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Abstract—Transactive energy (TE) is a viable framework
to tackle the load-generation mismatch in energy systems with
high penetration of renewable energy resources (RERs). In this
paper, we propose a TE framework for prosumers with heating,
ventilation, and air conditioning (HVAC) systems to address real-
time power shortage in a residential microgrid. Our framework
consists of two phases. First, to mitigate load-generation mis-
match, we develop an online appliance scheduling method to
determine the optimal operation schedule of each prosumer’s
appliances. In particular, we apply receding horizon optimization
(RHO) to tackle the load and renewable generation uncertainties
and to better match the real-time power consumption of the
appliances with the priorly-purchased power from the day-ahead
market. Second, in case that there still exists power shortage at
the microgrid level, a TE market based on pay-as-market clearing
price (MCP) is proposed among prosumers to reduce the power
consumption of their HVAC systems. We capture the competition
among the participating prosumers as a non-cooperative game
and develop an algorithm to achieve the Nash equilibrium,
while considering prosumers’ willingness to participate in the
TE market. Extensive simulations are performed to demonstrate
the efficiency of our proposed TE framework.
Keywords: Transactive energy, HVAC system, appliances schedul-
ing, energy market, game theory.

I. INTRODUCTION

Proliferation of renewable energy resources (RERs) in dis-
tribution grids has shifted the concept of consumer toward
prosumer, as a user with electricity generation capability.
The stochastic nature of RERs, however, has exposed system
operators to new challenges in balancing supply and demand.
A prosumer generally prefers to match his demand with the
uncertain generation of his RER. Moreover, prosumers utilize
distributed loads based on self-interest. Hence, it may not be
feasible to maintain the supply-demand balance in a central-
ized manner. Transactive Energy (TE) has been introduced as a
viable solution to address power mismatch at the retail level by
aligning prosumer behavior with the grid conditions. Gridwise
Architecture Council defines TE as: “a set of economic and
control mechanisms that allow the dynamic balance of supply
and demand across the entire electrical infrastructure using
value as a key operational parameter” [1]. Based on this def-
inition, TE primarily aims to provide power system operators
with a dynamic supply-demand balance where installation
of costly fast-ramping units is not required to offset RERs’
generation changes.
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There exist major challenges in exploiting TE frameworks to
balance supply and demand. First, prosumers have uncertainty
in some parameters, such as their appliance specifications,
RER generation, electricity prices, and yet, they need to sat-
isfy inter-temporal operational constraints of their appliances.
Hence, real-time load scheduling has to be deployed. Second,
prosumers in the TE market should decide on their price
bids based on the discomfort arising from changes in their
energy use. Thus, the market participants should be able to
evaluate their discomfort in terms of monetary values. Third,
the decisions of prosumers in the TE market are coupled due
to the joint impact of their bids on the market clearing price
(MCP). Thus, a prosumer should take into account the actions
of others in his own decision-making process.

There have been some efforts in the literature to tackle the
issue of generation-load mismatch, and we divide the related
works into three main threads. The first line of research is
concerned with scheduling the flexible loads to tackle power
mismatches by applying various methods such as heuristic
optimization (e.g., particle swarm optimization), robust opti-
mization, fuzzy decision-making, and model-predictive con-
trol [2]–[5]. Also recently, model-free approaches, particularly
learning techniques, have gained momentum since they do
not require information on the stochastic process behind
uncertain variables [6]–[8]. However, the performance of the
aforementioned methods highly depends on the efficiency of
the pricing mechanisms to reflect power mismatches on the
electricity price and the price-responsiveness of the users.

The second line of research relates to the market-based
energy trading among entities (e.g., microgrids) to maintain the
generation-load balance. Behavior of market participants has
been studied through a wide range of methods including de-
composition techniques (e.g., alternating direction method of
multipliers (ADMM) and dual decomposition), game theory,
and prospect theory [9]–[13]. Despite the direct and voluntary
contribution of entities, the potentials of load scheduling for
mitigating the power mismatch tend to remain unemployed.

The third line of research deploys both load scheduling and
energy trading to fully exploit flexible loads in managing the
supply-demand balance. In [14], a framework was proposed
to model both the load scheduling and profit sharing problems
of interconnected microgrids using Nash bargaining. In [15],
the real-time energy trading among entities was described as a
bi-level optimization problem which included the optimal gen-
eration/consumption schedule of entities. In [16], the optimal
operation schedule of users was primarily determined through
approximate dynamic programming and the resulting real-time
mismatch was further managed by the energy sharing of users.
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Despite proposing holistic frameworks, the aforementioned
studies did not evaluate the potentials of thermally flexi-
ble loads including heating, ventilation, and air conditioning
(HVAC) systems in balancing generation-load mismatches. In
[17]–[22], HVAC systems are examined in both centralized
and distributed demand response schemes. While these studies
include discomfort cost in scheduling HVAC systems using
various methods such as machine learning techniques, they
do not yield an estimation of discomfort to determine users’
willingness toward participating in such schemes.

In this paper, we focus on addressing the real-time power
shortage by scheduling prosumers’ loads and further by ex-
ploiting the flexibility of HVAC systems in a market-based
environment. We propose a TE framework for a microgrid
with residential prosumers. In our framework, each prosumer
primarily schedules its appliances in an online manner. Sub-
sequently, if the microgrid still faces power shortage in real-
time, a TE market is launched among HVAC systems to
offset the power mismatch. The RERs can partially supply the
demand of prosumers. Hence, in our framework, prosumers
can purchase an approximate amount of their future net load
from the day-ahead electricity market. The main challenge that
we address in this paper is to propose a pay-as-MCP market for
participation of HVAC systems and to capture their interplay
as a non-cooperative game, considering the willingness of
prosumers for participation of their HVAC systems in such
a market. The main contributions of this paper are as follows:

• HVAC Scheduling Method: We model the thermal and
electrical behavior of HVAC systems and propose a
price-based control method for scheduling these systems,
considering prosumer’s thermal preferences. This method
generates a setpoint-price characteristic, which enables
us to evaluate the discomfort arising from changes in
power consumption of HVAC systems and thereby, the
prosumer’s willingness to participate in the TE market.

