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This paper proposes neural networks in combination with wavelet transform for short-term electricity prices forecasting. In the
new deregulated framework, producers and consumers require short-term price forecasting to derive their bidding strategies to the
electricity market. Accurate forecasting tools are required for producers to maximize their profits and for consumers to maximize their
utilities. The accuracy of the price forecasting attained with the proposed approach is thoroughly evaluated, reporting the numerical
results from a real-world case study based on the electricity market of mainland Spain.
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1. INTRODUCTION

The electricity industry has undergone significant transfor-
mations since the advent of electricity generation in 1882 at
Pearl Street Power Station, NewYork. The electricity industry
was organized as regulated and vertically integrated, joining
generation, transmission and distribution of electricity in gov-
ernment owned monopolistic companies [1].

When electricity markets were regulated, predicting future
prices involved matching regional electricity demand to re-
gional electricity supply. Future regional demand was esti-
mated by escalating historical data, and regional supply was

determined by stacking up existing and announced generation
units in order of their variable operating costs [2]. Hence, in
the regulated framework, the electricity industry’s attention
mainly focused on load forecasting, existing little need for
tools hedging against price risk given the deterministic nature
of electricity prices.

Electricity has been turned into a traded commodity in
nowadays, to be sold and bought at market prices. Two ways
of trading are usually assumed: the pool trading and bilateral
contracts trading. In the pool trading, producers and con-
sumers submit bids respectively for selling and buying elec-
tricity on established intervals, typically on an hourly basis.
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Finally, a market operator clears the market by accepting the
appropriate selling and buying bids, giving rise to the electric-
ity prices.

The new electricity industry deregulated framework was
intended to encourage competition among companies in or-
der to decrease the cost of electricity. However, occurrences
seldom happening in the regulated framework, such as out-
ages and blackouts, are now subject of increasing concern.
Moreover, deregulation brings electricity prices uncertainty,
placing higher requirements on forecasting [3]. In particular,
accuracy in forecasting these electricity prices is very criti-
cal, since more accuracy in forecasting reduces the risk of
under/over estimating the revenue for producers and provides
better risk management [4].

Short-term electricity prices forecast has become a very
helpful tool for producers and consumers. A producer needs
to forecast electricity prices to derive its bidding strategy into
the pool and to optimally schedule its energy resources [5].
In the regulated framework, traditional generation scheduling
of energy resources was based on cost minimization. In the
new deregulated framework, since generation scheduling of
energy resources, such as hydro resources [6], is now based on
profit maximization, electricity prices forecasting has become
essential for developing negotiation skills in order to achieve
better profits. Consumers need short-term electricity prices
forecast for the same reasons as producers.

In the technical literature, several techniques to predict elec-
tricity prices have been reported [7], namely hard and soft
computing techniques.

The hard computing techniques include auto regressive
integrated moving average (ARIMA) [8], wavelet-ARIMA
[9], and mixed model [10] approaches. The soft computing
or artificial intelligence techniques include neural networks
(NN) [11], fuzzy neural networks (FNN) [12], weighted near-
est neighbors (WNN) [13], adaptive wavelet neural network
(AWNN) [14], and hybrid intelligent system (HIS) [15] ap-
proaches.

NN are simple, but powerful and flexible tools for fore-
casting, provided that there are enough data for training, an
adequate selection of the input-output samples, an appropriate
number of hidden units and enough computational resources
available. Also, NN have the well-known advantages of be-
ing able to approximate nonlinear functions and being able to
solve problems where the input-output relationship is neither
well defined nor easily computable, because NN are data-
driven. Successful applications of NN have been reported in
the technical literature [16–19]. Three-layered feedforward
NN are specially suited for forecasting, implementing non-
linearities using sigmoid functions for the hidden layer and
linear functions for the output layer.

This paper proposes NN in combination with wavelet trans-
form (WT) for short-term electricity prices forecasting. The
proposed NNWT approach is examined on the electricity mar-
ket of mainland Spain, commonly used as the test case in sev-
eral price forecasting papers [8–15]. It has been concluded
that the Spanish market has a hard nonlinear behavior and
time variant functional relationship [9,12]. So, this market is
a real world case study with sufficient complexity.

