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ABSTRACT In the smart grid paradigm, residential consumers should participate actively in the energy
exchange mechanisms by adjusting their consumption and generation. To this end, a proper home energy
management system (HEMS), in addition to achieving a high level of comfort for the consumers, should
handle the practical difficulties due to the uncertainty and technical limits. With this aim, in this paper,
a new HEMS is proposed to carry out day-ahead management and real-time regulation. While an optimal
scheduling solution based on some forecasted values of uncertain parameters is achieved for day ahead
management, real-time regulation is accomplished by an adaptive neuro-fuzzy inference system, which can
regulate the gaps between the forecasted and real values. Investigated case studies indicate that the proposed
HEMS can find an optimal operating scenario with an acceptable success rate for real-time regulation.

INDEX TERMS HEMS, day-ahead scheduling, real-time regulation, ANFIS, optimization.

NOMENCLATURE
Indices
i Controllable appliances index (i =1, 2, . . . ,

I )
t Time index (t =1, 2, . . . , T )
adjust Superscript to discern variables and para-

meters related to the real-time session
Parameters
λt Given electricity tariff by the aggregator
Rth Thermal resistance of the building shell
Cth Thermal conductance of the building shell
vAppi Inelasticity parameter of demand
EApp,inii,t Initial consumption of appliance i at time t

The associate editor coordinating the review of this manuscript and
approving it for publication was Guangya Yang.

ENomi Nominated consumption of electrical
appliance i

Ewindt Generation of wind unit
EPVt Generation of PV unit
ECriticalt Consumption of must-run services (critical

loads)
θ indes Desired indoor temperature
EmaxHVAC Maximum energy consumption of HVAC
EHVAC,curtailt Curtailed energy consumption of HVAC
Emaxswh Maximum energy consumption of storage

water heater
Umax
swh Total consumption of storage water heater

Eswh,curtailt Curtailed energy consumption of storage
water heater

Emrs,predt Forecasted energy consumption of must-
run-services
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θ
out,pred
t Forecasted outdoor temperature
Cd Battery cost
Cbattery Capital cost of the battery
LET Battery lifetime throughput energy
CapB Battery capacity
ηcharge Charging efficiency of the battery
ηdischarge Discharging efficiency of the battery
SOCmax Maximum state of charge of the battery
SOCmin Minimum state of charge of the battery
rcharge,max Maximum charging rate limit of the bat-

tery
rdischarge,max Maximum discharging rate limit of the

battery
Emax,gridt Limit of the injected energy from the grid
EG2C,desiredt Desired consumption of the customer

that the aggregator sends to the
customer

Variables
CostCustomer Customer’s billing cost
EG2Ct Energy that the customer buys from the

grid at time t
Vt Dissatisfaction cost that is caused by the

deviation from the reference consumption
CostDegrt Degradation cost of the battery due to

operation in discharge mode
sAppi,t A binary variable that denotes the state of

the electrical appliance i at time t
EAppi,t Modified consumption of appliance at the

time after participating in DR program
(for continuously controllable appliances)

Edischt Discharged energy of the battery to be
injected back to the customer

Echt Amount of energy that is charged to the
battery

EControlt Amount of controllable load (continu-
ously controllable and shiftable loads)
with participating in DR programs

EHVAC,rtt Retained energy consumption of HVAC
Eswh,rtt Retained energy consumption of storage

water heater
Emrs,rtt Retained energy consumption of must-

run-services
χBt , γ

B
t Binary variables to guarantee that the bat-

tery cannot be charged and discharged
simultaneously.

SOCt State of charge of the battery at time t
rcharget Charging rate of the battery at time t
rdischarget Discharging rate of the battery at time t
ϕt Acceptable deviation for following the

desired pattern by the customers
ε Amount of imbalance between the fore-

casted and actual values
θ int Initial indoor temperature at time t

I. INTRODUCTION
A. AIMS AND MOTIVATION
The smart grid is an intelligent grid that features smart
metering technologies, modern power converters, rapid com-
munication infrastructure, automation, and consumer par-
ticipation [1]. These technologies are helpful to fulfill
the efficient and sustainable operation of power systems
and to meet some of their long-term challenges [2], [3].
However, in addition to the opportunities, the smart grid
presents new challenges in the field of electrical sciences.
Development of home area networks for the intelligent
operation of residential end-users is one of the challenges.
The energy consumption of the residential sector accounts
for around 30–40% of the total energy use all over the
world [4]. The consumption is expected to get higher shortly
due to population growth and housing expansion along with
the deployment of smart home appliances. Furthermore,
to conform with the policies of the smart grid paradigm,
the researchers tend to change the role of the end-user in the
chain of the electric energy system from a passive consumer
to an active market player [5]. To this purpose, end-users
become prosumers and should participate more actively in
energy exchange mechanisms by adjusting their consumption
patterns and by managing their own available generation
devices.

B. LITERATURE REVIEW AND BACKGROUND
Developing an optimal model of a home energy management
system (HEMS) has recently received many attentions in
the literature. It is evident from past studies that consumers
are interested in saving money through time-of-use pricing
and price signals [6]. In response to this attention, demand
response (DR) became a real option. DR is an opportunity for
consumers to play a crucial role in the operation of the electric
grid by reducing or shifting their electricity usage during the
required periods in response to time-based tariffs or other
forms of financial incentives. In [3], real-time scheduling of
residential appliances in the HEMS is discussed. The con-
ditional value-at-risk is utilized to make a trade-off between
the expected costs and the risk that the system faces the
uncertainties of the local generations and other factors. In [7],
a customer solely participates in the DR event by tracking a
demand curtailment request and duration. In [8], an incentive-
based consumption management system is aiming to achieve
a trade-off between minimizing the payment and the waiting
time for the operation of each household appliance based on
the users’ needs. In [9], a HEMS is modeled as an event-
driven binary linear programming problem. To consider the
dynamics of the consumption for a household, the optimiza-
tion process is executed each time when DR messages are
received. In [10] and [11], a smart home is managed using an
optimization method that considers dynamic prices. In [12],
a household load profile under variable prices is investigated
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by considering the existence of smart appliances and real-
time electricity prices.