• Online Appliance Scheduling: We model and further
schedule prosumer’s appliances using receding horizon
optimization (RHO), which enables us to address the
uncertainties in the appliance scheduling problem. The
proposed online method preserves prosumer’s privacy and
allows for decentralized decision-making.

• Competition Among HVAC Systems: We propose a pay-
as-MCP market for participation of HVACs to mitigate
real-time power shortage. The distribution network oper-
ator (DNO) takes part in the market when HVACs cannot
fully offset the shortage mismatch and hence, avoids a
drastic increase of MCP. Accordingly, the TE market
would clear in a price less than or equal to the real-time
electricity price. We capture the interactions of HVAC
systems in the TE market through a non-cooperative
game, which enables us to determine the optimal offer
of each participant considering his thermal preferences.

The remainder of this paper is organized as follows. In
Section II, the system model is described. In Section III, the
problem formulation is presented. Simulation results are eval-
uated in Section IV and the paper is concluded in Section V.
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Fig. 1. (a) A residential microgrid with prosumers; (b) Setpoint-price
characteristic of prosumer n.

II. SYSTEM MODEL

Consider a microgrid comprising a set N ={1, ..., N} of N
residential prosumers as shown in Fig.1 (a). Each prosumer is
equipped with an energy consumption controller (ECC), which
carries out the computational tasks of the prosumer and acts
as an interface between the prosumer and microgrid operator
(MGO), who is in charge of maintaining the supply-demand
balance of the microgrid. Accordingly, MGO trades power
with the wholesale market through DNO and launches the
TE market in case a real-time power shortage exists at the
microgrid level. The ECCs, MGO, and DNO exchange power
and price information through a two-way communication
network. We assume that the time horizon is divided into a set
T ={1, ..., T} of T time slots with equal length, e.g., ∆t=15
minutes per time slot. We use the terms prosumer, ECC, and
household interchangeably.

We consider a two-settlement wholesale electricity market
structure comprising the day-ahead and real-time markets [23].
The DNO takes part in these markets as a price-taker and
acts as an intermediary entity between the microgrid and the
wholesale market. We assume that each ECC n∈N forecasts
its future net load, Lda

n (t), on a day-ahead basis for all time
slots t ∈ T . Parameter Lda

n (t) is the day-ahead forecasted
demand of prosumer n at time slot t that cannot be met by
the local RER generation and hence, needs to be purchased
from the day-ahead market. The MGO purchases aggregate
day-ahead net load of the microgrid from the DNO with the
day-ahead electricity price λ(t). Let λ = (λ(t), t ∈ T ) denote
the day-ahead price vector. In real-time, on the other hand, the
MGO trades power with the DNO at time slot t with buying
price γb(t) and selling price γs(t), which are revealed to the
MGO (and ECCs) at the beginning of each time slot. We make
the following assumption:
Assumption 1: The real-time buying price is greater than the
day-ahead price and the real-time selling price is lower than
the day-ahead price, i.e., γs(t) < λ(t) < γb(t).

Assumption 1 prevents prosumers from under-subscribing
and over-subscribing power in the day-ahead market.

A. HVAC Model
For the significant role that HVACs play in our framework,

we model the cooling mode of these systems, individually.
• Operational constraints: First, we describe the operation

of HVAC systems through linear constraints. Afterwards, we
explain the proposed price-based control method and the

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 10,2021 at 21:52:43 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078655, IEEE
Transactions on Smart Grid

3

resulting setpoint-price characteristic. The cooling mode of
HVAC n can be expressed as:

qn(t) = ṁncn
(
T in
n (t)− T ac

n (t)
)
, (1a)

q
n
≤ qn(t) ≤ qn, (1b)

where qn(t) is the thermal power of HVAC system n and
parameters ṁn and cn are the air flow rate and the specific
heat of the indoor air, respectively. Variables T in

n (t) and T ac
n (t)

are the indoor air temperature of household n and the air
temperature of the HVAC system at time slot t, respectively.
Constraint (1b) reflects the thermal limitation of the HVAC,
where q

n
and qn are the minimum and maximum thermal

power for HVAC n, respectively. The power consumption
p hvac,n(t) of the HVAC system for prosumer n at time slot
t can be obtained as

p hvac,n(t) =
(qn(t)

µn

)
v hvac,n(t),

where binary variable v hvac,n(t) indicates operation state of the
HVAC system for prosumer n, i.e., v hvac,n(t)=1 whenever the
system is operating and v hvac,n(t) = 0, otherwise. Parameter
µn is the product of sensible heat ratio (SHR) and coefficient
of performance (CoP). Parameter SHR relates the sensible
thermal load to its total amount and CoP is the ratio of
removed heat to the consumed energy [24]. To describe HVAC
power consumption p hvac,n(t) through linear terms, we use the
following constraints:

q
n
v hvac,n(t) ≤ p hvac,n(t)µn ≤ qnv hvac,n(t), (2a)

qn(t)− qn(1− v hvac,n(t)) ≤ p hvac,n(t)µn, (2b)
p hvac,n(t)µn ≤ qn(t)− q

n
(1− v hvac,n(t)). (2c)

We express the thermal dynamics of household n through
the following recursive equation [25]:

T in
n (t+1)−T in

n (t)=

(
T out(t)−T in

n (t)

RnCn
− p hvac,n(t)µn

Cn

)
∆t. (3)

Let T out(t) describe the ambient temperature at time slot t.
Parameters Cn and Rn denote the heat capacity of indoor air
and the equivalent thermal resistance of household n, respec-
tively. Accordingly, the first term in the right-hand side of
equation (3) corresponds to the thermal interaction between
household n and ambient while the second term relates to the
contribution of HVAC in the indoor temperature changes. We
define variable ∆Tn(t) to decide the operation status of HVAC
n at time slot t as:

∆Tn(t) = T in
n (t)− T sp

n (t), (4)

where T sp
n (t) is the setpoint temperature of prosumer n at

time slot t. Note that HVAC system n operates to maintain
the indoor air temperature close to the setpoint temperature,
determined based on the prosumer’s thermal preference. Ac-
cordingly, HVAC system n operates if ∆Tn(t) > 0, and is
turned off, otherwise. The following constraint determines the
operation status v hvac,n(t) as:

−M(1− v hvac,n(t)) < ∆Tn(t) ≤Mv hvac,n(t), (5)

where M is a large positive constant.

