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Abstract—Gas-fired units and power-to-gas facilities provide
pivotal backups for power systems with volatile renewable gener-
ations. The deepened system interdependency calls for elaborate
consideration of network models of both natural gas and power
systems, as well as uncertain factors. This paper proposes a
data-driven distributionally robust optimization model for the
optimal gas-power flow problem with uncertain wind generation.
The concept of zonal line pack and line pack reserve are raised
to topologically distinguish fuel suppliers of gas-fired units and
ensure gas system operating security during reserve deployment.
Wind power uncertainty is described by an ambiguity set, i.e., a
family of candidate distributions around an empirical distribution
in the sense of Wasserstein distance. A convex optimization
based solution procedure is developed, which entails solving only
second-order cone programs. Computational results validate the
effectiveness of the proposed models and methods.

Index Terms—Convex optimization, distributionally robust
optimization, optimal gas-power flow, risk, Wasserstein distance.

NOMENCLATURE

A. Sets and Indices

t ∈ T Time periods.
n ∈ N Non-gas units.
g ∈ G Gas-fired units.
de ∈ De Electricity loads.
dg ∈ Dg Gasloads.
w ∈ W Wind farms.
le ∈ Le Power transmission lines.
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lg ∈ Lg Gaspipelines.
Lc

g Gasactive pipeline sets.
ig ∈ Ig Gasnetwork nodes.
e ∈ E Gas wells.
s ∈ S Samples of wind generation outputs.
M Ambiguity Set.
P The set of all probability distributions.
T/S Number of time periods/samples.
N/G Number of non-gas/gas-fired units.
Le Numberof power transmission lines.

B. Parameters

fn Cost functions of non-gas units [$/MW].
f+

n /f−
n Upward/downward regulation costs functions

of non-gas units [$/MW].
f+

lg
/f−

lg
Upward/downward regulation costs functions
of line pack [$/(Sm3 ∙ h−1)].

Qet Gasproduction costs coefficients [$/Sm3].
pdet Electricity demands [MW].
pwt Forecasting outputs of wind farms [MW].
πgle/πnle Power transfer distribution factors of gas-

fired/non-gas units [-].
πwle/πdele Power transfer distribution factors of wind

farms/electricity loads [-].
ple Capacity limits of power transmission lines

[MW].
ugt/unt Operatingstatus of gas-fired/non-gas units [-].
p̄g/p

g
Upper/lower capacity limits of gas-fired units
[MW].

p̄n/p
n

Upper/lower capacity limits of non-gas units
[MW].

P+
g , P−

g Rampinglimits of gas-fired units [MW/h].
P+

n , P−
n Rampinglimits of non-gas units [MW/h].

q̄e/q
e

Productionlimits of gas wells [Sm3 ∙ h−1].
v̄ig/vig

Pressurelimits of gas nodes [Pa].
qdgt Gasdemands [Sm3 ∙ h−1].
ηg Efficiency of gas-fired units [-].
σ Electricity-to-gas conversion constant

[Sm3/(MWh)].
χlg Gasconsumption coefficients [-].
φlg Weymouth equation coefficients [(Sm3)2/(Pa∙

h)2].
ψlg Line pack coefficients [Sm3/Pa].
γc

lg
Compressionfactors of compressors [-].
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q̄c
lg

Maximal allowed gas in-flows of compressors
[Sm3/h].

p̄w Installedcapacities of wind farms [MW].
βw/βde/βle Penaltiesof wind power curtailment/electricity

load shedding/line overload [$/MW].
θ Radius of the Wasserstein ambiguity set [-].

C. Decision Variables

pgt/pnt Outputsof gas-fired/non-gas units [MW].
qet Outputsof gas wells [Sm3 ∙ h−1].
vigt Pressureof gas nodes [Pa].
qlgt Average flow of gas pipelines [Sm3 ∙ h−1].
qin
lgt/qout

lgt In-/out-flows of gas pipelines [Sm3 ∙ h−1].
mlgt Line pack [Sm3].
r+
gt, r

−
gt Upward/downward reserves of gas-fired units

[MW].
r+
nt, r

−
nt Upward/downward reserves of non-gas units

[MW].
αgt/αnt Reserve participation factors of gas-fired/non-

gas units [-].
mg,+

lgt /mg,−
lgt Line pack reserve purchased by gas-fired units

[Sm3 ∙ h−1].
m̄lgt/mlgt Upper/lower bounds of line pack [Sm3].
vl

l1gt/vh
l1gt Pressurebounds of head node of passive

pipelines [Pa].

D. Random Variables

p̃wt Actual outputs of wind farms [MW].

I. I NTRODUCTION

W ITH the increasing share of gas-fired units in the elec-
tricity generation industry [1] as well as the promotion

of the emerging power-to-gas technology globally [2], the
integration of the power systems and the natural gas systems
has entered a new era. Opportunities and benefits have been
brought by the technical trend, yet the existence of challenges
are undeniable. Inspiring works have been done and taken
positive effects on smoothing and accelerating the gas-power
integration from operation [3], planning [4] as well as market
[5] perspectives, to name just a few.

As one of the most fundamental problems in the integrated
gas-electric system operation, optimal gas-power flow (OGPF)
has been widely discussed by the literature. The security con-
strained OGPF with steady-state gas flow model is proposed in
[6], where the nonconvex Weymouth equation is approximated
by a piecewise linear function, and the OGPF problem is cast
as a mixed integer linear program (MILP). To incorporate
the slow gas dynamics, also known as the line pack, which
is described by partial differential equations, linear discrete
approximation is employed in [7] and the OGPF is solved
via an MILP. Though [6] and [7] have provided viable
options for the OGPF problem, large-scale instances remain
computational challenging, as the number of integer variables
grows rapidly with growing system sizes. Recent OGPF works
have leveraged more tractable convex optimization techniques
by replacing the nonconvex Weymouth equations with relaxed

but simpler constraints, such as linear ones [8] and second-
order cones (SOCs) [9]. Nevertheless, these convex relaxation
models are generally inexact and offer infeasible solutions.
A sequential algorithm is proposed in [10] to enhance the
feasibility of OGPF solutions, and a feasible and local solution
can be refined in most occasions.

Beyond the deterministic OGPF formulations, tackling un-
certainty is another important issue in OGPF, because of the
increasing level of renewable generation in the integrated gas-
electric systems. Scenario based stochastic program (SP) is
used in [11] to capture the wind generation outputs uncertainty,
where the coordinated scheduling of the gas-electric system
is analyzed. In [12], uncertain wind generation outputs and
demand are described by uncertainty sets, and the schedul-
ing problem of the integrated energy system is formulated
and solved based on robust optimization (RO). Inheriting
advantages from both SP and RO, distributionally robust opti-
mization (DRO) is developed recently, where a distributional
uncertainty set is constructed, containing a family of candidate
distributions for the uncertain data. Since DRO approaches are
usually data-driven, it is less conservative than classical RO
by explore the statistical properties, and makes no reference
to the exact probability distribution [13]. Recently, DRO has
been successfully applied to power system operation problems,
such as unit commitment [14], reserve procurement [15], and
optimal power flow [16], yet DRO based OGPF studies have
not been reported so far.

In this paper, a risk-based OGPF model is proposed. It is
built upon a data-driven distributionally robust framework that
hedges against inexact probability distribution of wind power
output, and referred to DROGPF for short. Compared with the
existing works, the salient features of our work are:

1) In the proposed DROGPF model, the sum of operational
cost and risk are minimized. The former consists of energy
generation and reserve commitment costs; the latter incor-
porates penalties on load shedding, wind power curtailment
and line overload. Randomness of wind generation outputs is
modeled by a distributional uncertainty set, and the distance
between candidate distributions and a reference distribution is
no greater than a threshold in the sense of Wasserstein distance
[17]; the reference distribution can be constructed from limited
historical data, and can be inexact.