In [13], a residential energy management model is pro-
posed to schedule the local generations solely. In [14]–[17],
small-scale renewable generations’ management is consid-
ered alongside scheduling of home appliances in the HEMS
problem. These papers study the energy scheduling of smart
houses, which are equipped with a solar panel. In [18],
an energy management system optimizes energy scheduling
in a residential smart microgrid considering energy consump-
tion cost and user’s comfort preferences. In [19], a stochastic
dynamic programming problem is formulated to optimize
the power allocation among an electrical vehicle (EV) bat-
tery, home power demand, and the utility grid. The strategy,
mainly focusing on EV, incorporates probability distributions
of trip time and trip length. In this study, the uncertainties are
described by scenarios generation. In [5], a stochastic model
of a HEMS by considering uncertainties of EV availability
and small-scale renewable energy generation is proposed.
Different DR programs are simulated, and the results from
the point of customer’s cost and inhabitants’ satisfaction are
analyzed. In [20], a multi-agent control structure is proposed
for coordinatedmanagement of energy and comfort in an inte-
grated building and microgrid system. A deep-learning-based
strategy for real-time management of energy storages (ESs)
is adopted to mitigate the effects of uncertain parameters on
the system operation. A distributed framework for HEMS
based on cost minimization is proposed in [21]. In [22], a
home management system is developed on a multi-agent sys-
tem platform in which the communications and interactions
among agents were implemented based on IoT principles.
In [23], a management system based on the Internet of Things
(IoT) is proposed to monitor and control devices remotely
and generate online bill via a mobile application. In [24],
ignoring the intermittent behavior of renewable generations,
a metaheuristic based model is proposed to manage an IoT
enabled smart home.

In [25], an intelligent fuzzy-based management system
is presented to find the best energy-efficiency scenario in
smart home applications. In this study, an associative-neural-
network-based model combined with fuzzy rules to make an
adaptive neuro-fuzzy inference system (ANFIS). It is shown
that ANFIS can be a convenient solution for a home energy
management problem.

C. CONTRIBUTIONS
Reviewing the literature shows that a considerable share of
the studies has provided impressive models for smart HEMS.
However, this appraisal indeed reveals the need for a model to
tackle the deficiencies of previous studies. In sum, ignoring
local generations, lack of efficient operating strategies against
uncertain parameters, neglecting user comfort, considering
homogeneous assumption for all appliances, controlling a
limited number of devices and the complexity of the con-
trol systems are the main defects that can be listed for the
researches mentioned above. The scope of this work is to

propose amodel of a HEMSwhich can address these issues as
much as possible. Accordingly, the intended model is aiming
to jointly schedule various household appliances, renewable
energy resources, and bidirectional operation of ES under
DR strategies. Besides, the model should be able to track the
aggregator demand control request for pre-specified hours.
It should contain a proper approach to handle the gap between
forecast and real-time values for uncertainty parameters as
well. Besides, the output of the model should be reliable from
the point of optimality.

Therefore, in this paper, a two-stage model of a HEMS
is proposed. The first stage produces an optimal day-
ahead scheduling solution based on the forecasted values
of uncertain parameters. The second stage, whose core is
an adaptive neuro-fuzzy inference system combined with an
optimization-based training pattern, is able to regulate the
gaps between the forecasted and real values. The key novel
contributions of the method proposed in this paper can be
summarized as follows:

1. proposing a two-stage model of a HEMS considering
optimal day-ahead management and an adaptive real-time
correction mechanism to deal with the forecast errors,

2. incorporating the uncertainties of the distributed renew-
able resources and loads, the aggregator demand control
request, the dissatisfaction cost of inhabitants and the degra-
dation cost of the battery into the scheduling of smart houses,

3. integrating an adaptive neuro-fuzzy inference system
combinedwith an optimization-based training pattern into the
HEMS to provide proper real-time operation under sudden
changes of working conditions due to the presence of uncer-
tain parameters.

D. PAPER ORGANIZATION
The remainder of the paper is organized as follows: in
Section II, the outline of the proposed HEMS paradigm is
presented. The mathematical formulation of the proposed
method is presented in Section III. Section IV contains
numerical studies and discussion. Section V presents the
conclusions of the paper.

II. THE OUTLINE OF THE PROPOSED HOME ENERGY
MANAGEMENT PARADIGM
In this section, the operating strategies and proposed energy
management structure are presented and discussed.

A. REVIEW ON THE OPERATING STRATEGY
Restructuring of the system, modern developments in distri-
bution grids, and the energy market liberalization procedure
resulted in new interaction policies between the system
actors. Considering the definitions available in [26], three
main groups of actors participate in the new operating
paradigm of the energy system; the system operators (includ-
ing the operators of the electricity markets, and the transmis-
sion and distribution systems), the aggregators (legal entities
that hold contracts with system users for the provision of
energy, DR and ancillary services), and the system users,

19616 VOLUME 8, 2020



V. Hosseinnezhad et al.: Optimal Home Energy Management Paradigm With an Adaptive Neuro-Fuzzy Regulation

FIGURE 1. Schematic of the operational architecture.