• Price-based control method: According to constraint (5),
the operation state and hence, the energy cost of an HVAC
system depend on its temperature setpoint T sp

n (t), which
reflects prosumer’s thermal preference τhvac,n. We assume that
prosumer n announces its daily thermal preferences to the
ECC in the form of tuple, τhvac,n = (T sp

n , T
des
n , T

sp
n ), where

T des
n is the desirable air temperature, and T sp

n and T
sp
n are

the lowest and highest temperatures that prosumer n can
bear, respectively. Thereby, the temperature setpoint T sp

n (t) of
HVAC system n is determined on a day-ahead basis as well.
In the proposed price-based control method, ECC n adjusts the
temperature setpoint T sp

n (t) based on the day-ahead electricity
price vector λ to reduce the energy cost of HVAC system.
Accordingly, each ECC n∈N over-cools the household when
the electricity price is less than its average, λavg, to avoid the
operation of HVAC when price exceeds λavg. Thus, ECC n
increases the temperature setpoint when the price is greater
than the average price.

Now, we describe the relation between setpoint temperature
T sp
n (t) and the day-ahead electricity price λ(t) through the

setpoint-price characteristic. Fig.1(b) depicts the setpoint-price
characteristic of prosumer n. ECC n sets the setpoint tem-
perature to the desirable temperature T des

n , when λ(t) =λavg.
Accordingly, T sp

n (t) decreases to values within the interval
[T sp

n , T
des
n ), whenever λ(t) < λavg; and is set to values

within the interval (T des
n , T

sp
n ], whenever λ(t) > λavg. We

also introduce saturation prices λsat
1,n and λsat

2,n to better express
the setpoint-price characteristic. To respect prosumer’s thermal
preferences, for prices less than λsat

1,n and greater than λsat
2,n, set-

point temperature is respectively set to T sp
n and T

sp
n , ignoring

the price value. For price values, λsat
1,n ≤ λ(t) ≤ λsat

2,n, setpoint
temperature T sp

n (t) is a piecewise linear function with two line
segments. Variables K1,n and K2,n denote the slopes of each
line segment in the setpoint-price characteristic of prosumer n.
For the price vector, λ, we define vector δ = (δ(t), t ∈ T ),
where parameter δ(t) = 1 if λ(t) > λavg and δ(t) = 0 if
λ(t) ≤ λavg. We can express the setpoint-price characteristic
of prosumer n by the following constraints:

T sp
n ≤ T sp

n (t) ≤ T sp
n , (6a)

T sp
n (t) ≥

(
T des
n +K1,n(λ(t)− λavg)

)
(1− δ(t)), (6b)

T sp
n (t)≤

(
T des
n +K2,n(λ(t)−λavg)

)
δ(t)+ T

sp
n (1− δ(t)). (6c)

Note that if prosumer n prefers thermal comfort over cost
reduction of its HVAC system, he would set both values of
T sp

n and T
sp
n to the desirable temperature, T des

n . Accordingly,
the setpoint temperature would only be set to the desirable
temperature, T sp

n (t) = T des
n , for all time slots t and irrespective

of the day-ahead electricity price.

B. Household Appliances Model

We assume that prosumer n has the set of electrical appli-
ances An. Appliance a∈An becomes awake at time slot tsa,n,
when it is ready to be operated. Let Aawk

n (t) ⊆ An denote the
set of awake appliances in household n at time slot t. ECC n is
responsible of scheduling the operation of awake appliances.

Now we describe the operation of prosumer appliances. We
define the appliance specifications as follows:
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Definition 1 (Appliance Specifications): The specifications for
the awake appliance a in household n is defined by vector
sa,n =(Da,n, p a,n

, pa,n, Ea,n), where Da,n denotes the total
number of time slots it takes for appliance a to finish its current
task, parameters p

a,n
and pa,n denote the lower and upper

limits for power consumption, and parameter Ea,n denotes
the total energy required to complete the current task.

The appliance specifications inform ECC about the task of
that appliance based on the following assumption:
Assumption 2: The appliance specifications, sa,n, for appli-
ance a are revealed to ECC n when the appliance awakes. We
consider the deadline tea,n for awake appliance a to finish its
task. This parameter is revealed to ECC when the appliance
wakes up. In current time slot t, we define variables da,n(t)
and ea,n(t) to denote the remaining time slots and required
energy for appliance a to complete its current task before
the deadline tea,n. Note that we have da,n(t) = Da,n and
ea,n(t)=Ea,n when appliance a becomes awake at time slot
t = tsa,n and update da,n(t) and ea,n(t) at tsa,n< t ≤ tea,n as
da,n(t)=da,n(t− 1)− va,n(t− 1) and ea,n(t)=ea,n(t− 1)−
pa,n(t−1), respectively. We have the following constraints for
all awake appliances a∈Aawk

n at time slot t∑te
a,n

t pa,n(t)∆t = ea,n(t), (7a)∑te
a,n

t va,n(t) = da,n(t), (7b)
p
a,n
va,n(t) ≤ pa,n(t) ≤ pa,nva,n(t), (7c)

where variable pa,n(t) denotes the power consumption of
appliance a at time slot t. Binary variable va,n(t) indicates
the operation state of appliance a, i.e., va,n(t) = 1 whenever
the appliance is operating and va,n(t) = 0, otherwise. Thus,
equalities (7a) and (7b) guarantee that the assigned task of
appliance a is finished within the time interval [ t, tea,n] and
during da,n(t) time slots.

III. PROBLEM FORMULATION

In this section, we discuss the day-ahead HVAC scheduling
problem and the real-time generation-load balancing scheme.
The former derives the optimal setpoint-price characteristic
slopes and the operation schedule of HVAC system n. The
latter schedules awake appliances of prosumer n in an online
manner and further studies prosumer’s decision-making in the
TE market, considering its willingness to market participation.