The proposed NNWT approach is compared with ARIMA,
mixed-model, NN, wavelet-ARIMA, WNN, FNN, HIS and

AWNN approaches, to demonstrate its effectiveness regarding
forecasting accuracy and computation time.

This paper is structured as follows. Section 2 presents the
NNWT approach. Section 3 describes the algorithm used to
forecast electricity prices. Section 4 provides the importance
of price in electricity markets and the main factors that in-
fluence it, as well as the different criterions used to assess
the behavior of the proposed approach. Section 5 presents
the numerical results from a real-world case study based on
the electricity market of mainland Spain. Finally, Section 6
outlines the conclusions.

2. PROPOSED APPROACH

The proposed NNWT approach to forecast electricity prices
is based on a combination of NN and WT. The WT is used
to decompose the usually ill-behaved price series into a set of
better-behaved constitutive series. Then, the future values of
these constitutive series are forecasted using NN. In turn, the
NN forecasts allow, through the inverse WT, reconstructing
the future behavior of the price series and therefore to forecast
prices.

The WT convert a price series in a set of constitutive se-
ries. These constitutive series present a better behavior than
the original price series, and therefore, they can be predicted
more accurately. The reason for the better behavior of the
constitutive series is the filtering effect of the WT [9].

A brief summary of WT is presented hereafter. For the
sake of simplicity, one-dimensional wavelets are considered
to illustrate the related concepts. WTs can be divided in two
categories: continuous wavelet transform (CWT) and discrete
wavelet transform (DWT). The CWT W(a, b) of signal f (x)

with respect to a mother wavelet φ (x) is given by [14]:

W(a, b) = 1√
a

+∞∫
−∞

f (x) φ

(
x − b

a

)
dx (1)

where the scale parameter a controls the spread of the wavelet
and translation parameter b determines its central position.
The DWT can be defined by:

W(m, n) = 2−(m/2)
T −1∑
t=0

f (t) φ

(
t − n 2m

2m

)
(2)

where T is the length of the signal f (t). The scaling and
translation parameters are functions of the integer variables m

and n (a = 2m, b = n . 2m); t is the discrete time index.
Many mother-wavelets are used for different applications.

The most known are Haar and Daubechies wavelets. Of
great importance are also the symlet, coiflet, Mexican Hat
and biorthogonal wavelets. A discussion on the wavelet types
is presented as follows.

– Haar: This wavelet is discontinuous, and resembles
to a step function. It represents the same wavelet as
Daubechies Db1.

– Daubechies: This wavelet has excellent properties of or-
thogonality and minimum compact support and for hav-
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Figure 1 Multilevel decomposition process.

ing vanishing moments, providing guaranty of conver-
gence and accuracy of the approximation in a wide va-
riety of situations. In the time domain the Daubechies
wavelet ‘Db.N’ of order N has N moments equal to zero.

– Symlets: The symlets are nearly symmetrical wavelets
proposed by Daubechies as modifications to the Db fam-
ily. The properties of the two wavelet families are similar.

– Coiflets: Compactly supported wavelets with highest
number of vanishing moments for both scaling and
wavelet function for a given support width.

– Mexican Hat: This wavelet has no scaling function and is
derived from a function that is proportional to the second
derivative function of the Gaussian probability density
function.

– Biorthogonal: Symmetry with FIR (Finite Impulse Re-
sponse) filters, desirable properties for decomposition
and reconstruction are split and nice allocation is possi-
ble. Main difficulty is that the orthogonality is lost.

Table 1 presents some properties of the mother-wavelets.
A fast DWT algorithm based on the four filters (decom-

position low-pass, decomposition high-pass, reconstruction
low-pass, and reconstruction high-pass filters), similar to that
of Mallat [20], is considered in this paper.

Multiresolution via Mallat’s algorithm is a procedure to ob-
tain “approximations” and “details” from a given signal. By
successive decomposition of the approximations, a multilevel
decomposition process (Figure 1) can be achieved where the
original signal is broken down into lower resolution compo-
nents.

A wavelet function of type Daubechies of order 4 (abbre-
viated as Db4) is used as the mother wavelet φ (t). This
wavelet offers an appropriate trade-off between wave-length
and smoothness, resulting in an appropriate behavior for short-
term electricity prices forecasting. Also, three decomposition
levels (a level of approximation, A3, and details D1, D2 and
D3) are considered, as shown in Figure 1, since it describes

the price series in a more thorough and meaningful way than
the others [21].