2) Inspired by [18], the concept of zonal line pack is
proposed, which topologically defines the gas fuel suppliers
for reserves provided by gas-fired units. Additional gas fuel
constraints, called line pack reserve availability constraints,
are included in the proposed DROGPF model so as to limit
gas-fired reserves besides the regulation capability of gas-fired
units. It offers a more practical way to analyze the impacts of
reserve provision of gas-fired units on the gas system, as the
dynamics in gas systems is relatively slow.

3) A second-order cone program (SOCP) based algorithm
is developed to solve the proposed DROGPF problem. The
computation time grows linearly with respect to the scale of
the test system as well as the sample dataset, indicating the
promising scalability of the proposed methods.
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I I. M ATHEMATICAL FORMULATION

A. Deterministic OGPF

In this work, we assume there exists one utility who
has fully control authority over both the electricity and gas
systems, which is in line with the settings of [6], [7], [12],
[19]. The mathematical formulation of the deterministic OGPF
problem is given as below, where the direct current losses
power flow model is adopted for the power system and the
line pack effect in the gas system is considered:

min
Φ

∑

t∈T

(
∑

n∈N

fn (pnt) +
∑

e∈E

Qetqet

)

(1a)

s.t.
∑

g∈G

pgt +
∑

n∈N

pnt +
∑

w∈W

pwt =
∑

de∈De

pdet, ∀t ∈ T ,

(1b)∣
∣
∣
∑

g∈G

πglepgt +
∑

n∈N

πnlepnt +
∑

w∈W

πwlepwt−

∑

de∈De

πdelepdet

∣
∣
∣ ≤ ple , ∀le ∈ Le, ∀t ∈ T ,

(1c)

u{∙}tp{∙} ≤ p{∙}t ≤ u{∙}tp̄{∙},

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T ,
(1d)

p{∙}t − p{∙},t+1 ≤ u{∙},t+1P
−
{∙} + (1− u{∙},t+1)p̄{∙},

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T ,
(1e)

p{∙},t+1 − p{∙}t ≤ u{∙}tP
+
{∙} + (1− u{∙}t)p̄{∙},

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T ,
(1f)

q
e
≤ qet ≤ q̄e, ∀e ∈ E , ∀t ∈ T , (1g)

∑

e∈Θe(ig)

qet −
∑

dg∈Θdg (ig)

qdgt −
∑

lg∈Θl1g
(ig)

qin
lgt =

σ ∙
∑

g∈Θg(ig)

pgt/ηg −
∑

lg∈Θl2g
(ig)

(1− χlg )qout
lgt ,

∀ig ∈ Ig, ∀t ∈ T ,

(1h)

mlgt = ψlg

(
vl1gt + vl2gt

)
, ∀lg ∈ Lg, ∀t ∈ T , (1i)

mlgt = mlg,t−1 + qin
lgt − qout

lgt , ∀lg ∈ Lg, ∀t ∈ T , (1j)

qlgt =
(
qin
lgt + qout

lgt

)
/2, ∀lg ∈ Lg, ∀t ∈ T , (1k)

qlgt|qlgt| = φlg

((
vl1gt

)2

−
(
vl2gt

)2
)

, ∀lg ∈ Lg/L
c
g, ∀t ∈ T ,

(1l)
vl2gt ≤ γc

lgvl1gt, ∀lg ∈ L
c
g, ∀t ∈ T , (1m)

0 ≤ qin
lgt ≤ q̄c

lg , ∀lg ∈ L
c
g, ∀t ∈ T , (1n)

vig
≤ vigt ≤ v̄ig , ∀ig ∈ Ig, ∀t ∈ T , (1o)

Φ = {pgt, pnt, qet, q
in
lgt, q

out
lgt , qlgt,mlgt, vigt}. (1p)

In OGPF problem (1), (1a) represents the out-of-the-pocket
costs of the integrated energy system, where the first and
second terms depict the generation costs of non-gas units and
gas production costs of gas wells, respectively [6], [7], [12].

The production costs of gas-fired units are included in the
gas production costs by adding their fuel demands in nodal
gas balancing conditions. (1b)-(1f) are power system related
constraints, and (1g)-(1o) are gas system related constraints.
Specifically, (1b) indicates the system-wide power balancing
condition. (1c) gives the power flow limits on transmission
lines. (1d) presents generation capacity limits for gas-fired
and non-gas units. (1e) and (1f) are ramping down and up
constraints for units, respectively. The outputs of gas wells
are bounded by (1g). The nodal gas balancing conditions
are depicted by (1h). (1i) defines the line pack within a
pipeline, where the subscriptsl1g and l2g representthe head
and tail nodes of pipelinelg, respectively. (1j) interprets
the line pack dynamics [7]. (1k) depicts the average gas
flow within a pipeline. Particularly, the pipelines with and
without compressors are called active and passive pipelines,
respectively. For active pipelines, the gas consumed by the
compressors are reflected byχlg aheadof the gas in-flow terms
in (1h) [20]. (1l) is the Weymouth equation, which captures the
relationship between the average gas flow and nodal pressures
for a passive pipeline. (1m) and (1n) limit the compression
ratio and gas flow of an active pipeline, respectively [21]. (1o)
suggests the pressure limits at gas system nodes. (1p) collects
all the decision variables for problem (1).

Due to the existence of the nonconvex Weymouth equation,
problem (1) can hardly be solved by commercial solvers.
Fortunately, the topologies of transmission-level gas networks
are usually radial [22]. Moreover, according to gas system
operation practice, the gas flow directions do not change intra-
day [23]. Then, (1l) can be reduced as

(
qlgt

)2
= φlg

((
vl1gt

)2

−
(
vl2gt

)2
)

, (2a)

vl1gt ≥ vl2gt, ∀lg ∈ Lg/L
c
g, ∀t ∈ T , (2b)

where we assume the notations of the initial and terminal
nodes of lg are consistent with the positive directions of
gas flows. Note that (2) is still nonconvex. A convexification
method will be introduced in SectionIII-A.

Remark 1: At the present stage, most existing coupled
electricity-gas systems have two operating entities, who run
the power system and the gas system, respectively. Neverthe-
less, several driving forces have been continuously promoting
the integration of power-gas systems and might facilitate a
unified entity who has operation authority for both power and
gas systems in the near future, which are

• The deepening interdependency between power systems
and gas systems. According to [1], the proportion of gas
demand used for power generation over the total gas
consumption has reached 40% globally in 2012 and will
keep increasing in the next years. Meanwhile, quite a few
power-to-gas (P2G) demonstration plants have been built
worldwide, suggesting growing electricity demands from
gas systems.

• Large-scale multi-energy utilities. Currently, there exists
several large-scale multi-energy utilities who could pro-
vide multiple types of energy including gas and electricity
to their customers, such as Pacific Gas & Electric and
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Public Service Elec & Gas in the USA [24]. Their
interests are to maximize the energy sales profits or
minimize the energy supply costs.

• The potential synchronization of gas and electricity mar-
kets. In recent years, lots of efforts have been made to
synchronize the natural gas and electricity markets such
as the adjustment of electricity day and gas day [25]
and the two markets might be totally synchronized in
the future.

B. Distributionally Robust OGPF

In practice, the wind power outputs are difficult to be
predicted accurately, while the generation schedule should be
made in prior; in real-time dispatch, reserves are committed
from eligible units to compensate the discrepancy between
generation and demand; reserve capacities are restricted by

0 ≤ r+
{∙}t ≤ u{∙}tp̄{∙} − p{∙}t,

0 ≤ r−{∙}t ≤ p{∙}t − u{∙}tp{∙},

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T .

(3)

Taking reserve provision into account, ramping limits (1e)
and (1f) should be modified as

p{∙}t + r+
{∙}t − p{∙},t+1 − r−{∙},t+1 ≤

u{∙},t+1P
−
{∙} +

(
1− u{∙},t+1

)
p̄{∙},

p{∙},t+1 + r+
{∙},t+1 − p{∙}t − r−{∙}t ≤

u{∙}tP
+
{∙} +

(
1− u{∙}t

)
p̄{∙},

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T .