A. HVAC Scheduling Problem
ECC n aims to schedule its HVAC system in order to

minimize the energy cost, c hvac
n (t) = p hvac,n(t)λ(t)∆t for

t ∈ T . Considering that prosumer n usually decides the
thermal preferences, τhvac,n, on a daily basis, ECC n schedules
its HVAC system in day-ahead. The energy cost, c hvac

n (t),
depends on the temperature setpoint, T sp

n (t). In particular,
according to the setpoint-price characteristic introduced in (6),
slopes K1,n and K2,n determine the temperature setpoint, and
thus the energy cost. We obtain the optimal values of K1,n and
K2,n by solving the HVAC scheduling problem. The setpoint
temperature deviation from its desirable value, |T sp

n (t)−T des
n |,

reflects the thermal discomfort due to setpoint changes at time

slot t. Hence, variables K1,n and K2,n can be used to evaluate
the thermal discomfort of prosumer n.

Based on (6b), variable T sp
n (t) can take values greater than

the linear function T des
n +K1,n(λ(t) − λavg), when λ(t) ∈

[λsat
1,n, λ

avg). The same applies to (6c). To ensure that the
values of T sp

n (t) are determined based on the line segments of
the setpoint-price characteristic when λ(t) ∈ [λsat

1,n, λ
sat
2,n], we

consider the penalty term c pen
1,n (t) for the HVAC scheduling

problem:

c pen
1,n (t)=w1,n(T sp

n (t)−(T des
n +K1,n(λ(t)−λavg))(1−δ(t)))

+ w2,n((T des
n +K2,n(λ(t)−λavg)−T sp

n (t)) δ(t)),

where w1,n and w2,n are positive constants. Let Γ1
n =

(qn(t), p hvac,n(t), T in
n (t), T ac

n (t), T sp
n (t), ∆Tn(t), K1,n, K2,n,

t ∈ T ) and Λ1
n = (v hvac,n(t), t ∈ T ) denote the decision

vectors corresponding to the continuous and binary variables
of the HVAC scheduling problem, respectively. ECC n solves
the mixed integer linear programming (MILP) optimization
problem P1,n to operate its HVAC:

P1,n : minimize
Γ1

n,Λ
1
n

∑
t∈T (c hvac

n (t) + c pen
1,n (t))

subject to constraints (1)−(6).

B. Generation-Load Balancing Scheme

In real-time, each ECC n ∈N receives information about
uncertain parameters and accordingly schedules its awake
appliances to minimize its real-time generation-load mismatch,
where the RHO method is deployed to manage the uncertainty
regarding future time slots. Subsequently, ECC n informs the
MGO of its real-time net load. If the microgrid faces power
shortage in real-time, MGO would launch a pay-as-MCP TE
market, where willing prosumers compete to win the market
by decreasing power consumption of their HVACs. A non-
cooperative game is considered to determine the strategy of
each market participating prosumer in the TE market.

1) Online Scheduling Problem: ECC n schedules its
awake appliances at each time slot t in order to minimize the
trading cost of its real-time net load, Lrt

n(t). We assume that
ECC n observes the actual amount of renewable generation
gn(t) at the beginning of the current time slot t. We define
the real-time net load of prosumer n at time slot t as

Lrt
n(t) = phvac,n(t) +

∑
a∈Aawk

n (t)

pa,n(t)−
(
Lda
n (t) + gn(t)

)
, (8)

where Lda
n (t) denotes the day-ahead purchased power of

household n for time slot t. Prosumer n primarily exploits its
day-ahead purchased power Lda

n (t) and renewable generation
gn(t) to supply its load at time slot t. We obtain the power
shortage of prosumer n at current time slot t as

Lstg
n (t) = max{0, Lrt

n(t)},

which can be expressed by the following constraints:

Lrt
n(t) ≤ Lstg

n (t), (9a)
0 ≤ Lstg

n (t). (9b)

Moreover, the excess power of prosumer n at the current
time slot t, can be expressed as
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Lexs
n (t) = Lstg

n (t)− Lrt
n(t). (10)

At time slot t, prosumer n would purchase the power shortage
Lstg
n (t) or sell the excess power Lexs

n (t) to the DNO with the
real-time prices γb(t) and γs(t), respectively. We define the
real-time energy cost of prosumer n at time slot t as

crt
n(t) =

(
γb(t)Lstg

n (t)− γs(t)Lexs
n (t)

)
∆t.

The real-time energy cost, crt
n(t), reflects the trading cost with

the DNO and accordingly, comprises the procurement cost of
power shortage, Lstg

n (t), from real-time market and the profit
that prosumer n gains through selling excess power, Lexs

n (t).
Considering the inter-temporal operational constraint (7),

ECC n should schedule awake appliances of time slot t
for the upcoming time slots {t + 1, ..., T} as well, while
it has incomplete information about the future amounts of
renewable generation, electricity prices, and awake appliances.
We formulate the appliance scheduling problem using the
RHO method which considers the decision-making horizon,
τ(t)={t, ..., T}, for time slot t to decide the operation sched-
ule of the awake appliances [26]. Accordingly, the appliance
scheduling problem is repeatedly solved in each time slot
t∈T , for the entire decision-making horizon of τ(t). To ensure
that the priorly purchased power Lda

n (t) is initially exploited
in the future time slots as well as the current time slot t, we
consider the penalty term cpen

2,n(t) in the objective function of
the appliance scheduling problem of prosumer n as

cpen
2,n(t) =

∑T
t′=t+1(

∑
a∈Aawk

n (t′) pa,n(t′)− Lda
n (t′))λ(t′).

We define vectors Λ2
n(t)=(va,n(t), a∈Aawk

n (t)) and Γ2
n(t)=

(pa,n(t), ea,n(t), da,n(t), Lrt
n(t), Lstg

n (t), Lexs
n (t), a ∈ Aawk

n (t))
for the binary and continuous variables, respectively. ECC n
solves the following MILP problem to schedule the awake
appliances of the current time slot t:

P2,n(t) : minimize
Γ2

n(t),Λ
2
n(t)

crt
n(t)+cpen

2,n(t)

subject to constraints (7)−(10).

By solving P2,n(t), ECC n carries out the operational sched-
ule of awake appliances for the current and future time slots.
Considering the uncertainties regarding future time slots, it
only implements the decisions made for the current time slot.