i.e. producers, consumers and prosumers. To conform to the
requirements of the policies for the new structure, the low
voltage (LV) networks are expected to be updated. In this
work, by adapting the mentioned actors for the LV networks,
a schematic of the operational architecture is considered as
in Fig. 1. Based on this figure, the grid domain is con-
nected to the customer domain through the aggregator agents.
Therefore, all traditional strategies of operation on both sides
should be modified based on this new procedure. As observed
from Fig 1, the essential components in the customer domain,
which should be considered in the operating framework,
are [27]:

- aggregator agent: to establish a connection with the
distribution, operation, market, and service provider
domains of the grid

- local generators: to generate electric energy that can be
either used locally or injected into the grid

- sensors and smart devices: to monitor and control the
electrical appliances

- energy storage systems: to add flexibility in managing
electric resources

- HEMS: to exchanges information with the other ele-
ments of the system andmanages the electrical resources
and loads

To model a new HEMS under the above-mentioned opera-
tional circumstances, the components and their mutual inter-
actions should be incorporated in the proposed management
framework. Therefore, the following assumptions are utilized
in the simulations:

- the entire necessary infrastructures including sensors,
actuators, and communication links have already been
implemented

- based on the contract between the customer and aggre-
gator, there will be specific energy demand set-points
predetermined by the aggregator which must be satisfied
by the customer

It worth mentioning that the method proposed in this paper
is implemented in the case when there is a direct interaction
between a prosumer and an aggregator. However, it can be

FIGURE 2. Schematic of the proposed management framework.

adapted in the case when there is an absence of an aggregator,
and a virtual aggregation environment (VAE) is adopted for
allowing the exchange of information among the prosumers
to provide a service to a Distribution SystemOperator (DSO).
This strategy is adopted in the research project Distributed
management logics and Devices for electricity savings in
active users installations (DEMAND) and described in [28].

B. THE PROPOSED MANAGEMENT FRAMEWORK
The implemented HEMS can optimize joint scheduling of
various household appliances, renewable energy resources
(RES), and energy storages under DR strategies. Besides,
it should fulfill the aggregator requests and satisfy the practi-
cal requirements. To this end, the following two-stage HEMS
is proposed:
Stage 1: By developing a Mixed Integer Linear Program-

ming (MILP) model, the scheduling of different loads and
storage of a typical prosumer are optimized in the day-ahead
session. The objective function considers the initial consump-
tion pattern of the user, the desired form of loads, contract
tariffs, degradation cost of the battery, and discomfort cost of
users. The constraints of critical, continuously controllable,
and shiftable loads are also considered. The production of
RES is regarded as the forecasted values in 24 hours. The out-
put is the 24-hour schedule of each appliance, and charging
and discharging of batteries.
Stage 2: An ANFIS based model manages the battery and

controllable load level in the real-time session. To this end,
at each desired period, the idle-charge-discharge states of the
battery and the controllable loads will be updated due to the
new values (actual) of RES production, or even customers’
behavior. In other words, the fuzzy-based model is going
to cover the uncertainties and keep the scheduled pattern
(the day-ahead session) as much as the capability of the
user’s technologies allows. Fig. 2 depicts the schematic of the
proposed two-stage management framework. As observed,
both the stages mentioned above act sequentially. First, tra-
ditional day-ahead scheduling is solved. The real-time mod-
ule, which includes an adaptive fuzzy controller, balances
the differences between day-ahead forecast values and the
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actual real-time values in the operating phase. As observed,
the proposed HEMS realizes both day-ahead planning and
operating aspects of the system.

III. OPTIMAL HOME ENERGY
MANAGEMENT FORMULATION
Considering the novel process of operation for the HEMS,
a two-session framework is proposed to handle the energy
management process. At an earlier session, day-ahead man-
agement is executed based on the forecasted load pro-
file, Photovoltaic (PV) panels, and wind turbine (WT)
generation profiles. The second session includes a fuzzy-
logic based model that controls the loads and battery in
the real-time mode to satisfy the energy amount sched-
uled during the day-ahead management. The following sub-
sections describe the structure and design of the model
formulation.

A. DAY-AHEAD MANAGEMENT
In general, an algorithm for HEMS solves the optimal oper-
ating schedule of distributed energy resources (DERs) and
home appliances. In this study, wind micro-turbines, PV
units, and batteries are considered as DERs. In order to
find the modified consumption pattern of the customer,
the household appliances are categorized into two groups;
non-controllable (critical) loads, and controllable loads. The
HEMS cannot schedule a non-controllable load such as a
TV or lighting. Controllable loads include appliances of
which the HEMS control the operation. Their operation char-
acteristic classifies controllable loads into continuously con-
trollable loads and shiftable loads. In this study, the HVAC,
storage water heater, and must-run services are set as contin-
uously controllable, shiftable, and critical loads, respectively.
The HEMS manages the controllable (both continuously
controllable and shiftable) appliances as well as the battery
while considering the comfort level of the customer and
the degradation cost of the battery. Besides, it should ful-
fill the requested load pattern determined by the operating
agent.

1) OBJECTIVE FUNCTION
The proposed model is formulated as a MILP opti-
mization problem with the following linear objective
function:

Min
{
CostCustomer

}
=

∑
t

(
EG2Ct λt + Vt + Cost

Degr
t

)
(1)

As described in (1), the objective function consists of
energy cost, dissatisfaction cost of the user, and degradation
cost of the battery. In (1), Vt denotes the dissatisfaction cost
caused by the deviation from the reference consumption and
is defined by (2). Based on (2), if the customer changes
his load pattern, his comfort decreases. By using (2), a cost
is assigned to the decrease of comfort and defined as the

dissatisfaction cost function.