(4)

In practice, units adjust their outputs according to constant
ratios, which is called affine policy [26]. The deployment of
reserve can be modeled as

−r−{∙}t ≤ α{∙}t

∑
w∈W(pwt − p̃wt) ≤ r+

{∙}t,

{∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T ,
(5a)

0 ≤ α{∙}t ≤ 1, {∙} = {g, n}, ∀n ∈ N , ∀g ∈ G, ∀t ∈ T , (5b)
∑

g∈G

αgt +
∑

n∈N

αnt = 1, ∀t ∈ T , (5c)

whereα{∙}t

∑
w∈W(pwt − p̃wt) representincremental output

of units and (5a) gives the limits of the real-time adjustments
within the reserve offer; (5b) defines the bounds for partic-
ipation factors; (5c) guarantees the deviations of the wind
farms are fully mitigated. In addition, the power flow limits of
transmission lines should not be violated with the adjustments
of generation outputs, which implies
∣
∣
∑

g∈G

πgle

(
pgt + αgt

∑

w∈W

(pwt − p̃wt)
)

+
∑

w∈W

πwle p̃wt+

∑

n∈N

πnle

(
pnt + αnt

∑

w∈W

(pwt − p̃wt)
)
−
∑

de∈De

πdelepdet

∣
∣

≤ ple, ∀le ∈ Le, ∀t ∈ T .
(6)

The fuel consumption of gas-fired units is supplied by
the gas system, including the uncertain fuel demands during
reserve deployment. The actual fuel demand of gas-fired unitg

in periodt consists a deterministic partqd
gt, which is associated

with pgt and known in advance, and an uncertain partqu
gt,

which depends on the actual utilization of reserve capacity.
Fig. 1 gives an illustration of gas supply forqu

gt.

Fig. 1. Illustration of Zonal Line Pack.

In Fig. 1, gas-fired units G1 and G2 connectto the gas
system through nodes N1 and N2, respectively. Then, the
uncertain parts of gas demands of G1 (G2) are supported
by GLine1 and GLine2 (GLine3 and GLine4), considering
the relative slow dynamics of the gas system. Zonal line
pack is defined as the line packs whose head or tail node
connects to gas-fired unitg, and is indexed byg to specify
the fuel suppliers. Although line packs provide additional
regulation flexibility for gas systems, the total line packs
should keep balance periodically, like an electricity storage
unit, to maintain sufficient regulation capability for the next
cycle. Therefore, the concept of line pack reserve is proposed,
which is similar with the electricity reserve, to quantify the
impacts ofqu

gt on the gas system. The relationship between
qu
gt andcommitted line pack reserves can be cast as

−
∑

lg∈Θlg (g)

mg,−
lgt ≤ αgt

∑

w∈W

σ (pwt − p̃wt) /ηg

≤
∑

lg∈Θlg (g)

mg,+
lgt , ∀g ∈ G, ∀t ∈ T .

(7)

Meanwhile, the committed line pack reserves can not exceed
the upper and lower bounds ofqu

gt, resulting in
∑

lg∈Θlg (g)

mg,−
lgt ≤ σ ∙ r−gt/ηg, ∀g ∈ G, ∀t ∈ T , (8a)

∑

lg∈Θlg (g)

mg,+
lgt ≤ σ ∙ r+

gt/ηg, ∀g ∈ G, ∀t ∈ T . (8b)

In addition, line packs should always maintain reasonable
levels for sustainable utilization, yielding

mlgt +
t∑

t∗=1

∑

g∈Ψg(lg)

mg,−
lgt∗ ≤ m̄lgt, ∀lg ∈ Lg, ∀t ∈ T , (9a)

mlgt ≤ mlgt −
t∑

t∗=1

∑

g∈Ψg(lg)

mg,+
lgt∗ , ∀lg ∈ Lg, ∀t ∈ T , (9b)

wherem̄lgt andmlgt arethe allowable upper and lower bounds
of line packs, respectively. Considering gas system operating
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min
Λ

{∑

t∈T

( ∑

n∈N

(
fn(pnt) + f+

n (r+
nt) + f−

n (r−nt)
)

+
∑

e∈E

Qetqet +
∑

lg∈Lg

(
f+

lg
(
∑

g∈Ψg(lg)

mg,+
lgt ) + f−

lg
(
∑

g∈Ψg(lg)

mg,−
lgt )

))
+

max
μ∈M

Eμ

∑

t∈T

[
βde

( ∑

n∈N

(
αnt

∑

w∈W

(pwt − p̃wt)− r+
nt

)+

+
∑

g∈G

(
αgt

∑

w∈W

(pwt − p̃wt)− ηg

∑

lg∈Θlg (g)

mg,+
lgt /σ

)+)

+ βw

( ∑

n∈N

(
αnt

∑

w∈W

(p̃wt − pwt)− r−nt

)+

+
∑

g∈G

(
αgt

∑

w∈W

(p̃wt − pwt)− ηg

∑

lg∈Θlg (g)

mg,−
lgt /σ

)+)

+ βle

∑

le∈Le

(∣
∣
∑

n∈N

πnle

(
pnt + αnt

∑

w∈W

(
pwt − p̃wt

))
+
∑

g∈G

πgle

(
pgt + αgt

∑

w∈W

(pwt − p̃wt)
)

+
∑

w∈W

πwle p̃wt −
∑

de∈De

πdelepdet

∣
∣− ple

)+]}

Λ = {pgt, pnt, r
+
gt, r

−
gt, r

+
nt, r

−
nt, αnt, αgt, qet, q

in
lgt, q

out
lgt , qlgt,mlgt,m

g,+
lgt ,mg,−

lgt , m̄lgt, mlgt, vigt, v
l
l1gt, v

h
l1gt}

(12)

security, the allowable bounds of passive pipelines can be
calculated by

m̄lgt = ψlg

(
vh

l1gt + v̄l2gt

)
, ∀lg ∈ Lg/L

c
g, ∀t ∈ T , (10a)

mlgt = ψlg

(
vl

l1gt + vl2gt

)
, ∀lg ∈ Lg/L

c
g, ∀t ∈ T , (10b)

(
qlgt

)2
= φlg

((
vh

l1gt

)2

−
(
v̄l2g

)2
)

, ∀lg ∈ Lg/L
c
g, ∀t ∈ T ,

(10c)
(
qlgt

)2
= φlg

((
vl

l1gt

)2

−
(
vl2g

)2
)

, ∀lg ∈ Lg/L
c
g, ∀t ∈ T ,

(10d)

where (10a)-(10b) determine maximum/minimum line pack
level from allowable nodal gas pressures; based on pressure
bounds(vl2g

, v̄l2g
) at the tail node, (10c)-(10d) estimate allow-

able pressures bounds(vl
l1gt, v

h
l1gt) at the head node to ensure

the deliverability of gas flowqlgt. For active pipelines, the
maximum and minimum line pack levels can be calculated
from

m̄lgt = ψlg

(
v̄l1g

+ v̄l2g

)
, ∀lg ∈ L

c
g, ∀t ∈ T , (11a)

mlgt = ψlg

(
vl1g

+ vl2g

)
, ∀lg ∈ L

c
g, ∀t ∈ T , (11b)

where subscriptsl1g and l2g representthe initial and terminal
nodes of an active pipeline, respectively.

As p̃wt is uncertain, (5a), (6), and (7) may be violated in
extreme conditions. The expected constraint violation of (5a),
(6), and (7) are penalized in the objective function, which is
a common practice in power systems operation [27]. We aim
to minimize the objective under the worst-case distribution of
the random variables, rendering the following distributionally
robust optimization model for OGPF:

Objective:(12)

s.t.: (1b)-(1d), (1g)-(1k), (1m)-(1o), (2)-(4),

(5b)-(5c), (8)-(11).