NN are highly interconnected simple processing units de-
signed in a way to model how the human brain performs a
particular task [22]. Each of those units, also called neurons,
forms a weighted sum of its inputs, to which a constant term
called bias is added. This sum is then passed through a transfer
function: linear, sigmoid or hyperbolic tangent.

Multilayer perceptrons are the best known and most widely
used kind of NN. The units are organized in a way that defines
the network architecture. In feedforward networks, units are
often arranged in layers: an input layer, one or more hidden
layers and an output layer.

In order to find the optimal network architecture, several
combinations should be evaluated. These combinations in-
clude networks with different number of hidden layers, dif-
ferent number of units in each layer and different types of
transfer functions. The configuration chosen consists of a one
hidden layer that uses a hyperbolic tangent sigmoid transfer
function and a one unit output layer with a pure linear transfer
function. This configuration has been proven to be a univer-
sal mapper, provided that the hidden layer has enough units
[23]. On one hand, if there are too few units, the network
will not be flexible enough to model the data well and, on
the other hand, if there are too many units, the network may
over-fit the data. Typically, the number of units in the hidden
layer is chosen by trial and error, selecting a few alternatives
and then running simulations to find out the one with the best
results.

Forecasting with NN involves two steps: training and learn-
ing. Training of feedforward networks is normally performed
in a supervised manner. One assumes that a training set is
available, given by the historical data, containing both inputs
and the corresponding desired outputs, which is presented to
the network. The adequate selection of inputs for NN train-
ing is highly influential to the success of training. In the
learning process a NN constructs an input-output mapping,
adjusting the weights and biases at each iteration based on
the minimization of some error measure between the output
produced and the desired output. The error minimization pro-
cess is repeated until an acceptable criterion for convergence
is reached.

The most common learning algorithm is the backpropaga-
tion algorithm [24], in which the input is passed layer through
layer until the final output is calculated, and it is compared
to the real output to find the error. The error is then prop-
agated back to the input adjusting the weights and biases in
each layer.

The standard backpropagation learning algorithm is a steep-
est descent algorithm that minimizes the sum of square errors.
However, the standard backpropagation learning algorithm is
not efficient numerically and tends to converge slowly. An al-
gorithm that trains a NN 10 to 100 times faster than the usual
backpropagation algorithm is the Levenberg-Marquardt algo-
rithm. While backpropagation is a steepest descent algorithm,
the Levenberg-Marquardt algorithm is a variation of Newton’s
method [25]. Hence, a three-layered feedforward NN trained
by the Levenberg-Marquardt algorithm is considered in this
paper.
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Table 1 Wavelet family properties.

Property Haar DbN SymN CoifN BiorNr.Nd Mexh
Infinitely regular •

Arbitrary regularity • • • •
Compactly supported orthogonal • • • •

Compactly supported biorthogonal •
Symmetry • • •

Asymmetry •
Near symmetry • •

Arbitrary number of vanishing moments • • • •
Vanishing moments for φ (t) •

3. ALGORITHM DESCRIPTION

In this section, the algorithm used to implement the proposed
approach is described step-by-step. As depicted in Figure 2,
wavelet techniques are implemented in the initial and final
stages. The actual time-series (electricity price data) are first
decomposed into a number of wavelet coefficient signals and
one approximation signal. The decomposed signals are then
fed into the NN at the second stage to predict the future pat-
terns for each of the signals. Finally, the predicted signals are
recombined in the last stage to form the final predicted price
series.

1) First step: Form a matrix with a set of historical data on
electricity prices, arranged in C columns of a matrix thereof.
Each column of the array has an associated profile of prices
for a particular week where prices are known beforehand.
In this first step the matrix has 6 columns, corresponding
to the 6 previous weeks to the week whose prices are to be
forecasted.

2) Second step: Select a number of columns of the previous
array so that the set of values derived from it represents
the real input data. Correlation analysis is used for feature
selection of price forecasting. Hence, appropriate inputs are
selected based on a correlation analysis. The candidate inputs
with correlation coefficient greater than 0.8 are selected,
corresponding to 4 of the 6 weeks with the highest correlation.