Vt =
∑
i

vAppi

(
sAppi,t E

App
i,t − E

App,ini
i,t

)
∀t (2)

EAppi,t = ENomi ,

if appliance is not continuously controllable

0 ≤ EAppi,t ≤ E
Nom
i ,

if appliance is continuously controllable

(3)

Based on (2), if the consumption of appliance i at time t
changes fromEApp,inii,t to sAppi,t E

App
i,t , a dissatisfaction cost equal

to vAppi

(
sAppi,t E

App
i,t − E

App,ini
i,t

)
is applied to the prosumer.

As it can be seen from (3), for continuously controllable
appliances, EAppi,t is considered a variable between zero and
the nominated consumption of that appliance, while for the
appliances that are not continuously controllable, EAppi,t is
regarded as a parameter equals to ENomi . Since the differential
dissatisfaction of a customer increases by getting distance
from the controllable reference load, Vt is considered as
a convex function [29]. A higher value of the inelasticity
parameter vAppi indicates that the operation of the appliance
i at the initial time (i.e., the most convenient time) is more
important for the consumer. It means that devices with higher
vAppi have a higher priority for the customer, therefore chang-
ing the operation time of these appliances are more costly.
It is noteworthy that the user’s discomfort can be quantified
based on some surveys and questionnaire from the customer.
The discomfort factors can be different for each customer.
Reference [29] studied the impact of varying discomfort fac-
tors on the cost and operation of the customer. In the current
study, it is assumed that the values of discomfort factors
and inelasticity parameters are available for the under-study
customer.

It should be noted that sAppi,t is employed for all groups of

electrical appliances. For critical loads, sAppi,t is set to the given
value, since the HEMS do not control them. For continuously
controllable loads, the amount of sAppi,t only depends on the
operation of the appliance at that time. It means that for
these loads sAppi,t (at time t) is independent of sAppi,t ′ (at time t′).

While for the shiftable loads, the value of sAppi,t depends on the

amount sAppi,t ′ at other times of the day.
The degradation cost of the battery results from the opera-

tion in discharge mode. The battery degradation cost can be
given as follows:

CostDegrt = Edischt Cd (4)

In (4), Cd is battery cost in e/kWh that is considered as
wear for discharge because of extra cycling of the battery and
can be calculated by (5)

Cd = Cbattery/LET (5)

In (5) Cbattery is the capital cost of the battery in e and
LET is the battery lifetime throughput energy in kWh for the
particular cycling regime.
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2) DECISION VARIABLES
Decision variables include the energy that is discharged from
the battery at time t (Edischt ), the amount of energy that is
charged to the battery (Echt ), and the state (ON/OFF) of each
electrical appliance at time t(sAppi,t ). By considering the con-
tinuously controllable appliances, the energy consumption of
each electrical device at time t (EAppi,t ) is another decision
variable of the model, that makes the model Mixed-Integer
Non-Linear Programming (MINLP). However, disregarding
these continuously controllable appliances, EAppi,t , becomes a
parameter, and the model turns to MILP.

3) SYSTEM AND BATTERY RELATED CONSTRAINTS
The explained optimization problem is solved by considering
the following constraints.

Equation (6) shows that the demand containing the cus-
tomer load (critical and controllable loads) and the charging
requirements of the battery is either supplied through the
grid or by the internal generation of wind and PV, or by the
energy from the battery.

EG2Ct + Ewindt + EPVt + χ
B
t E

disch
t

= ECriticalt + EControlt + γ Bt E
ch
t (6)

In (6), ECriticalt represents the sum of critical loads that
are non-controllable, and subsequently, it does not depend on
the implemented DR strategies. EControlt denotes the amount
of controllable load (continuously controllable and shiftable
loads) participating in DR programs. Equation (7) guar-
antees that the battery cannot be charged and discharged
simultaneously.

χBt + γ
B
t = 1∀t (7)

The received power from the grid equals the surplus of
wind and PV generations and injection of the battery as
presented in (8).

EG2Ct = EControlt + ECriticalt + γ Bt E
ch
t

−χBt E
disch
t − Ewindt − EPVt (8)

Constraint (9) limits the injection from the grid based on
the contract of the customer.

EG2Ct ≤ Emax,gridt (9)

In order to encourage the customer to obey the desired
consumption signal from the aggregator environment, the fol-
lowing constraints are considered.

EG2Ct = EG2C,desiredt + ϕt (10)

−0.1EG2C,desiredt ≤ ϕt ≤ 0.1EG2C,desiredt (11)

The goal of an aggregator or a system operator is to
push the customer to change his consumption to EG2C,desiredt .
According to (10), the net use of the customer should be equal
to the desired pattern dictated by the aggregator, and only a
small deviation around the desired consumption is allowed.

According to (11), a 10% deviation from the desired con-
sumption is considered. This value can be changed based on
the flexibility of the customers. In other words, for customers
with high capacity of the storage system, the deviation can be
set lower than 10%.

Equation (12) describes the model considered to evaluate
the state of charge (SOC) variations for the battery.

SOCt = SOCt−1

+ γ Bt η
charge E

ch
t

CapB
− χBt

Edischt

ηdischargeCapB
∀t (12)

Based on (12), the SOC (in p.u.) of the battery at time t is
a function of the SOC at time t − 1, the injected energy to the
battery, and the injected energy back to the grid and house
at time t . In the second and third terms of (12), the injected
energy and discharged energy are divided by the battery
capacity to keep the equation in p.u.

SOCmin
≤ SOCt ≤ SOCmax

∀t (13)

Inequality (13) limits the depth of discharge and guarantees
that the battery is not overcharged. It should be noted that
SOCmax and SOCmin can be set in a way that the battery can
provide some reserve for the operation of the battery in the
real-time. In other words, some part of the capacity of the
battery can be reserved for operating in the real-time; hence,
not all the capacity of the battery can be scheduled in the
day-ahead session. On this basis, 1 − SOCmax will be the
reserved capacity of the battery in charging mode in the real-
time, while SOCmin

−0 is the reserved capacity of the battery
in discharging state.