(13)

In the objective function (12), the first and fourth terms
are identical to (1a); the second and third terms are regu-
lation costs for committing upward and downward reserves
from non-gas units, respectively, wheref+

n (∙) and f−
n (∙) are

convex functions; the fifth and sixth terms are regulation costs
for committing upward and downward line pack reserves,
respectively, where bothf+

lg
(∙) andf−

lg
(∙) areconvex functions;

remaining terms are penalties for load shedding, wind power
curtailment and line overload, respectively; andμ is any
distribution in the distributional uncertainty setM that will
be specified in SectionII-C; E is the expectation operator;
and (∙)+ is defined asmax(0, ∙); Λ gathers all the decision
variables in problem (13).

Remark 2: Affine policy reserve utilization rule is quite
popular in distributionally robust optimization based power
system decision-making works, such as [15], [16], [28], [29],
as it can offer tractable and equivalent reformulations under
quite a few distributional uncertainty sets, including moment
based ones and Wasserstein distance based ones. Meanwhile,
from application perspective, affine policy is employed in
many practical decision-making frameworks of electricity in-
dustry due to its simplicity, such as auto generation control
(AGC) [30]. It should be pointed out that the affine policy
reserve utilization rule would lead to more conservative results
compared with the fully dispatchable reserve utilization rule
in [31]. A practical and computational efficient distributionally
robust model for the OGPF problem using fully dispatchable
reserve utilization rule would be one of our future research
directions.

Remark 3: In accordance with [16], [27], [28], the elec-
tricity reserve utilization costs are not included in (12). Nev-
ertheless, they can be easily incorporated into the proposed
DROGPF model by replacing the terms in the second and
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third lines of (12) inside the brackets with
∑

n∈N

(βde
− β+

nt)
(
αnt

∑

w∈W

(pwt − p̃wt)− r+
nt

)+

+
∑

g∈G

(βde − β+
gt)
(
αgt

∑

w∈W

(pwt − p̃wt)− ηg

∑

lg∈Θlg (g)

mg,+
lgt

σ

)+

+
∑

n∈N

(βw − β−
nt)
(
αnt

∑

w∈W

(p̃wt − pwt)− r−nt

)+

+
∑

g∈G

(βw − β−
gt)
(
αgt

∑

w∈W

(p̃wt − pwt)− ηg

∑

lg∈Θlg (g)

mg,−
lgt

σ

)+

+
∑

n∈N

∑

w∈W

αnt

(
β+

nt(pwt − p̃wt)
+ + β−

nt(p̃wt − pwt)
+
)

+
∑

g∈G

∑

w∈W

αgt

(
β+

gt(pwt − p̃wt)
+ + β−

gt(p̃wt − pwt)
+
)
,

(14)

where β+
nt(β

−
nt) and β+

gt(β
−
gt) are the upward (downward)

reserve utilization cost coefficients of non-gas and gas-fired
generators, respectively. In (14), the last two lines describe the
reserve utilization costs of non-gas and gas-fired generators,
respectively.

C. Construction of the Distributional Uncertainty Set

Before tackling the proposed model (13), it is crucial to
specify a meaningful and tractable distributional uncertainty
set. Letν := 1

S

∑S
s=1 δξ̂s be the empirical distribution, where

ξ̂s, s = 1, . . . , S are samples andδξ̂s representsthe Dirac

measure on̂ξs. To restrict the statistical distance between any
candidate distributionμ ∈ M and the empirical distribution
ν, we define

M :=
{

μ ∈ P : D(μ, ν) ≤ θ
}

,

whereθ is a positive parameter, andD(μ, ν) is the Wasserstein
distance between two distributionsμ andν, which is given by

D(μ, ν) := min
γ

{∫

RW ×RW

‖ ξ − ζ ‖ γ
(

dξ, dζ
)}

, (15)

whereγ is a joint distribution onRW × RW with marginals
μ, ν; ξ, ζ are the integral variables;‖ ∙ ‖ stands for Euclidean
norm. ThusM contains all probability distributions whose
Wasserstein distances to the empirical distribution are no
greater thanθ.

Intuitively, the joint distributionγ on the right-hand side
of (15) above can be viewed as a transportation plan which
transports probability mass fromν to μ. Thus, the Wasserstein
metric between two distributions equals the cheapest cost
(measured in some norm‖ ∙ ‖) of transporting probability
mass from one distribution to the other. Wasserstein metric
has recently become popular in machine learning as a way
to measuring the distance between probability distributions,
and has been applied to a variety of areas including computer
vision, generative adversarial networks, and distributionally
robust optimization [32].

Fig. 2. Decision process illustration.

Wasserstein distance is well suited for hedging against the
perturbation of data values and has good out-of-sample per-
formance [17], [33]. SinceM is comprised of infinitely many
distributions, the proposed (13) model is not immediately
computationally tractable, and we will provide a tractable
formulation in the next section.

Remark 4: In this work, a multi-period OGPF model is
tackled. Therefore, it could be applied to either day-ahead
scheduling or real-time lookahead dispatch.

In practice, the real-time accommodated wind generation
could be lower than its actual value, which depends on the
deliverable downward reservesr−gt, r

−
nt. If total amount of

deliverable downward reserves is insufficient, wind generation
curtailment would occur. By this means, the scheduled wind
generation outputs become decision variables. Meanwhile,
wind generation curtailment is penalized in the objective func-
tion, which indicates the operator of the integrated electricity-
gas system (IEGS) could weigh the benefits of wind generation
accommodation and the costs of additional electricity reserve
for wind generation uncertainty mitigation, and then determine
the accommodated amount of wind generation.

An illustration of the decision process is shown as Fig.2.
It can be observed the decision-making of the IEGS operator
contains two stages, which are the data-driven pre-dispatch
and the auto re-dispatch, respectively. In the first stage, the
IEGS operator constructs the reference distribution of wind
generation outputs according to their predicted curves as well
as qualified historical data, and then determines the energy and
reserve schedule. In the second stage, reserves are automati-
cally utilized based on their participation factors determined
in the first stage as well as the total wind generation outputs
deviation. It should be noted that the deployed reserves might
be insufficient in some extreme scenarios, resulting in either
load shedding or wind generation curtailment.

Remark 5: In fact, distributional uncertainty sets (DUSs)
reported by existing power system distributionally robust
decision-making works can be divided into three categories,
which are

1) Moment-based DUSs, among which the first- and
second-order moment conditions are the most common.
In [15], [16], [28], the sets of all probability distributions
are specified by the given mean and covariance of
the random variables, where semidefinite programmings
(SDPs) are tackled after model reformulations and the
corresponding computational burden is relatively high.
[34] and [14] drop the covariance constraint and add
other first-order constraints in their DUSs, leading to
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linear programming (LP) reformulations of the distribu-
tionally robust models, which significantly reduces the
computational burden.

2) Kullback-Leibler (KL) divergence-based DUSs. In [35],
the KL divergence-based DUS is equivalently trans-
formed into the respective classical chance constraints
under the nominal distribution but with a rescaled vio-
lation probability.

3) Wasserstein distance based DUSs. [29] adopts the
Wasserstein metric based DUS and its tractable refor-
mulation is also an LP. It should be noted that though
the DUS in [29] is similar to the one in our work,
they are completely different works and the major dif-
ferences are: i. the model in [29] is a chance-constrained
programming (CCP) and the aftermath of constraint
violation is not considered; ii. our work minimizes
the violation of random variable involved constraints.
The aforementioned differences would result in totally
different tractable reformulation procedures of the dis-
tributionally robust models.

