the number of active transmission lines in the
still better than SAA in bothS = 100 and S = 1000 cases, power network after inactive transmission capacity constraints
indicating the effectiveness of the proposed methods. Howevidentification [40]. The average total computational time as
the average OP improvement rate decreases fréga6% to well as algorithmic iteration number are demonstrated in the
1.120% and 0.300%, respectively, whert increases fron20 last two columns of Tablédll. It can be observed that the
to 100 and1000, suggesting the proposed methods would hawamputational time almost grow linearly with respect to the
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TABLE Il
COMPARISON OF THE PROPOSEIDROGPFMODEL AND SAA FOR THE POWER118GAS20 SYSTEM.

Modeltype Sample Number ~ Average OB)( Auxiliary variables Auxiliary linear constraints ACP
Generalexpression Number General expression Number  Time (Hgration
S =20 8.8923 x 109 « 96264 « 227784 265.3 7.85
DROGPF S =50 8.8272 x 106 (ZG(gf%J;I;)X 233784 (43(%“1 5 A?iﬁ%x) SxT sepses 5237 813
S =100 8.5464 x 109 462984 ¢ 1120584 1481 8.21
S =20 9.0851 x 106 « 91680 223200 260.5 7.79
SAA 5 =50 8.9725 x 106 (%€ *SQZZ s LEOX 929200 (4G +4N+3L5)x SxT 558000  519.8 814
S =100 8.5885 x 106 458400 1116000 1447 8.19

size of sample dataset, as the additional auxiliary constrairaad thusk = 4(G+M7T x 3T \We express
are linear and their number grow linearly along with the size of

vt o ot e e (@) =D (D (a% () + % (w) )+
sample dataset. Moreover, the average iteration number do@s;5’ .j¢ ;" izt .3t.) 9t jor

e

not increase much as the sample number increases from the teT  g€eg
simulation results. In fact, the necessity of the iterations isz a;?ﬁt (x) +a;?'f;,, (g[:)) + Z alst (;p)),

to tighten the convex relaxation for the Weymouth equations,cas © ez,

in the gas network and gradually turn an infeasible solution . .

into a feasible one. The number of Weymouth equations stay&(js' ot st it it ) (&) = > (Z (bggt (@) + b, (fﬂ))Jr
unchanged as the sample number rises, making the algorithmic ‘ teT geg  °

iteration number insensitive to the size of sample dataset.z (bﬁt(m)er?ﬁt(:c)) + Z bz_%t(m)}

In addition, the computational time for the Power118Gas20 ,cx * **° o loeL. Tie

system with100 samples is less than 25 minutes, which is gi gt . " Lt gt

acceptable for the 24-period scheduling problem of a moderéi‘f@ereajg: (@), aly (2), Qe (@), ajy (), aj (@), bjgz (@),

size test system. bj; (@), b7t (), b7t (x), bl (x) aredefined through
w de w le

_ﬁdeagt ZwEW ﬁwta ]gf = 1>

V. CONCLUSION
0, it =2,

With the increasing penetration level of uncertain wind ajgé: ()¢ =
generation in power systems, OGPF calculation in an uncertain )
environment is desired, as the interactions between power ot T Buttgr ey Puts 39 =1,
systems and gas systems have been significantly enhanced in @ ;o (x) &= 0 gt _ o
recent decades. In this regard, the risk-based DROGPF model ’ w ’
is proposed, where the distributional uncertainty set is con-
structed based on Wasserstein distance. Influences of reserves a?ﬁ; (2)'€= {
from gas-fired units on the economic and secure operation of

_ﬂdcant Zwewﬁwtv ]Zilet = 1a
0 it =2,

the gas system are quantified by proposing the concept of zonal Butint 3 Put, G =1
line pack, which originates from the heterogeneity of gas and ~ aji:(z) '€ = Ow Mewew Bl e 2’
electricity, as well as adding constraints to limit the reserve ’ Jw =%

gas system. An iterative solution procedure for the proposed, B 'gj =1,
DROGPF model is designed based on convex optimizatioﬁ;gz(m) - —0lgt 3 e Put .
where SOCPs are solved in each iteration. Simulation results 0, Jg. =2,

on the test system reveals the effectiveness and prospects of the
proposed models and methods on out-of-sample performances,
computational costs, and practicality. Future works include debj;t (x) =
veloping a non-cooperative fully distributed decision-making
framework as well as replacing the affine policy reserve

9,—
—Bu ( g 21,1, (5) Mgt /7 ) ;g =1

+a9t ZwGW Pwt

commitment of gas-fired unit from the perspective of the +
9 persp Mg Zlge\lll (9) mlggt /o
_6613 g ’
{07 5 =2,

utilizqtipn rule with a fully dispatchable one for the coupled bt (@) = —Ba, (1 — ane X e Put) - Jgt =1,
electricity-gas system. Ja. 0, int=2,
) ) APPENDIX_ ) bnt ( ) _ _ﬂw (T;t + apg Ewew p’lUt) ) ]gt = 17
A. Detailed Expressions of Coefficients e\ L) = 0 jnt =2
9 w 9

The index sef1,..., K} is reparameterized as

(G ot it gt dt) g8 dat, gat gt € (1,2},

it €{1,2,3}, Vg€ G,l, € Lot € 7},



T
Jls:( ) 6 - [8]
> MwiPwt = D Tgl.Qgt Y. Puwt
Bl weW geg wew jlt =1
’ = > Tl Qnt ) Dut ¢ 9]
neN wew
Z Tgl, Qgt Z ﬁwt - Z unleﬁwt
51 9€g weW weWw ]Zg —9 [10]
’ + Z Tnl, Ont Z Duwt ¢
neN weW [11]
0, .7ltF =3,
let
b (®) =
[12]
deg Tgle (p.qt + gt X e pwt)
ot
Bu. + Zne_/\/ Tnle (pnt + ant ZwEW pwt) Jie = L [13]
- ZdeED6 Tdel.Pdct — Pl [14]
- deg Tgl. | Pgt + Qgt ZwGW pwt)
ﬂle - Zne./\f Tnl, (pnt + Qe ZwEW pwt) ‘ﬁe = 2’ [15]
+ ZdeeDe TdelePdet — Pl
0, . =3 e
B. Auxiliary Constraints Reduction
Equivalent forms of Z3b) andy, in (23a) are given as [17]
follows. [18]
yd' 2 afy. () é + b5y (@), V€T, g€ G,9jg,
[19]
I >a (w) (w),W €T,g€G,viJ,
y?td >a (m) nt (33), Vit € T, n e N, VJ(;L:, [20]
v > a ”t (:v)Tﬁ + b’ '+ (x),Vt € T,n e N,Vj,
y' > el (@) "€+ bg-;f (), Vt € T,lc € Le, V.. [21]
Ys = Z(Z(y?dﬁ Hy) 4 > (e gt +
teT geg neN (22]
Z ylet), Vs € S. (23]
le€Le
[24]
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