The charging and discharging rates of batteries are limited,
as presented in (14) to (17).

rcharget = (SOCt − SOCt−1)
/
ηcharge ∀t (14)

rdischarget = (SOCt−1 − SOCt) ηdischarge ∀t (15)

0 ≤ rcharget ≤ rcharge,max
∀t (16)

0 ≤ rdischarget ≤ rdischarge,max
∀t (17)

Equation (14) defines the charging rate of the battery
at time t . Similarly, (15) explains the discharging rate of
the battery at time t . These two variables cannot exceed
the maximum charging and discharging rate limits of the
battery, as presented in (16) and (17), respectively. In the
above formulation, EControlt and ECriticalt represent the energy
consumption of controllable loads (HVAC and storage water
heater) and critical loads (must-run services), respectively.

4) MODELING THE HOUSEHOLD APPLIANCES
HVAC provides the indoor temperature in the desired tem-
perature band. Equation (18) represents the relation between
the indoor temperature and the electrical consumption of
the HVAC. Here, θ ini is the initial indoor temperature which
is assumed to be equal to the desired temperature, θ indes.
In (19), it is expressed that the permissible variation for
indoor temperature is limited to 1 degree relative to the
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desired temperature. Besides, the corresponding maximum
and minimum values of the HVAC’s load consumption and
the load shedding are stated in (20) and (21), respectively.

θ int+1 = e
−1

RthCth θ int

+Rth

(
1− e

−1
RthCth

)
EHVAC,rtt

+

(
1− e

−1
RthCth

)
θ
out,pred
t t ≥ 2

θ int = θ
in
i = θ

in
des, t = 1

(18)

−1 ≤ θ int − θ
in
des ≤ 1 (19)

0 ≤ EHVAC,rtt ≤ EmaxHVAC ∀t (20)

0 ≤ EHVAC,curtailt ≤ EHVACt ∀t (21)

A storage water heater is an appliance that stores the heat in
the water tank. The load and energy limitations of the storage
water heater are represented in (22) and (23), respectively.
The load curtailment constraint related to the water heater is
described in (24).

0 ≤ Eswh,rtt ≤ Emaxswh , ∀t (22)∑
t

Eswh,rtt = Umax
swh , ∀t (23)

0 ≤ Eswh,curtailt ≤ Eswh,rtt , ∀t (24)

According to (19) the must-run-services are critical loads
include the loads that should be provided quickly, and they
should not be interrupted.

Emrs,rtt = Emrs,predt ∀t (25)

B. ANFIS REGULATION
In the proposed HEMS, a real-time adjustment module is
integrated. This module is operated by an adaptive neuro-
fuzzy inference system (ANFIS) method. In this sub-section,
a detailed description of this method is provided.

1) PROPOSED ANFIS-BASED REGULATION FRAMEWORK
FOR THE REAL-TIME ADJUSTMENT
Asmentioned earlier, the fuzzy-basedmodel is going to cover
the uncertainties and preserve the operational planning of the
day-ahead session. To this end, the proposed model should
receive and analyze the information of the error values as
inputs to make the proper decisions for the control variables
as outputs. Considering the flexibility and fast interaction,
batteries and continuously controllable loads are control vari-
ables, which are regarded as adjustment lever of the real-time
session. Given that the investigated home has one controllable
load and one battery, a fuzzy model shown in Fig. 3 is pro-
posed for the real-time regulation. As observed, this system
consists of three inputs and two outputs. The inputs are the
errors of forecasted signals, which are related to the load
profile and renewable-based generation outputs. The outputs
of the proposed model consisting of the following items; bat-
tery interaction and controllable load interaction. For battery
interaction, the battery can be charged (discharged) under

FIGURE 3. The architecture of the proposed ANFIS–FCM model.

the condition that there exists a surplus (shortage) of power
after considering the errors signals. For the controllable load
interaction, the load can increase (decrease) the consumption
level continuously for the situation of surplus (shortage) of
power. Considering all, the intended fuzzy-based model is a
multiple-input and multiple-output (MIMO) fuzzy controller.
In this study, for simplicity, the controller related to each
independent output is designed individually. By applying this
strategy, the model turns to a multiple-input and single-output
fuzzy controller. Therefore, as observed in Fig. 3, the pro-
posed fuzzy model for the investigated home consists of two
separate fuzzy systems. Each system is associated with one
output. It is worth mentioning that the proposed framework
can be simply extended for the prosumers with more than two
outputs.

2) ANFIS-FCM MODEL DEVELOPMENT
In order to develop a simple fuzzy system, an expert who
is familiar with the target system decides the rules. In such
systems, the membership functions (MFs) assigned to each
input variable are chosen empirically, that is, by plotting the
data sets and examining them visually, or only by trial and
error. For data sets with more than three inputs, visualization
techniques are not very useful, and most of the time, it must
rely on trial and error. Besides, generally, it becomes com-
plicated to describe the rules manually to reach the precision
needed, when the number of rules gets higher. In these sit-
uations, the technique of automatic model identification is
used. The obtained models are often realized using a learning
set of input-output pairs. In this study, the adaptive neuro-
fuzzy inference system based on fuzzy c–means clustering
algorithm (ANFIS–FCM) is utilized to build the model for
the estimation of suitable interaction in the real-time frame-
work. An in-depth analysis and mathematical basis of ANFIS
and FCM can be found in several literature studies, includ-
ing [30], [31]. To this end, in this study, solely the outlook of
utilized procedure is presented.

The traditional procedure to develop each ANFIS system
involves two steps: input screening and model selection.
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FIGURE 4. The procedure of ANFIS-FCM system development.