Among the aforementioned three types of DUSs, the
moment-based ones require the smallest amount of infor-
mation of the uncertainties, yet their conservativeness are
relatively high; the KL divergence based ones are much less
conservative, however, they must assign positive probabil-
ity mass to each training sample and their out-of-sample
performances cannot be guaranteed [36]. The Wasserstein
distance based DUSs overcome the deficiencies of those
two approaches, where the qualified samples are adopted to
construct the reference distribution without assigning proba-
bility weights, the parameters are chosen based on modern
measure concentration, and their tractable reformulations are
second-order cone or linear programmings [36]. Therefore, the
proposed Wasserstein metric based DUS is more suitable for
the DROGPF problem from mathematical, computational and
practical perspectives.

III. SOLUTION METHODOLOGY

Note that the proposed DROGPF model (13) is not readily
solvable by commercial solvers, due to the nonconvexities
in the constraints, i.e., the Weymouth equations (2a), (10c),
and (10d), which are quadratic equalities, and intractable
terms in the objective function, namely, the last three lines
of (12), which describes the maximization of the operation
loss expectation under the worst-case distribution.

In what follows, a convexification method for the Weymouth
equations is introduced, and then a tractable reformulation
of the proposed DROGPF objective function is derived, after
which a convex and tractable approximation of problem (13)
can be obtained. To mitigate the solution infeasibility issue
caused by the constraint convexification treatment, a sequential
convex programming based algorithm is devised to enhance
the solution feasibility of the convexified counterpart of prob-
lem (13) with respect to the original problem. The overall
solution procedure is shown in Fig. 3.

Fig. 3. The convex optimization based solution procedure.

A. Convexification of the DROGPF Constraints

In the proposed DROGPF, all constraints are linear except
for Weymouth equations in (2a), (10c), and (10d), in form of

a2 = b2
1 − b2

2, (16)

which can be cast as opposite inequalities as

a2 ≤ b2
1 − b2

2, (17a)

b2
1 ≤ a2 + b2

2, (17b)

where(17a) is an SOC whose canonical form is given by
∥
∥
∥
∥

a
b2

∥
∥
∥
∥

2

≤ b1. (18)

Given a vector[a(%) b
(%)
2 ]>, the linear approximation of the

righthand side terms of (17b) is

a2 + b2
2 ≈ 2a(%)a− (a(%))2 + 2b

(%)
2 b2 − (b(%)

2 )2. (19)

After replacing the right-hand side terms of (17b) by (19) and
adding a positive slack variableζ(%), (17b) can be approxi-
mated by a rotated quadratic cone as [37]

b2
1 ≤ 2a(%)a− (a(%))2 + 2b

(%)
2 b2 − (b(%)

2 )2 + ζ(%). (20)

For the sake of exposition, the compact form of the proposed
DROGPF model with convexified Weymouth equations is
given in a compact form

min
x,ζ≥0

f(x) + τ1>ζ + max
μ∈M

Eμ[Θ(x, ξ)] (21a)

s.t. Ax ≤ b (21b)
∥
∥
∥Ẽz

lgtx + F̃ z
lgtζ + g̃z

lgt

∥
∥
∥

2
≤

(m̃z
lgt)

>x + (ñz
lgt)

>ζ + õz
lgt,

(21c)

∥
∥
∥Gz

lgtx + hz
lgt

∥
∥
∥

2
≤ (cz

lgt)
>x + ρz

lgt,

∀ lg ∈ Lg/L
c
g, ∀ t ∈ T , z = {1, 2, 3}

(21d)

wherex is the vector of decision variables of problem (13);
ζ is the vector of slack variables;ξ is the vector of random
variables;A and b are coefficients for the linear constraints,
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which can be derived from constraints of problem (13) except
(2a), (10c), and (10d); Ẽz

lgt, F̃ z
lgt, g̃z

lgt
, m̃z

lgt, ñz
lgt, õz

lgt,
Gz

lgt, hz
lgt, cz

lgt, ρz
lgt are coefficients for the SOC constraints

generated during Weymouth equation convexification, and can
be obtained from (2a), (10c), and (10d);f(∙) expresses the sum
of the first row in (12); τ is the penalty coefficient andτ1>ζ
representsthe violation penalty of Weymouth equations; and

Θ(x, ξ) = max
1≤k≤K

ak(x)>ξ + bk(x) (22)

expresses the piecewise linear convex function ofξ inside the
expectationEμ in (12), wherek is the index for the piecewise
linear segment in (22), K = 4(G+N)T × 3LeT , ak(x), bk(x)
arecoefficients that can be derived from (12) and their detailed
expressions are provided in Appendix A.

In problem (21), the coefficients with tildes are not constant.
Specifically, they are linear functions of the initial values of
qlgt, vigt, and can be calculated in advance.

B. Tractable Reformulation of the DROGPF Objective

According to Corollary 2 in [17], (21) can be replaced by
its dual as follows.

min
x,y,ζ≥0

λ≥0

f(x) + τ1>ζ + λθ +
1
S

S∑

s=1

ys (23a)

s.t. ys ≥ ak(x)>ξ̂s + bk(x), ∀1 ≤ k ≤ K, s ∈ S, (23b)

λ ≥ max
{
‖agt

jgt
de

(x)‖, ‖agt

jgt
w

(x)‖, ‖ant
jnt
de

(x)‖,

‖ant
jnt
w

(x)‖, ‖alet
jt
le

(x)‖
}

, ∀t ∈ T , g ∈ G, n ∈ N ,

le ∈ Le, jgt
de

, jgt
w , jnt

de
, jnt

w ∈ {1, 2}, jt
le ∈ {1, 2, 3}

(23c)

(21b), (21c), (21d).

In (23), ys, s = 1, . . . , S and λ are auxiliary variables;
agt

jgt
de

(x), agt

jgt
w

(x), ant
jnt
de

(x), ant
jnt
w

(x), alet
jt
le

(x) are coefficients

and their expressions can be found in Appendix A. In (23), the
objective function (23a) is convex, constraints (23b) is linear
and (23c) is equivalent to SOCs. Evidently, (23) suggests an
SOCP, which can be efficiently solved.

There are4(G+N)T × 3LeT ×S linear inequalities in (23b);
nevertheless, after substituting (23b) andys in (23a) by their
equivalent forms, respectively, the number of constraints in
(23b) can be reduced to(4G + 4N + 3Le) × S × T . Details
are provided in Appendix B.

C. Solution Feasibility Recovery

To enhance the solution feasibility of problem (23) with
respect to problem (13), a sequential SOCP algorithm is
developed. The flowchart is summarized in Algorithm1,
whose convergence proof can be found in [38]. By properly
selecting the penalty parameter, a local optimal solution of
(13) can be recovered once Algorithm1 converges. However,
different from existing local algorithm for nonlinear programs,
Algorithm 1 starts from a convex relaxation model, and makes
no reference to an initial point. For the same reason, the final
solution is very likely to be the global one of problem (13).

Algorithm 1 S-SOCP for problem (23)

1: Initialize the penalty parametersτ (0), τmax, κ > 1 and
convergence parametersε, ε. Set the iteration index% = 0.
Solve the following dual reformulation of the relaxed
OGPF problem

Obj = min
x,y,λ

f(x) + λθ +
1
S

S∑

s=1

ys

s.t. λ ≥ 0, (21b), (21d).

(24)

The optimal solutions (values) arex(0),y(0),λ(0) (Obj(0)).

2: Updatecoefficients of the convexified Weymouth equation
in (21c) atx(%). Solve the following SOCP

min
x,y,ζ,λ

f(x) + τ (%)1>ζ + λθ +
1
S

S∑

s=1

ys

s.t. (21b),(21c),(21d), ζ ≥ 0, λ ≥ 0

(25)

%← % + 1. The optimal solutions arex(%),y(%),λ(%),ζ(%),
with the optimal value ofObj(%).

3: If (26) holds, then terminate and report the optimal so-
lution; otherwise, updateτ (%) = min(κτ (%−1), τmax), and
go to Step 2.

|Obj(%) −Obj(%−1)| ≤ ε

ζ
z,(%)
lgt ≤ ε

(
q
(%)
lgt

)2

, ∀lg ∈ Lg/L
c
g, ∀t ∈ T , z = {1, 2, 3}.