2) TE Market Clearing Problem: MGO initially broad-
casts the amount of power shortage, Lstg

MG(t) = [Lrt
MG(t)]+

where Lrt
MG(t) =

∑
n∈N L

rt
n(t), and the real-time electricity

price γb(t) to all ECCs n ∈ N . Based on γb(t), ECC n
decides whether to participate in the TE market or not. Let
I(t) ⊆ N denote the set of NP(t) participating prosumers
in the TE market at time slot t as I(t) = {1, ..., NP(t)}.
ECCs of participating prosumers n ∈ I(t) send their offers
on(t)=(πn(t), ρn(t)) to the MGO, where πn(t) is the offered
price for curtailing one unit of its HVAC power consumption
and ρn(t) denotes the amount of power to be curtailed.
• Market Mechanism: We consider the pay-as-MCP market

mechanism, where market winners receive payments based
on the MCP [16]. We assume that DNO takes part in the
TE market as well as prosumers n ∈ I(t) to ensure that
the power shortage Lstg

MG(t) is addressed. Accordingly, there

are Np(t) + 1 participants in the TE market at time slot t.
Moreover, participation of DNO prevents the MCP to surpass
the real-time electricity price γb(t). After receiving offers from
ECCs of all participating prosumers n ∈ I(t), MGO sorts
offers in ascending order based on the price components. If∑

n∈I(t) ρn(t) ≥ Lstg
MG(t), then participants compete with each

other to win the TE market and to maximize their utility. In
this case, the smallest group of participants with the lowest
price offers whose aggregate power offers can address the
shortage are announced as winners and the MCP would be
the greatest advertised price among winners. Otherwise, when∑

n∈I(t) ρn(t) < Lstg
MG(t), a part of Lstg

MG(t) should be supplied
by the DNO with the real-time price, γb(t). In this case, all
participants are announced as winners and the MCP is γb(t).
• Prosumer’s Competition Game: According to the market

mechanism, offer of each prosumer n∈I(t) affects the MCP,
thereby the utility of all participants. Hence, we capture the
interaction among participants as a non-cooperative game and
refer to market participating prosumers n∈I(t) as players. Let
O−n(t) = (oj(t), j ∈ I−n(t)) denote offers of competitors of
player n. We obtain the Nash equilibrium of the game through
finding the best response of each player n to O−n(t).
• Player’s Feasible Strategy Set: As mentioned, the tuple

on(t)=(πn(t), ρn(t)) is the strategy of player n ∈ I(t). The
offered price πn(t) is associated with the discomfort that
prosumer n experiences by decreasing the operation of its
HVAC. We employ the setpoint-price characteristic described
in (6) to analyze the resulting thermal discomfort. Hence, the
discomfort that prosumer n incurs at T sp

n (t) can be stated as

π n(t) = (T sp
n (t)− T des

n )/K2,n, (11)

where π n(t) is the discomfort coefficient. Recall that char-
acteristic slopes K1,n and K2,n are the amounts of setpoint
temperature deviation from its desirable amount, T des

n , that
lead to one unit of discomfort cost. Accordingly, π n(t) can
describe the thermal discomfort when there exists a setpoint
temperature change of T sp

n (t)− T des
n .

We assume that prosumer n curtails its HVAC power
consumption merely when T sp

n (t) > T des
n . Based on the TE

market mechanism, MCP is less than or equal to γb(t). Since
player n receives payments based on MCP, we assume the
maximum price that player n can offer is γb(t). Thus, in case
that the discomfort coefficient, πn(t), exceeds the electricity
price γb(t), player n would not take part in the TE market
rationally. We describe the above-mentioned constraint for the
price offer πn(t) of prosumer n as

πn(t) ≤ πn(t) ≤ γb(t). (12)

Prosumers who have scheduled their HVACs to operate at
time slot t, can participate in the TE market. Thus, we have
the following constraint for power offer ρn(t) of prosumer n

0 ≤ ρn(t) ≤ phvac,n(t)− p
hvac,n

, (13)

where p
hvac,n

= q
n
/µn corresponds to the minimum power

consumption of the HVAC system for prosumer n.
• Player’s Utility: Player n aims to maximize its utility

in the TE market. Accordingly, offer on(t) should primarily
place player n among market winners. Otherwise, player n
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would gain zero utility. Hence, πn(t) should be less than
or equal to the MCP. Note that the offers from all market
participating prosumers n ∈ I(t), along with the DNO can
affect the MCP. Accordingly, to derive the utility of player n,
the MCP should be determined based on the offer components
of player n, other participating prosuemrs, j∈I−n(t), and the
real-time electricity price announced by the DNO. Player n
initially examines prices advertised by others to determine its
rank among players and further, decides πn(t) and ρn(t) in
order to be in the smallest group of players that can supply
the power shortage. Player n compares its price, πn(t), with
prices of other players j∈I−n(t) as

M(zj(t)−1)≤πn(t)−πj(t)≤Mzj(t). (14)

where M is a large positive constant and zj(t) is a binary
variable that equates 1 when the offered price of competitor j,
πj(t), is less than or equal to πn(t) and equates 0 when πj(t) is
greater than or equal to πn(t). We include ω1

∑
j∈I−n(t)

zj(t)
with positive weight ω1 in the objective function of player n
to ensure the occurrence of πn(t)=πj(t) is only indicated by
zj(t) = 1. To find the MCP, first we determine whether the
aggregate amount of power offers with a price less than or
equal to the offered price of prosumer n ∈ I(t) can meet the
shortage or not as:

Sn(t) =
∑

j∈I−n(t)
zj(t)ρj(t) + ρn(t), (15)

where Sn(t) is the aggregate amount of power offers an-
nounced by players with a price offer less than or equal to
πn(t). Considering that O−n(t) is sorted in ascending order,
we calculate a similar value for each competitor j ∈ I−n(t)
as:

Sj(t) =
∑j

j′=1 ρj′(t) + (1−zj(t))ρn(t), (16)

where Sj(t) is the aggregate amount of power offers with a
price less than or equal to the offered price of competitor
j ∈ I−n(t). Next, we determine whether Sn(t) and Sj(t)
can respectively meet the power shortage Lstg

MG(t) through the
following constraints:

M(xn(t)−1)≤Sn(t)−Lstg
MG(t)≤Mxn(t), (17a)