For the input screening and model selection, the learning data
is split into three sets (training, validation, and test). The
training data set is used for model training, the validation
data set for parameters optimizing, and the test set is used
to test the accuracy of the developed model. In addition to the
mentioned steps, inspired by the procedure presented in [32]
to predict chaotic series using ANFIS, an initial fuzzy system
(FIS) as a starting point to train ANFIS system is integrated
with the proposed methodology. Considering this, the two-
step development procedure is modified as following steps;
building initial fuzzy interface system (FIS), preprocessing
data to construct the sets arrays, and training ANFIS sys-
tem considering the initial FIS, training, and validation sets.
In order to obtain the initial FIS, the k-fold cross-validation
method is embedded in the training process of ANFIS sys-
tems development. This technique involves randomly divid-
ing the data into k folds or groups. The first fold is kept for
testing, and the model is trained on k-1 folds. The process
is repeated k times and each time different fold is used for
validation. By using this method, every training data get to be
tested exactly once and is used in training k-1 times, and the
bias is reduced. Besides, the k-fold cross-validation method
is simultaneously used for accurate performance assessment
since it has been found superior to other methods (e.g., hold-
out, bootstrap and leave-one-out cross-validation methods)
in determining the generalization error in model selection
problems [33]. In this study, the output of the 7-fold cross-
validation method is used as the initial FIS.

In Fig. 4, the procedure of ANFIS-FCM system develop-
ment is presented. As observed, first, the entire learning data
is divided into training and testing data. In this stage, it is
assumed that the learning data has already been provided.
However, the procedure for preparing this data will be pre-
sented in the next sub-section. Second, the training data is
randomly assigned to seven equal-sized folds. The first fold

FIGURE 5. The generation procedure of learning data to develop
ANFIS-FCM model.

is kept for testing, and the remaining six different folds are
used as the training set. The process is repeated seven times,
and each time, a different group of data is used for testing.
Third, the ANFIS with the averaged parameters of obtained
models is selected as the initial fuzzy system to be considered
in the next pace. At the final step, the initial FIS is trained,
validated, and tested based on the full original learning data.
The obtained fuzzy system selected as ANFIS system and can
be used for real-time adjustment. This procedure is repeated
to yield all fuzzy systems corresponding to the outputs.

3) GENERATING LEARNING DATA TO DEVELOP
ANFIS-FCM MODEL
The generation procedure of learning data is presented
in Fig. 5. As observed, this approach includes three steps as
follows:

Step 1: different states of errors related to each uncertain
parameter is generated. For this purpose, the scenario gen-
eration procedure of [34] is adopted. The method is based
on the discretization of the probability distribution of the
parameter errors and roulette wheel mechanism. By using
this method, firstly 1000 daily (24-hour) scenarios for WT,
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PV, and demand are generated. Then, these daily scenarios
are compared with the corresponding forecasted values to
obtain 1000 daily (24-hour) error vectors.

Step2: for the same daily error vector of WT, PV,
and demand, the corresponding elements (same hour) are
matched, merged, and stored to make a list of combinations.

Step3: to achieve optimal reactions against the unbalance
resulted from the forecast errors, the solutions of an optimiza-
tion problem are utilized to provide learning data for train-
ing the intended ANFIS systems. To this end, the obtained
combinations from step 2 are adapted to the optimization
problem described in the next sub-section. Solving individual
problems determines the optimal reactions of the battery and
controllable load. Merging these reactions (outputs) along-
side the error values (inputs) provide the final learning data.

4) THE EMBEDDED OPTIMIZATION PROBLEM
In this section, the formulation of the optimization problem
embedded in the process of learning data generation is pre-
sented and described. Considering the amount of unbalance ε,
which is calculated by (26), the system deals with three states:

- ε = 0: There is no need for any adjustment action.
- ε > 0: There is surplus power in the system. The
difference ε will be treated as a virtual source, which
should be appropriately dispatched between the control
variables (outputs).

- ε < 0: There is a shortage of power in the system.
The difference ε will be treated as a virtual load, which
should be adequately supplied by the control variables.

ε = WT error + PV error − Load error (26)

As control variables, the free capacity of batteries and
controllable loads can be operated as loads. On the other
side, the occupied capacity of batteries and controllable loads
can be adjusted to handle the shortage of power. Considering
these roles of the elements, accordingly, there is several gen-
eration units and loads which should be optimally managed
to control the amount of imbalance ε. The advantages of this
optimal management should be in line with the optimization
problem of the previous stage. Hence, a similar optimization
framework is adapted for the problem. This means that the
objective functions of dissatisfaction cost of inhabitants and
the degradation cost of the battery should be minimized sub-
jected to the constraints of controllable loads and batteries.
To this end, the following optimization problem is solved:

Min
{
Costadjust

}
= V adjust

+ CostDegr,adjust (27)

subject to

ε +
∑
j

(γ Bj η
charge
j

Ech,adjustj

CapBj
− χBj

Edisch,adjust

η
discharge
j CapBj

)

−

∑
i

vAppi sAppi (EApp,adjusti − EAppi ) = 0 (28)

0 ≤ rcharge ≤ rcharge,max (29)

0 ≤ rdischarge ≤ rdischarge,max (30)

SOCadjsut
= SOC + γ B ηcharge

Ech,adjust

CapB

−χB
Edisch,adjust

ηdischarge CapB
(31)

SOCmin
≤ SOCadjust

≤ SOCmax (32)

where the following concepts (33)-(34) are the same as the
ones of day-ahead management session.