(26)

IV. I LLUSTRATIVE EXAMPLE

In this section, we present numerical experiments on a
test system to validate the effectiveness of the proposed
methods. Experiments are carried out on a laptop with Intel
R© XeonR© 3.7 GHz CPU and 64 GB memory. The proposed
algorithms are coded in MATLAB with YALMIP toolbox.
SOCPs are solved by Gurobi 7.5. Parameters of the solver
are default without particular mention.

A. System Configuration

Fig. 4 depicts the topology of the connected infrastructure,
where the power grid possesses 2 gas-fired units, 1 non-gas
unit, 2 wind farms, 6 transmission lines and 3 loads; the
gas system consists of 2 gas wells, 4 passive pipelines, 2
compressors and 3 loads. In Fig.4, we use B, G, W, PL,
PLine with subscripts to denote electricity buses, units, wind
farms, electricity loads, and transmission lines, respectively,
and N, C, GL, GW, GLine with subscripts to denote gas
nodes, compressors, gas loads, gas wells, and gas passive
pipelines, respectively. Specially, the gas fuels of G1 and G2

come from N4 and N1, respectively. The hourly electricity,
gas demands, and total outputs of wind farms are presented
in Fig. 5. Complete data of the system can be found in [39].
Set the generation costs functionfn(∙) and the reserve costs
functionsf+

n (∙), f−
n (∙), f+

lg
(∙), f−

lg
(∙) as quadratic and linear

functions, respectively, and cost coefficients values can be
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Fig. 4. Topology of the Power5Gas7 system.

Fig. 5. Wind generation and energy demands of the Power5Gas7 system.

found in [39]. Hereinafter, this system is referred to as the
Power5Gas7 system.

B. Sample Generation and Parameter Tuning

We assumeξ follows a multivariate Gaussian distribution,
where the mean values ofξ can be found in [39] and the
standard deviation of each entry ofξ equals its mean multi-
plying a scalar randomly chosen from[0.5, 1]. To guarantee
the validness of the samples, a sample validity checking pro-
cedure is developed and executed during sample generation.
Specifically, valid samples should satisfy

0 ≤ p̂s
wt ≤ p̄w, ∀w ∈ W , t ∈ T , s ∈ S, (27)

wherep̂s
wt is the outputs of wind farmw in sampleξ̂s; p̄w is

the installed capacity of wind farmw.
The Wasserstein radiusθ is selected using hold-out cross

validation method, whose detailed procedure is as follows.
Step 1: Divide the sample datasetS, into a training dataset,

denoted asSt, which contains70% samples ofS, and a
validation dataset, denoted asSv, including the remaining30%
of S. Setθ0 = 0, Δθ = 0.01, θmax = 0.1, andθ = θ0.

Step 2: Solve problem (21), which contains a series of
SOCPs, withSv, and recordx, f(x).

Step 3: Parameterize the decision variables in (28), namely
αgt, αnt, pgt, pnt, r+

nt, r−nt, r+
gt, r−gt, mg,+

lgt , mg,−
lgt , with x of

Step 2, and calculateR(x) according to (28), which is the
out-of-sample performance ofx with the validation dataset
Sv.

R(x) =
∑

s∈Sv

{∑

t∈T

[

βde

( ∑

n∈N

(
αnt

∑

w∈W

(pwt − p̂s
wt)− r+

nt

)+

+
∑

g∈G

(
αgt

∑

w∈W

(pwt − p̂s
wt)− ηg

∑

lg∈Θlg (g)

mg,+
lgt /σ

)+
)

+ βw

( ∑

n∈N

(
αnt

∑

w∈W

(p̂s
wt − pwt)− r−nt

)+

+
∑

g∈G

(
αgt

∑

w∈W

(p̂s
wt − pwt)− ηg

∑

lg∈Θlg (g)

mg,−
lgt /σ

)+
)

+ βle

∑

le∈Le

(∣
∣
∑

n∈N

πnle

(
pnt + αnt

∑

w∈W

(
pwt − p̂s

wt

))

+
∑

g∈G

πgle

(
pgt + αgt

∑

w∈W

(pwt − p̂s
wt)
)

+
∑

w∈W

πwle p̂
s
wt −

∑

de∈De

πdelepdet

∣
∣− ple

)+]}

(28)

Step 4: If θ < θmax, set θ = θ + Δθ and go to Step 2;
otherwise, terminate and selectθ with the minimumf(x) +
R(x) as the best tuning value.

With the optimal θ, we resolve problem (23) using all
S samples and obtain the optimal solution. Then, the out-
of-sample performances of the proposed DROGPF model is
examined using an independent testing dataset consists of104

samples.

C. Results

According to Section II.C, the empirical distributionμ is
formed by historical samples. However, it should be noted
that the candidate sample set forμ only consists a relatively
small part of all the historical data, whose meteorological
conditions are similar with the ones of the current decision-
making stage. Considering the relatively high dimensionality
of the random variable vector, which consists the outputs of all
the wind farms, there won’t be too many available samples in
practical applications. Therefore, we assume that the decision
maker has limited data on the random variableξ, and use a
small sample set withS = 20, which is also adopted by [16].
The simulations are repeated by 50 times. The parameters of
Algorithm 1 are selected asτ (0) = 0.1, τmax = 10000, κ = 2,
ε = 0.001, ε = 0.001, andρmax = 100.

1) Comparison with Sample Average Approximation:In the
sequel, detailed comparisons are made between the aforemen-
tioned approaches, i.e., the proposed distributionally robust
model and sample average approximation (SAA)1, for the

1Themathematical formulation of SAA and the proposed DROGPF models
are almost the same except that the proposed DROGPF model calculates the
expectation of penalized constraint violation under the worst-case distribution
μ of random variables, while SAA minimizes the expectation of penalties
under empirical distributionν, which is formed by the samples. Therefore,
the SAA formulation also deals with a relaxed counterpart of the original
problem, where the expectation of the constraint violations are penalized in
the objective function.
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TABLE I
COMPARISON OF THE PROPOSEDDROGPFMODEL AND SAA FOR THE POWER5GAS7 SYSTEM.

Average performance Penalty decrement rate (%) OP improvement rate(%)

OP ($) DC ($) Penalty ($) Average Best Worst Average Best Worst

DROGPF 1.586 × 105 1.384 × 105 2.023 × 104 62.37 45.81 10.20 1.546 2.288 0.508
SAA 1.611 × 105 1.248 × 105 3.733 × 104 - - - - - -

data-driven OGPF problem. Results are shown in TableI,
where column 2 to column 4 describe the average perfor-
mances of the proposed DROGPF model and SAA of 50
simulation tests, with OP and DC representing out-of-sample
performances (dispatch costs plus operational risk under the
testing dataset) and dispatch costs (sum of first six terms
in (12)), respectively, and column 5 to column 7 summarize
the mean as well as upper and lower bounds of relative OP
improvement rate of the 50 simulation tests with SAA being
the benchmark approach. Specifically, OP equals the sum of
DC and penalty for each row in TableI.

From TableI, the average OP of SAA is1.546% higher than
the proposed DROGPF model, as SAA only accounts for the
designated distribution (the empirical distribution) generated
from S samples, so the result is sensitive to the perturbation
in the true distribution of uncertain data. The dispatch costs of
SAA and the proposed DROGPF model reflect the differences
of their out-of-sample performances. From TableI, though the
average dispatch costs of the proposed DROGPF model are
10.91% larger than SAA, indicating the dispatch strategy is
more conservative, such as committing more reserves as well
as preserving more capacity for heavily loaded transmission
lines, its average penalty has a62.37% decrement compared
with SAA, resulting in the1.546% improvement in out-of-
sample performance in return. Among the 50 simulation tests,
the OP of the proposed DROGPF is always better than SAA,
and the best and the worst improvement rates are2.288%
and 0.508%, respectively, indicating the effectiveness of the
proposed DROGPF model.