3) Third step: Decompose the input data using the WT tool
available in MATLAB. The operation mode of this process
is to decompose the vector with the input data selected. The
decomposition is made from the choice of basis functions
(wavelet family of functions), and the number of levels
wanted to split the series. The signal is divided into three
levels, namely, a level of approximation (A) and details (D).

Figure 1 illustrates the decomposition process. The wavelet
function used is the Db4 type, which offers a good approach
and ability to use a relatively small number of coefficients,
making the code faster. Subsequently, in the level of decom-
position, the detail series (for high frequencies) obtained is
analyzed, so that they make a selection of coefficients in this
series. This selection procedure is known as thresholding,
because the purpose is to eliminate the coefficients smaller
than a given value, with the aim of improving signal quality by

removing noise. Finally, there is the process of reconstruction
of the series (from the series of approximate level with the
N series about the modified thresholding process - levels 1
to N). The approximation (low-frequency component, A3)
subseries, which represents a smoothed version of the price
signal, constitutes the main component of the transform,
while the details (high-frequency components, D1, D2 and
D3) subseries provides “small” adjustments [9].

4) Fourth step: In this stage, the wavelet coefficients obtained
from WT decomposition are fed into the NN to predict future
price data. The approach developed in this paper uses A3,
along with D3 and D1, as inputs for the NN.

5) Fifth step: A set of feedforward NNs are allocated to
forecast the wavelet at different resolution levels. These
networks contain only one hidden layer, which is adequate to
approximate functions of any complexities. The Levenberg-
Marquardt algorithm is used in training the NNs, due to its
advantage of small computation time for a large NN size.

6) Sixth step: Use WT again to reconstruct the price series
forecast given by NN. The final output corresponds to the
prediction of our NNWT approach.

4. ELECTRICITY PRICES
FORECASTING

The electricity price is of extreme importance in an electricity
market to all the market players, and in particular for produc-
ers and consumers. A priori knowledge of the electricity price
is important for risk management and may represent an advan-
tage for a market player facing competition. For companies
that trade in electricity markets, the ability to forecast prices
means that the company is able to strategically set up bids for
the spot market in the short-term.

Electricity price is influenced by many factors: historical
prices and demand, bidding strategies, operating reserves, im-
ports, temperature effect, predicted power shortfall and gen-
eration outages.

The daily average price in the electricity market of mainland
Spain at 2002 is shown in Figure 3.

If all possible factors that influence the electricity price are
considered, forecasting will be very accurate, which, however,
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Figure 2 Diagram describing the proposed approach.

is very difficult to do in a real-world case study. Some fac-
tors are more important than others and practically only those
more important should be considered. The amount of different
types of reserves, power import and predicted power shortfall
do not improve the forecast at all [26], the effect of the tem-
perature can be incorporated in the demand, and unit outage
information is generally proprietary thus not available to all
market agents. Also, in the case of NN and ARIMA models,
historical demand data does not significantly improve predic-
tions [5]. Extremely high prices with no assessable reasons
are the consequence of bidding strategies, which are confi-
dential. Hence, it was decided to use only publicly available
information, namely historical price data, to forecast the fu-
ture prices. The historical prices are natural selections since
history and future are correlated.

The shape of price profiles presents seasonality characteris-
tics, usually day and week cycles. The price profile is modified
from day to day and week to week, to reflect changes in the
electricity market behavior. Typically, daily price profiles are
classified as weekdays, from Monday to Friday, and week-
end days, Saturday and Sunday, which are different. Another
consideration besides weekend is public holiday, known as
the calendar effect, since price profiles on non-holidays are
particularly different from those on public holidays.

To evaluate the accuracy of the NNWT approach in fore-

Figure 3 Daily average price in the electricity market of mainland Spain at
2002, in euro per megawatt hour.

casting electricity prices, different criterions are used. This
accuracy is computed in function of the actual prices that oc-
curred. The mean absolute percentage error (MAPE) crite-
rion, the sum squared error (SSE) criterion, and the standard
deviation of error (SDE) criterion, are defined as follows.

The MAPE criterion is given by:

MAPE = 100

N

N∑
h=1

∣∣p̂h − ph

∣∣
p

(3)

p = 1

N

N∑
h=1

ph (4)

where p̂h and ph are respectively the forecasted and actual
electricity prices at hour h, p is the average price of the fore-
casting period and N is the number of forecasted hours.