V adjust
=

∑
i

vAppi sAppi

(
EApp,adjusti − EAppi

)
(33)

CostDegr,adjust = Edisch,adjsutCd (34)

As observed, the optimal solution of the problem should
minimize the function Costadjust (27). Constraint (28) guar-
antees the control variables can satisfy the actual amount
of unbalance. The batteries charging, discharging, and SOC
are restricted by the maximum limits as described by
(29)-(32). Other equations are the same as the day-ahead
management section. The superscript ‘‘adjust’’ demonstrates
the variables of the real-time session. It is important to
note that only one of the operational modes for batteries
(charging or discharging) and controllable loads (increase or
decrease of the load level) can occur during a specific
adjustment.

IV. NUMERICAL SIMULATION
The test system is a HEMS includes a 2 kW wind micro-
turbine and a 2kW PV unit. A 3 kWh battery is considered
that can store between 0.48 and 2.4 kWh in the day-ahead.
Also, its maximum charging and discharging rates are 400W.
Besides, the charging and discharging efficiencies of the
battery are equal to 90%. Regarding the electrical loads,
the maximum load capacity of the HVAC in each time slot
is equivalent to 5.525 kW. The daily energy capacity of the
storage water heater is equal to 10.46 kWh (180lt), which
has a 2 kW heating element. The desired temperature of
the building is assumed to equal 23 ◦C, and the dead-band
of the HVAC is 1◦C. Furthermore, the thermal resistance
of the building shell and thermal conductance are equal to
18◦C/kW and 0.525kWh/◦C, respectively. In this study, the
dissatisfaction factor of space heating and water heating are
considered equivalent to 0.5 and 0.2 e/kWh, respectively.
The battery cost is assumed to be 1.2 e/kWh. The forecasted
values for WT and PV generations and the hourly market
price are presented in Table 1.

Table 2 shows the specifications and parameters of the
ANFIS–FCM model.

All the optimization problems in this study were solved by
using the GAMS 25.0.3 software. The fuzzy logic toolbox
provided in MATLAB R2014a was used to develop the fuzzy
models. A Laptop with 2.2 GHz Intel Core i3 processor was
used to implement all programs.
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TABLE 1. The simulation parameters of the investigated system.

TABLE 2. Specifications of the ANFIS-FCM model.

FIGURE 6. Load profile of the system.

A. DAY-AHEAD SESSION
In this stage of HEMS, considering the forecasted values
for the wind, PV and loads, day-ahead scheduling with the
introduced objective function was executed. The aggregator
requests to control the consumptions were reflected in the
model as well. The impact of the proposed model from the
grid viewpoint is shown in Fig. 6. In order to provide a
better comparison, as observed from the figure, alongside the
obtained load profile of the proposed model (when apply-
ing the aggregator request), the figure includes the profile
obtained after solely considering local generations (without
applying the aggregator request) and the base consumption
profile of customer (without applying the aggregator request
and local generation). Besides, demand set points requested
by the aggregator are depicted in Fig. 6. By comparing
the consumptions in Fig. 6 it can be observed that without
applying the aggregator request, the consumption in hours
in the range between hour 5 and hour 15 equals to zero.
This means that the proposed HEMS can self-sufficiently
manage the needs of the system by the modified values of
loads and local generations. When applying the aggregator

FIGURE 7. Appliances consumption; a) Base load consumption, b) Load
consumption without aggregator request, c) Load consumption with
aggregator request.

FIGURE 8. Cost diagram of case study considering either with or without
applying the aggregator request.

request, for the period 5-11, in which there are compulsory
consumption requests, the proposed HEMS can effectively
satisfy the energy demand set points. Besides, it is observed
from Fig. 6 that the proposed HEMS shows successful perfor-
mance at hour 22 and hour 24. In these hours, a compulsory
reduction of consumption is imposed on the system. Consid-
ering the case studies shows that the system has a high degree
of flexibility to handle different situations successfully.

Fig. 7 depicts the consumption pattern of the smart home
appliances corresponding to each case study mentioned
in Fig. 6. As it is clear from the figure, controlling loads plays
an active role in the proposed HEMS.

The calculated objective functions are compared in Fig. 8.
As observed, the requests of aggregator impose an extra cost
on the HEMS. This surplus expense can be then considered to
adjust the financial interactions between the aggregator and
the customer. However, this issue is out of the scope of current
work. The separate cost terms are distinguished from each
other in Fig. 8. The largest share of the cost is related to the
customer dissatisfaction cost, and the lowest is the cost of the
battery.

The details of the operation of the battery for the case
study with the aggregator request are indicated in Fig. 9.
According to this figure, by employing the proposed HEMS,
the operation of the battery is radically changed. In fact, due
to its high cost, the battery is less used in the management
plans of proposed HEMS.

As observed, because of the high cost of battery operation,
HEMS prefers to give priority to controllable loads to provide
the scheduling scheme. Therefore, HVAC as a continuously
controllable load is always one of the main tools of HEMS to

VOLUME 8, 2020 19623



V. Hosseinnezhad et al.: Optimal Home Energy Management Paradigm With an Adaptive Neuro-Fuzzy Regulation

FIGURE 9. Performance of battery.

FIGURE 10. Temperature setpoints.

FIGURE 11. Surface views a) load control b) battery control.

run the management programs. HVAC energy consumption is
adjusted according to the temperature changes in the building.
Fig. 10 presents the inside temperature of building for the
case study with the aggregator request. This figure also rep-
resents the forecasted outside temperatures in different hours.
It should be reminded that the desired temperature set point in
different hours is equal to 23◦C, while the dead-band of the
HVAC is 1◦C. As observed, although the HEMS decreases
the set point of the HVAC system during some hours, it
increases the temperature from 23◦C to 24 ◦C, as well. This
helps the system to keep the room temperature in the range of
comfortable levels while it optimizes energy consumption.