Specifically, one simulation is selected from the repeated
50 simulation withS = 20, and its distributions of the total
operational loss as well as the penalized electricity load shed-
ding, wind curtailment, and transmission line overload with
10,000 test samples are demonstrated in Fig.6. In Fig. 6(a),
the104 scenariosare sorted and renumbered according to their
operational loss performances with SAA and the proposed
DROGPF model, respectively, which means the scenarios with
the same index in SAA and DROGPF sorting system might not
be the same. And the scenario indices in Fig.6(b) - 6(d) are
the same as Fig.6(a). It can be observed that the operational
losses of SAA are much higher than the proposed DROGPF
model, which are mainly caused by the load shedding penalty
differences, as shown in Fig.6(b).

2) Convergence Performance:The sequence of objective
value and maximum relative constraint violation (MRCV),
which is defined as the positive slack variable divide the corre-
sponding left-hand term of the unrelaxed constraint, generated

(a) Total operational loss. (b) Load shedding penalty.

(c) Wind curtailment penalty. (d) Line overload penalty.

Fig. 6. Operational loss of the104 testsamples from one simulation.

Fig. 7. Objective value and MRCV during iterations of one simulation.

in Algorithm 1 of one simulation are plotted in Fig.7. The
constraint is identified as satisfied if MRCV is below a given
threshold, which is0.01% in this case.

From Fig. 7, Algorithm 1 converges in 20 iterations, and
it can be observed that the MRCV at the 1st iteration is
215.6%, indicating the gas system would suffer over-high or
over-low pressure at the solution obtained from the relaxed
OGPF model, in which non-convex part in form of (17b) in
Weymouth equation is neglected. Along with the execution
of the algorithm, the MRCV gradually decreases and meets
the threshold at the 20th iteration. Meanwhile, the objective
function value at the 20th iteration has a0.265% increment
compared with the relaxed model, demonstrating the necessity
of the proposed solution tightness enhancement procedure.

3) Impacts of Nodal Pressure Limits:According to (10)
and (11), the available amount of line pack reserve depends
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Fig. 8. Simulation results with different gas nodal pressure intervals.

on the lower and upper bounds of line pack, which are largely
influenced by the gas pressure limits. Therefore, the economic
impact of gas pressure limits on the distributionally robust
dispatch strategy are analyzed to provide decision support for
the determination of proper nodal pressure limits. Specifically,
we compress the allowable pressure intervals of gas nodes
symmetrically, e.g.,ς% compression means the upper and
lower pressure limits of gas nodes are modified as

v̄
(ς)
ig

= v̄ig − ς%× (v̄ig − vig
), ∀ig ∈ Ig, (29a)

v
(ς)
ig

= vig
+ ς%× (v̄ig − vig

), ∀ig ∈ Ig. (29b)

50 repeated simulations are executed for5%, 10%, 15%, and
20% compression of allowable pressure interval, respectively;
the training, validation, and testing datasets for the five cases
remain unchanged. Optimal values and out-of-sample perfor-
mances are compared with the base case simulations, as shown
in Fig. 8.

In the test system, reserves offered by non-gas units are
more expensive than line pack reserves considering unit trans-
formation and energy conversion efficiency. On this account,
when the allowable nodal pressure intervals become narrower,
the power system has to commit more reserves from non-gas
units as the line pack reserves, the fuel of gas-fired units during
regulation, might be insufficient, indicating the integrated
energy system may suffer from higher dispatch costs, or worse,
larger operational risk due to the lack of reserve capacities. In
Fig. 8, it can be observed that the out-of-sample performances
increase as the allowable nodal pressure intervals become
narrower, which confirms the previous inference.

4) Impacts of Dataset Size:In the sequel, the proposed
models and methods are tested on larger sample sets, where
S = 100 andS = 1000, respectively. The sample generation
and parameter tuning approach are identical to Section IV.B.
The simulation is repeated by 50 times forS = 100 andS =
1000, respectively. The results are gathered in TableII.

From TableII, it can be observed that the average out-
of-sample performance of the proposed DROGPF model is
still better than SAA in bothS = 100 and S = 1000 cases,
indicating the effectiveness of the proposed methods. However,
the average OP improvement rate decreases from1.546% to
1.120% and0.300%, respectively, whenS increases from20
to 100 and1000, suggesting the proposed methods would have

TABLE II
COMPARISON OF THE PROPOSEDDROGPFMODEL AND SAA FOR THE

POWER5GAS7 SYSTEM WITH S = 100 AND S = 1000.

Average OP ($)
OP improvement rate(%)

Average Best Worst

S = 100
DROGPF 1.5749 × 105 1.120 1.764 0.327

SAA 1.5927 × 105 - - -

S = 1000
DROGPF 1.5738 × 105 0.300 0.471 0.223

SAA 1.5785 × 105 - - -

similar out-of-sample performance with SAA when the sample
set is sufficient large.

5) Computational Efficiency Analysis:In the sequel, we
apply the proposed model and algorithm to a larger test system,
which comprises a modified IEEE 118-bus power network and
a modified version of the Belgian high-calorific 20-node gas
network. The power network includes 30 gas-fired generator,
24 non-gas generators, 186 transmission lines and 90 loads.
The gas network contains 2 gas wells, 16 passive pipelines,
3 compressors and 9 loads. Refer to [39] for the topology
as well as parameters of the test system, the working status
of generators, load demands and forecasted wind generation
outputs curves. According to Section II. B, the number of
auxiliary linear constraints generated during the dualization of
the expectation of the maximization term in (21a), which is the
major computational burden of the proposed DROGPF model,
is not related with the number of wind farms. Therefore,
3 wind farms rather than more are considered in the test
system. Hereinafter, the test system is referred to as the
Power118Gas20 system.

Three sizes of sample sets are prepared for the proposed
DROGPF model and the benchmark SAA approach, which
are S = 20, S = 50, and S = 100, respectively. The
simulations are repeated 100 times for each sample set size
setting. The simulation environment, solver settings, as well
as algorithmic parameters are identical to previous ones. The
results are summarized in TableIII, where ACP is short for
average computational performance.

From TableIII, the average out-of-sample performance of
the proposed DROGPF model is still better than SAA for the
Power118Gas20 system, indicating the effectiveness of the
proposed methods. Similar with the results in TableII, the
gap between the performances of the proposed DROGPF and
SAA gets smaller while the sample dataset size grows. The4th

to 7th column of Table III describe the numbers of auxiliary
variables and constraints in the proposed DROGPF and SAA
models, while the other decision variables and constraints of
the two models are the same. It should be noted thatL∗

e in
Table III is the number of active transmission lines in the
power network after inactive transmission capacity constraints
identification [40]. The average total computational time as
well as algorithmic iteration number are demonstrated in the
last two columns of TableIII. It can be observed that the
computational time almost grow linearly with respect to the
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TABLE III
COMPARISON OF THE PROPOSEDDROGPFMODEL AND SAA FOR THE POWER118GAS20 SYSTEM.