M(xj(t)−1)≤Sj(t)−Lstg
MG(t)≤Mxj(t) ∀j∈I−n(t), (17b)

where binary variables xn(t) and xj(t) are equal to 1 when
Sn(t) and Sj(t) can respectively meet the power shortage
Lstg

MG(t) and xn(t) = xj(t) = 0, otherwise. Note that M is
a large positive constant.The MCP is either equal to one of
the price offers advertised by market participating prosumers
n∈I(t) or the real-time electricity price γb(t) offered by the
DNO.We describe the aforementioned through the following

xn(t) +
∑

j∈I−n(t)
xj(t) + x0(t) = 1, (18)

where binary variable x0(t) determines whether MCP is equal
to γb(t), x0(t) = 1, or not, x0(t) = 0. To ensure that
the smallest group of players determine the MCP, we add
penalty term c pen

3,n(t) to the objective function of player n’s
bidding problem. We consider the rank of prices advertised

by participating prosumers n ∈ I(t) as:

rn(t) =
∑

j∈I−n(t)
zj(t), (19)

where rn(t) indicates rank of πn(t) among O−n(t), i.e., the
number of players with a price offer less than or equal to
πn(t). Based on (19), we describe the penalty term c pen

3,n(t) as

c pen
3,n(t)=rn(t)xn(t) +

∑
j∈I−n(t)

jxj(t) + (NP(t)+1)x0(t).

Accordingly, the rank of the real-time price γb(t) is considered
greater than all advertised price offers, i.e., NP(t)+1, to ensure
that power shortage is initially compensated by prosumers and
not the DNO. Now, we define the MCP η(t) as:

η(t) = xn(t)πn(t) +
∑

j∈I−n(t)
xj(t)πj(t) + x0(t)γb(t). (20)

Considering that offers are sorted in ascending order, player
n wins the TE market if its price offer πn(t) is less than or
equal to the MCP η(t).We adopt the binary variable fn(t) to
describe the aforementioned as

−Mfn(t)≤ πn(t)−η(t)≤M(1− fn(t)), (21)

where fn(t)=1 if player n wins the TE market and fn(t)=0,
otherwise. Note that M is a large positive constant.To enforce
fn(t) = 1 when πn(t) = η(t), we add the term ω2fn(t)
with positive weight ω2 to the objective function of player n.
We substitute the multiplication πn(t)ρn(t) with the auxiliary
variable yn(t). Additionally, to define the utility function of
player n we define the auxiliary variable un(t) to describe
η(t)ρn(t) as

un(t) = xn(t)yn(t) + ρn(t)
∑

j∈I−n(t)
xj(t)πj(t)+ (22)

ρn(t)x0(t)γb(t),

where the second and third terms on the right-hand side
represent the impact associated with actions of competitors
j ∈ I−n(t) and the DNO on utility of player n, respectively.
Finally, we define the utility of player n in the TE market as

Un(t) = un(t)fn(t). (23)
• Prosumer’s Best Response: When deciding the offer vec-

tor on(t), prosumer n has to consider its thermal discomfort
due to curtailing ρn(t) units of HVAC power consumption.
We assume that thermal discomfort is a quadratic function
of ρn(t) and approximate it as a piecewise linear function,
c dsc
n (t), with NLn segments as

0 ≤ θh,n(t) ≤ θh,n − θh−1,n, (24a)

θ1,n(t) ≤ θ1,n, (24b)
θNLn,n(t) ≤ ρn(t)− θNLn−1,n, (24c)

c dsc
n (t) =

∑
h∈Hn

θh,n(t)mh,n, (24d)

where h∈Hn denotes each line segment with slope mh,n.
Auxiliary variable θh,n(t) determines power curtailment corre-
sponding to line segment h of prosumer n at time t. Parameter
θh,n describes the maximum amount of power curtailment for
segment h.

ECC n solves problem P3,n(t) to determine its best re-
sponse, on(t). We define Γ3

n(t)=(πn(t), ρn(t), yn(t), Sn(t),
Sj(t), rn(t), η(t), un(t), Un(t), θh,n(t), h ∈ Hn, j ∈ I−n(t))
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Algorithm 1 Balancing Scheme Algorithm at Time Slot t.
1: Set k := 0 and ξ := 10−3.
2: Each ECC n ∈ N schedules its awake appliances a ∈ Aawk

n (t)
by solving P2,n(t) and announces net load Lrt

n(t) to MGO.
3: If Lrt

MG(t) > 0
4: MGO broadcasts Lstg

MG(t) and γb(t) to all ECCs n∈N .
5: Each ECC n ∈ I(t) considers a random O0

−n(t).
6: Repeat
7: Each ECC n∈I(t) determines its best response ok+1

n (t)
8: to Ok

−n(t) by solving P3,n(t) and sends it to MGO.
9: MGO broadcasts Ok+1(t) to all ECCs n ∈ I(t).

10: Each ECC n ∈ I(t) derives its Ok+1
−n (t) from Ok+1(t).

11: k := k + 1.
12: Until for all ECCs n ∈ I(t) : |ok

n(t)− ok−1
n (t)| ≤ ξ.

13: Else
14: MGO sells Lexs

MG(t) to the DNO.
15: End If

and Λ3
n(t)=(zj(t), xj(t), xn(t), x0(t), fn(t), j ∈ I−n(t)) as

the decision vectors for continuous and binary variables of
problem P3,n(t):

P3,n(t) : maximize
Γ3

n(t),Λ
3
n(t)

Un(t) + ω1

∑
j∈I−n(t)

zj(t)

+ω2fn(t)− ω3c
pen
3,n(t)− cdsc

n (t)

subject to constraints (11)−(24).

where ω3 is a positive constant. The non-linearity of some
constrains, e.g., (20), can be addressed by the approach used
in (2) to linearize the production of binary and continuous
variables. Hence, problem P3,n(t) can be regarded as MILP.
• Nash Equilibrium: Finally, we apply an iterative algo-

rithm based on the best response of players to find the
Nash equilibrium of the competition game among TE market
participants as described in Algorithm 1. In the first iteration,
player n ∈ I(t) initializes random offers of its competitors,
O0
−n(t), and determines its best response toward these random

offers by solving P3,n(t). Each player n ∈ I(t) informs the
MGO of its offer, o1n(t). Accordingly, MGO broadcasts the
offer vector O1(t) = (o1n(t), n ∈ I(t)) to all players. In the
next iteration, player n determines its offer considering the
actual offers of its competitors,O1

−n(t). Eventually, TE market
clears in the kth iteration where for all players n∈ I(t), we
have okn(t) = ok−1n (t), i.e., no player achieves more utility by
changing his offer.