B. REAL-TIME SESSION
This stage of the HEMS is executed to correct the short-
age or surplus of energy in the system, which resulted from
the forecast errors. In the proposed HEMS, the ANFIS–FCM
model is responsible for acting appropriately against these
imbalances. The results of these modules are presented in
this section. Fig. 11 shows two samples of surface views
obtained for the performance of the system in controlling
outputs against PV and WT errors. As observed in the
figure, the developed ANFIS prioritizes the battery charge
against the errors that result in the surplus power, and in
case of lack of power, a combination of load-reduction

and battery-discharge strategies is adopted. This strategy
seems to be reasonable by considering the degradation and
dissatisfaction costs. These reactions are precisely in line
with the concepts included in the optimization problems
and imply that the model training has been implemented
correctly.

A comparison between estimated values (outputs) by
the ANFIS–FCM model and determined values (targets)
obtained by the optimization for data sets of each output
is shown in Fig. 12. These figures graphically illustrate the
analysis of the proposed fuzzy model for all three types of
data, including training, validation, and testing sets. In these
figures, for useful analysis of each set, due to the high
density of data, a close-up representation of the diagram
is embedded in the figures. As shown in these figures,
the results of the ANFIS–FCM model in comparison with
actual data provide excellent precision and the output of
the ANFIS–FCM model track well the target values for all
data sets. Numerical analysis of the ANFIS–FCM model for
predicting the regulation interactions is provided in Table 3.
In this table, in addition to the mean error value, root-mean-
square error (RMSE) and correlation coefficient (R) are two
conventional criteria considered to assess the efficiency of
the models. RMSE is routinely used as a criterion to show
the discrepancy between the target and output values of the
model. R is widely used to determine whether these values
for the model are associated. These performance indices
for all data sets are presented in Table 3. Mean error val-
ues are near zero, and RMSE values are lesser than 20 W.
As observed, the results indicate the high performance of
the ANFIS-FCM model and show that the model can be
used successfully to estimate the proper interactions. The
last column in Table 3 provides the values of the correlation
coefficient for each set. In all sets, because of the proximity of
targets and outputs of the model, the calculated amounts are
close to the ideal value. As observed in Fig. 13, the regression
of the relationship between the targets and output of the
model is very close to the identity function. In fact, this fig-
ure graphically approves the low error of themodel for the test
set.

The density distribution of error magnitudes for the test
set is depicted in Fig. 14. As observed, approximately 91 %
of the estimated outputs in the testing set have negligible
maximum error equal to 5 W. Among the remaining 10%
interactions, the half has an error lower than 20 W and only
2.5% of the data leads to an error higher than 50W.Observing
a maximum of 400 W of error magnitude in the samples and
considering 10 % allowable amount of tolerance in the real-
timemode, it can be concluded that themodel has a successful
adjustment in 95% of the states. In other words, it can be
declared that the real-time controller yields a 95% success
rate of the performance. It should be noted that only 2.5%
of the data leads to an error higher than 50 W. In Fig. 14,
in addition to the error density information, the characteristics
of the normal distribution, which is fitted for each error
density, are presented.
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FIGURE 12. Comparison between targets and outputs for the training, validation and test sets a) load control b) battery control.

TABLE 3. The obtained results of the ANFIS-FCM model.

FIGURE 13. Correlation between targets and output values of the
ANFIS–FCM model for test sets (a) load control (b) battery control.

C. COMPARATIVE STUDY
Since the proposed two-step method had an approximately
similar data-driven strategy to a stochastic procedure con-
frontation uncertainties, the scenario-based algorithm of [5]

FIGURE 14. The error between targets and output values of ANFIS– FCM
model for test sets a) load control b) battery control.

was chosen to compare and evaluate the HEMS performance.
To this end, the 1000 scenarios generated for data training
were utilized to run the simulations. The method of [5] was
adapted to investigate the case study by applying the aggre-
gator requests, and the final expected objective function was
calculated.

In order to calculate the total cost for the proposed HEMS,
the cost of the worst state (the state with the biggest error)
from the data provided to train ANFIS was considered as the
cost of the real-time session.

Fig. 15 presents a comparison of the estimated total cost for
both methods. As observed, even if the calculated objective
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FIGURE 15. Total cost comparison.

functions are close to each other, the proposed system can
outperform the technique of [5] from the optimal behavior
viewpoint.

V. CONCLUSION AND FUTURE WORKS
This paper proposed a two-stage model of HEMS by con-
sidering the uncertainties of load and small-scale renew-
able energy generation. The first stage included a modified
deterministic day-ahead scheduling problem. In this stage,
the aggregator requests to control the consumption were ful-
filled. Besides, the satisfaction characteristic of the customer
was modeled and alongside with the battery degradation
cost was considered in the problem. The second stage added
a real-time regulation block to the proposed HEMS. This
stage utilized an adaptive fuzzy logic controller to adjust
the output power of the battery and controllable loads to
handle the gap resulted from forecast errors. An embed-
ded optimization problem applied to train the controller
to maintain the optimality of the solution. The simulation
results clearly show that the novel added block yielded up
to 95% success rate to handle the deviations. Moreover, it is
observed; by considering the real-time regulation algorithm,
the proposed HEMS can optimize the operating schemes
close to the ideal deterministic results, even when there is
a considerable gap between the forecast values and the real
ones.

However, as mentioned, the proposed model does not
have a complete success rate and requires new strategies to
improve the rate as much as possible. Therefore, exploring
and presenting a solution in this context is of interest to the
authors for future work. Also, the presence of a reliable man-
agement system that can ensure the day ahead commitments
for smart homes can be a good incentive to expand the con-
cepts of local market and local energy exchange. Therefore,
investigating and developing approaches to combining local
market with the proposed model is another topic of future
work.
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