Model type Sample Number Average OP ($)
Auxiliary variables Auxiliary linear constraints ACP

Generalexpression Number General expression Number Time (s)Iteration

DROGPF
S = 20 8.8923 × 106

(2G + 2N + L∗
e)×

(S + 1) × T

96264
(4G + 4N + 3L∗

e) × S × T
+(2G + 2N + L∗

e) × T

227784 265.3 7.85
S = 50 8.8272 × 106 233784 562584 523.7 8.13
S = 100 8.5464 × 106 462984 1120584 1481 8.21

SAA
S = 20 9.0851 × 106

(2G + 2N + L∗
e)×

S × T

91680
(4G + 4N + 3L∗

e) × S × T
223200 260.5 7.79

S = 50 8.9725 × 106 229200 558000 519.8 8.14
S = 100 8.5885 × 106 458400 1116000 1447 8.19

size of sample dataset, as the additional auxiliary constraints
are linear and their number grow linearly along with the size of
sample dataset. Moreover, the average iteration number does
not increase much as the sample number increases from the
simulation results. In fact, the necessity of the iterations is
to tighten the convex relaxation for the Weymouth equations
in the gas network and gradually turn an infeasible solution
into a feasible one. The number of Weymouth equations stays
unchanged as the sample number rises, making the algorithmic
iteration number insensitive to the size of sample dataset.
In addition, the computational time for the Power118Gas20
system with100 samples is less than 25 minutes, which is
acceptable for the 24-period scheduling problem of a moderate
size test system.

V. CONCLUSION

With the increasing penetration level of uncertain wind
generation in power systems, OGPF calculation in an uncertain
environment is desired, as the interactions between power
systems and gas systems have been significantly enhanced in
recent decades. In this regard, the risk-based DROGPF model
is proposed, where the distributional uncertainty set is con-
structed based on Wasserstein distance. Influences of reserves
from gas-fired units on the economic and secure operation of
the gas system are quantified by proposing the concept of zonal
line pack, which originates from the heterogeneity of gas and
electricity, as well as adding constraints to limit the reserve
commitment of gas-fired unit from the perspective of the
gas system. An iterative solution procedure for the proposed
DROGPF model is designed based on convex optimization,
where SOCPs are solved in each iteration. Simulation results
on the test system reveals the effectiveness and prospects of the
proposed models and methods on out-of-sample performances,
computational costs, and practicality. Future works include de-
veloping a non-cooperative fully distributed decision-making
framework as well as replacing the affine policy reserve
utilization rule with a fully dispatchable one for the coupled
electricity-gas system.

APPENDIX

A. Detailed Expressions of Coefficients

The index set{1, . . . ,K} is reparameterized as
{

(jgt
de

, jgt
w , jnt

de
, jnt
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le) : jgt

de
, jgt

w , jnt
de

, jnt
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jt
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}
,
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B. Auxiliary Constraints Reduction

Equivalent forms of (23b) andys in (23a) are given as
follows.

ygtde
s ≥ agt

jgt
de

(x)>ξ̂s + bgt

jgt
de

(x), ∀t ∈ T , g ∈ G, ∀jgt
de

,

ygtw
s ≥ agt

jgt
w

(x)>ξ̂s + bgt

jgt
w

(x), ∀t ∈ T , g ∈ G, ∀jgt
w ,

yntde
s ≥ ant

jnt
de

(x)>ξ̂s + bnt
jnt
de

(x), ∀t ∈ T , n ∈ N , ∀jnt
de

,

yntw
s ≥ ant

jnt
w

(x)>ξ̂s + bnt
jnt
w

(x), ∀t ∈ T , n ∈ N , ∀jnt
w ,

ylet
s ≥ alet

jt
le

(x)>ξ̂s + blet
jt
le

(x), ∀t ∈ T , le ∈ Le, ∀j
t
le .

ys =
∑

t∈T

(∑

g∈G

(ygtde
s + ygtw

s ) +
∑

n∈N

(yntde
s + yntw

s )+

∑

le∈Le

ylet
s

)
, ∀s ∈ S.

REFERENCES

[1] “World energy look 2013,” International Energy Agency, Paris, France,
2013.

[2] M. Gtz, J. Lefebvre, F. Mrs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert,
and T. Kolb, “Renewable Power-to-Gas: A technological and economic
review,” Renewable Energy, vol. 85, pp. 1371 – 1390, 2016.

[3] C. Liu, M. Shahidehpour, Y. Fu, and Z. Li, “Security-constrained unit
commitment with natural gas transmission constraints,”IEEE Trans. on
Power Syst., vol. 24, no. 3, pp. 1523–1536, Aug 2009.

[4] X. Zhang, M. Shahidehpour, A. S. Alabdulwahab, and A. Abusorrah,
“Security-constrained co-optimization planning of electricity and natural
gas transportation infrastructures,”IEEE Trans. on Power Syst., vol. 30,
no. 6, pp. 2984–2993, Nov 2015.

[5] M. Gil, P. Dueas, and J. Reneses, “Electricity and natural gas interde-
pendency: Comparison of two methodologies for coupling large market
models within the european regulatory framework,”IEEE Trans. on
Power Syst., vol. 31, no. 1, pp. 361–369, Jan 2016.

[6] C. Correa-Posada and P. Sánchez-Martin, “Security-constrained optimal
power and natural-gas flow,”IEEE Trans. on Power Syst., vol. 29, no. 4,
pp. 1780–1787, Jul. 2014.

[7] ——, “Integrated power and natural gas model for energy adequacy in
short-term operation,”IEEE Trans. on Power Syst., vol. 30, no. 6, pp.
3347–3355, Nov. 2015.

[8] H. Cui, F. Li, Q. Hu, L. Bai, and X. Fang, “Day-ahead coordinated
operation of utility-scale electricity and natural gas networks considering
demand response based virtual power plants,”Appl. Energy, vol. 6, pp.
183–195, Aug. 2016.

[9] Y. Wen, X. Qu, W. Li, X. Liu, and X. Ye, “Synergistic operation of
electricity and natural gas networks via ADMM,”IEEE Trans. on Smart
Grid, vol. 9, no. 5, pp. 4555 – 4565, Sep 2018.

[10] C. Wang, W. Wei, J. Wang, L. Bai, Y. Liang, and T. Bi, “Convex
optimization based distributed optimal gas-power flow calculation,”
IEEE Trans. on Sustain. Energy, vol. 9, no. 3, pp. 1145–1156, Jul 2018.

[11] A. Alabdulwahab, A. Abusorrah, X. Zhang, and M. Shahidehpour,
“Coordination of interdependent natural gas and electricity infrastruc-
tures for firming the variability of wind energy in stochastic day-ahead
scheduling,”IEEE Trans. on Sustain. Energy, vol. 6, no. 2, pp. 606–615,
April 2015.

[12] C. He, L. Wu, T. Liu, and M. Shahidehpour, “Robust co-optimization
scheduling of electricity and natural gas systems via admm,”IEEE Trans.
on Sustain. Energy, vol. 8, no. 2, pp. 658–670, April 2017.

[13] A. Shapiro, “Distributionally robust stochastic programming,”SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2258–2275, 2017.

[14] P. Xiong, P. Jirutitijaroen, and C. Singh, “A distributionally robust
optimization model for unit commitment considering uncertain wind
power generation,”IEEE Transactions on Power Systems, vol. 32, no. 1,
pp. 39–49, Jan 2017.

[15] W. Wei, F. Liu, and S. Mei, “Distributionally robust co-optimization of
energy and reserve dispatch,”IEEE Trans. on Sustain. Energy, vol. 7,
no. 1, pp. 289–300, Jan 2016.

[16] Y. Zhang, S. Shen, and J. Mathieu, “Distributionally Robust Chance-
Constrained Optimal Power Flow with Uncertain Renewables and Un-
certain Reserves Provided by Loads,”IEEE Trans. on Power Syst.,
vol. 32, no. 2, pp. 1378–1388, Mar. 2017.

[17] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimiza-
tion with wasserstein distance,”arXiv:1604.02199, 2016.

[18] S. Clegg and P. Mancarella, “Integrated electrical and gas network
flexibility assessment in low-carbon multi-energy systems,”IEEE Trans.
on Sustain. Energy, vol. 7, no. 2, pp. 718–731, April 2016.

[19] Y. He, M. Shahidehpour, Z. Li, C. Guo, and B. Zhu, “Robust constrained
operation of integrated electricity- natural gas system considering dis-
tributed natural gas storage,”IEEE Trans. on Sustain. Energy, vol. 9,
no. 3, pp. 1061 – 1071, July 2017.
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