Since there are a finite number of players and that con-
straints (12) and (13) bound the strategy profiles to finite
sets, there exists at least one Nash equilibrium for such a
game [27]. To prove the uniqueness of the proposed game,
the best response of players has to be a concave function
[28]. We obtain the best response of each player by solving
problem P3,n(t) and do not derive a closed form best response
function. However, in our simulations, the TE market clearing
game converges to a single Nash equilibrium.

IV. PERFORMANCE EVALUATION

In this section, we initially introduce our simulation setup.
Subsequently, we evaluate performance of the proposed ap-
proaches in our TE framework.
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Fig. 2. Day-ahead and real-time electricity prices over time horizon [29]

TABLE I
HVAC SYSTEM SPECIFICATIONS

µn q
n

qn ṁn Rn cn
(kW) (kW) (kg/s) (◦C/kW) (kJ/kg◦C)

2 1.5 6 3.352 5 1

A. Simulation Setup

We consider a microgrid with N = 150 prosumers and a
one-day time horizon which we divide into T=96 time slots.
Each prosumer is equipped with an HVAC system and 15
appliances. For all appliances, p

a,n
and pa,n are set to a

nominal value as described in [30]. We consider an interval for
the wake-up time of each appliance and uniformly choose tsa,n,
at random from this interval. We similarly choose the deadline
tea,n. To make the simulation results more practical, we con-
sider three types of prosumers in the microgrid; flexible, semi-
flexible, and inflexible, which differ in the interval for the task
deadlines. A flexible prosumer has the widest time window to
schedule its appliances. An inflexible prosumer operates all
appliances without delay. For simplicity, we assume that there
are 50 prosumers of each type. The results represented in this
section are the average of multiple simulations, considering
various wake-up and deadline times. We assume the RER of
each prosumer to be a PV panel [29]. Fig. 2 indicates the
electricity prices in day-ahead and real-time markets, λ(t) and
γb(t), over the time horizon [29]. Simulations are performed
using the MOSEK solver by CVX MATLAB on a PC with
Intel Core i5 3337U CPU 1.8 GHz processor.

B. HVAC Scheduling

To assess performance of the proposed HVAC scheduling
method, we assume the same ambient temperature, T out(t), for
all prosumers [31]. Table I describes the HVAC specifications
considered in our simulations. The value of the indoor air
temperature T in

n (t) at the beginning of the first time slot is
uniformly chosen at random from the interval [25◦C, 28◦C]
for all prosumers n∈N .

Fig. 3 depicts the setpoint-price characteristic of flexible
prosumers where parameters T sp

n , T des
n , and T

sp
n , are uniformly

chosen at random from intervals [19.5◦C, 20.5◦C], [23◦C,
25◦C] and [27.5◦C, 28.5◦C], respectively. Despite having
identical HVAC systems, different thermal preferences lead to
different setpoint-price characteristics. As in Fig. 3, for some
flexible prosumers K1,n=0. That is, these prosumers prefer
thermal comfort over cost savings.
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Fig. 3. Setpoint-price characteristic of flexible prosumers.

We use the scenario where the setpoint temperature, T sp
n (t),

is set to its desirable amount, T des
n , irrespective of the day-

ahead price, as a benchmark for comparison. Accordingly, the
proposed method cuts the energy cost of HVAC systems for
flexible, semi-flexible, and inflexible prosumers by 10.42%,
16.31%, and 25.62% on average, respectively.

C. Online Appliance Scheduling

We discuss performance of the proposed online appliance
scheduling method for the set of appliances described in Table
II. Considering our assumption that prosumers purchase an
approximate amount of their future net load from the day-
ahead market, we primarily simulate the load forecasts of
prosumers using a sample-based stochastic optimization ap-
proach introduced in [32]. We adopt the conditional value-at-
risk (CVaR) as an index to measure the risk associated with the
trading cost in the real-time market that the forecasted value
of day-ahead demand will impose. We assume all prosumers
to be risk-averse with the confidence level of 0.99. We use
prosumers’ net loads of the previous 100 days as samples to
forecast the day-ahead demand.

Fig. 4 (a) compares the day-ahead demand forecasts of
a flexible prosumer when appliances were scheduled based
on our online approach during the past 100 days with the
case where appliances were not scheduled. Accordingly, for
the period of 12 am to 6 am, prosumer forecasts relatively
larger amount of demand when its appliances were scheduled
in the previous days. This occurs because appliances were
operated mainly in this period during the past days due to
lower electricity prices. Contrarily, forecasts based on the
unscheduled net loads of prosumers, are irrespective of the
price as appliances were operated whenever they became
awake in the previous days.

Fig. 4 (b) compares the real-time net load of the flexible
prosumer when awake appliances are scheduled based on
our method versus the benchmark scenario where appliances
are operated without delay when they become awake. The
proposed scheduling method shifts the operation of awake
appliances to the period of 12 am to 6 am, when the real-time
price is low. The significant amount of PV generation during
6 am to 7 pm results in a negative net load, which is sold
to the real-time market. Table III and Table IV compare the
average amounts of power traded in day-ahead and real-time
markets considering the proposed scheduling method and the
benchmark scenario for flexible and semi-flexible prosumers,
respectively. To comprehensively evaluate the economic ef-
ficiency of the online scheduling method, we compare the

TABLE II
APPLIANCE SPECIFICATIONS [30]

Appliance Da,n p
a,n

= pa,n Ea,n

Name (Number of (kW) (kWh)
time slots)

Electric stove 12 1.5 4.5
Dryer 8 0.5 1

Vaccume cleaner 8 1.5 3
Refrigerator 80 0.125 2.5
Dish washer 8 1 2

Washing machine 12 0.7 2.1
Water heater 8 1 2
Pool pump 8 2 4

Electric vehicle 16 2.5 10
Steam iron 8 1 2
Hair dryer 4 1 1

TV 16 0.25 1
PC 24 0.25 1.5

Lighting 24 0.5 3
Other 16 1.5 6
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Fig. 4. (a) Day ahead load forecast; (b) real-time net load of a flexible
prosumer using the proposed scheduling method and the benchmark scenario.

total cost, c total
n (t) = λ(t)L da

n (t)∆t + c rt
n (t), which includes

the power procurement cost from the day-ahead market and
the real-time energy cost of prosumers. The proposed online
scheduling method benefits prosumers by cutting the total cost
by 35.64% and 27.96% on average for flexible and semi-
flexible prosumers, respectively.