Electricity price can rise to tens or even hundreds of times
of its normal value at particular hours, and it may drop to zero
at other hours. Hence, the average price is used in (3) to avoid
the adverse effect of prices close to zero [27].

The SSE criterion is given by:

SSE =
N∑

h=1

(p̂h − ph)
2 (5)

The SDE criterion is given by:

SDE =
√√√√ 1

N

N∑
h=1

(eh − e)2 (6)

eh = p̂h − ph (7)

e = 1

N

N∑
h=1

eh (8)
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Figure 4 Winter week: actual prices, solid line, together with the forecasted
prices, dashed line, in euro per megawatt hour.

where eh is the forecast error at hour h and e is the average
error of the forecasting period.

5. CASE STUDY

The proposed NNWT approach is applied to forecast next-
week prices in the electricity market of mainland Spain. Price
forecasting is computed using historical data of year 2002 for
the Spanish market.

It should be noted that the electricity market of mainland
Spain is a duopoly with a dominant player, resulting in price
changes related to the strategic behavior of the dominant
player, which are hard to predict [9].

For the sake of simplicity and clear comparison, no exoge-
nous variables are considered. Also, for the sake of a fair
comparison, the same test weeks as in [8–15] are selected,
which correspond to the four seasons of year 2002. To build
the forecasting model, the hourly historical price data of the
42 days previous to the day of the week whose prices are to
be forecasted have been considered.

Numerical results with the proposed NNWT approach are
shown in Figures 4–7 respectively for the winter, spring, sum-
mer and fall weeks. Each figure shows the actual prices, solid
line, together with the forecasted prices, dashed line.

Table 2 presents the values for the criterions to evaluate
the accuracy of the proposed NNWT approach in forecasting
electricity prices. The first column indicates the week, the
second column presents the MAPE, the third column presents
the square root of the SSE, and the fourth column presents the
SDE.

A good accuracy of the proposed NNWT approach was
ascertained. The MAPE for the Spanish market has an average
value of 6.65%.

All the cases have been run on a PC with 1 GB of RAM and
a 2.0-GHz-based processor.

Figure 5 Spring week: actual prices, solid line, together with the forecasted
prices, dashed line, in euro per megawatt hour.

Figure 6 Summer week: actual prices, solid line, together with the forecasted
prices, dashed line, in euro per megawatt hour.

Table 2 Statistical analysis of the weekly forecasting error.

Week MAPE
√

SSE SDE

Winter 3.61% 26.40 1.29
Spring 4.22% 33.90 1.82

Summer 9.50% 67.21 3.48
Fall 9.28% 49.82 2.31

Table 3 shows a comparison between the proposed NNWT
approach and eight other approaches (ARIMA, mixed-model,
NN, wavelet-ARIMA, WNN, FNN, HIS and AWNN), in what
regards the MAPE criterion.
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Table 3 Comparative MAPE results.

Winter Spring Summer Fall Average
ARIMA [8] 6.32 6.36 13.39 13.78 9.96

Mixed-model [10] 6.15 4.46 14.90 11.68 9.30
NN [11] 5.23 5.36 11.40 13.65 8.91

Wavelet-ARIMA [9] 4.78 5.69 10.70 11.27 8.11
WNN [13] 5.15 4.34 10.89 11.83 8.05
FNN [12] 4.62 5.30 9.84 10.32 7.52
HIS [15] 6.06 7.07 7.47 7.30 6.97

AWNN [14] 3.43 4.67 9.64 9.29 6.75
NNWT 3.61 4.22 9.50 9.28 6.65

Figure 7 Fall week: actual prices, solid line, together with the forecasted
prices, dashed line, in euro per megawatt hour.

The proposed NNWT approach presents better forecasting
accuracy over the other approaches. Moreover, the average
computation time is less than 5 seconds.

6. CONCLUSIONS

A NNWT approach is proposed for electricity prices forecast-
ing on the Spanish market. The application of the proposed
approach to price forecasting is both novel and effective. The
MAPE has an average value of 6.65%, while the average com-
putation time is less than 5 seconds. Hence, the proposed ap-
proach presents a good trade-off between forecasting accuracy
and computation time, taking into account results previously
reported in the technical literature.
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