D. TE Market

To assess participation of HVAC systems in the TE market,
we study the behavior of a group of Np =15 prosumers. Fig. 5
shows the ratio of the total amount of power cleared by market
participants to the power shortage of the microgrid at each time
slot. Participation of HVAC systems in the TE market at each
time slot depends on parameters related to HVAC systems such
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TABLE III
AVERAGE AMOUNTS OF POWER TRADED BY FLEXIBLE PROSUMERS

Approach Day-Ahead Real-time Real-time
Power Power Power

Purchased Purchased Sold
(kW) (kW) (kW)

Scheduled 34.15 28.44 11.37
Without Scheduling 29.9 26.97 5.62

TABLE IV
AVERAGE AMOUNTS OF POWER TRADED BY SEMI-FLEXIBLE PROSUMERS

Approach Day-Ahead Real-time Real-time
Power Power Power

Purchased Purchased Sold
(kW) (kW) (kW)

Scheduled 29.63 24.50 10.87
Without Scheduling 26.23 23.41 7.21

as the operation state and prosumer’s discomfort cost as well
as other factors including the amount of mismatch and the real-
time electricity price. For time slots around 8 am, the amount
of power mismatch is relatively small due to the PV generation
and the fewer appliances that need to be operated. Hence, 26%
to 33% of HVACs could manage more than 95% of the real-
time power mismatch in the TE market. From 5:30 pm to 7
pm, 93% to 100% of HVAC systems were able to address 28%
to 68% of the mismatch. For these time slots the amount of
real-time mismatch is relatively larger since more appliances
are scheduled to be operated. For time slots between 9 pm
and 12 am where the TE market was launched, an HVAC
proportion of 53% to 60% could mitigate 17% to 41% of the
microgrid’s mismatch. The engagement of HVAC systems in
this period relies on the availability of these systems.

It is worth noting that the total capacity of available power
offered by HVAC systems in the TE market relies on the
thermal preferences of prosumers. Setpoint-price characteristic
slopes confine the price and power strategies of market players
through constraints (13) and (14). Additionally, the number of
players at each time slot is determined based on the discomfort
coefficient πn(t). During 8:30 am to 4:30 pm, PV generation
is sufficient to meet the demand; thus the TE market is not
launched. In other periods when there is no participation, the
discomfort cost of participants is greater than the real-time
price. Thus, no prosumer is willing to alter power consumption
of its HVAC and hence, does not take part in the TE market.

Our simulation results demonstrate that the MCP in the TE
market is equal to the real-time electricity price, γb(t). In most
time slots when the TE market is launched, the total power
cleared by the market participants cannot fully meet the mi-
crogrid’s net load; hence power shortage is partially supplied
by the DNO. In other time slots, participants cooperate to keep
the MCP close to the real-time price, thereby maximizing their
utility, as the maximum power offer of each participant cannot
cover the power shortage. In case that the maximum power
offer of each HVAC is comparable to the microgrid’s power
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Fig. 6. Average running time of the TE market clearing process

shortage, participants compete to compensate a greater amount
of power shortage and their attempt may result in an MCP
less than the real-time price. Note that the TE market offers
a platform to address the power mismatch of the microgrid in
an independent manner and by using the flexibility of local
HVAC systems. While launching the proposed market allows
for a more reliable operation of the microgrid, it reduces the
need for spinning reserve capacities as well. Thus, even in
scenarios where the MCP is close to the electricity price, TE
market offers mutual benefits to MGO and the system operator.
In our simulations, the TE market clearing game converges to
the Nash equilibrium in a few number of iterations. Fig. 6
shows the running time of the TE market clearing process,
which is the time it takes to reach the Nash equilibrium, per
iteration per player. Accordingly, the proposed TE market is
suitable for implementation in practice. Note that the values
of HVAC power consumption, real-time net load of prosumers
n ∈ N , and real-time net load of the microgrid used in our
simulations are obtained by solving scheduling problems P1,n

and P2,n(t). Accordingly, performance of our approach is not
limited to certain predetermined conditions of the microgrid.

V. CONCLUSION

In this paper, we proposed a TE framework to address the
real-time generation-load mismatch of a residential microgrid
where prosumers primarily schedule their awake appliances
in an online manner and further participate in an market
to compensate the remaining real-time power shortage using
their HVAC systems. We proposed a decentralized approach
for scheduling the awake appliances of each prosumer and
tackled the incomplete information of prosumers about uncer-
tain parameters through the RHO method. We evaluated the
willingness of prosumers for participating in the TE market by
proposing a price-based control method for their HVAC sys-
tems. We further captured the prosumers interaction in the TE
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market as a game and obtained the Nash equilibrium of such a
game. Our simulations illustrate that the proposed framework
has reduced the energy cost of HVACs as well as the total
power trading cost in real-time electricity markets, while pre-
serving prosumers’ privacy. The TE market has shown a great
potential for supplying the microgrid during power shortages
as the market clearing game properly converges to its Nash
equilibrium with the least information exchange. For future
work, we plan to pursue research on TE frameworks in the
following directions. As presence of energy storage systems
might change methods of addressing the real-time power
mismatch, we plan to investigate the role of these systems
in balancing supply and demand. Furthermore, we plan to
examine the potential of additional thermal storage methods
such as ice storage, in other areas such as commercial sector,
under the context of TE. Finally, we plan to study the required
considerations of implementing TE frameworks, which would
further facilitate their accommodation in distribution systems.
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