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Abstract—The close interaction between the electricity 

market and the end-users can assist the demand response (DR) 
aggregator in handling and managing various uncertain 
parameters simultaneously to reduce their effect on the 
aggregator’s operation. As the DR aggregator’s main 
responsibility is to aggregate the obtained DR from individual 
consumers and trade it into the wholesale market. Another 
responsibility of the aggregator is proposing the DR programs 
to the end-users. This paper proposes a model to handle these 
uncertainties through the development of a novel hybrid 
stochastic-robust optimization approach that incorporates the 
uncertainties around wholesale market prices and the 
participation rate of consumers. The behavior of the consumers 
engaging in DR programs is addressed through stochastic 
programming. Additionally, the volatility of the electricity 
market prices is modeled through a robust optimization method. 
Two DR programs are considered in this model to include both 
time-based and incentive-based DR programs, i.e., time-of-use 
(TOU) and incentive-based DR (ibDR) program to study three 
sectors of consumers, namely industrial, commercial, and 
residential consumers. An energy storage system (ESS) is also 
assumed to be operated by the aggregator to maximize its profit. 
The proposed mixed-integer linear (MILP) hybrid stochastic-
robust model improves the evaluation of DR aggregator’s 
scheduling for the probable worst-case scenario. Finally, to 
demonstrate the effectiveness of the proposed approach, the 
model is thoroughly simulated in a real case study. 
 

Index Terms—Demand response, electricity market, risk 

management, robust optimization, stochastic programming.  

NOMENCLATURE 
Indices 

t Time [h] 
p Period 
c End-user’ sector 
ω Scenario 
j ibDR reduction steps 
Parameters 

���� The day-ahead market price [€/MWh] 

��
��,��� 

The minimum day-ahead price 
[€/MWh] 

 
 

 

��
��,	
� The maximum day-ahead price 

[€/MWh] 
��

,�/�,� The initial/TOU tariff of energy in 
consumption [€/MWh] 

�� The probability of scenario ω 

��,����� 
The steps of the reduced load in the 
ibDR program [kW] 

��,����� 
The steps of the incentive in the ibDR 
program [€/kW] 

�����/������� 
The charging/discharging efficiency of 
the ESS 

��
��� 

The degradation cost of the ESS 
[€/kWh] 

���,	
� The maximum capacity of the traded 
power of the DR aggregator [kW] 

 0�,�(#, $) The initial demand of participants [kW] 
&�(#, $) The elasticity matrix for the consumers  
&���,	
� The maximum capacity of the ESS 

[kWh] 
&���,��� The minimum capacity of the ESS 

[kWh] 
' The coefficient for the SOC of the ESS  
Γ The budget of the uncertainty 

Variables 

���,� The ratio of participation of consumers 
in ibDR program 

��,�
���,� The charging power value of the ESS 

[kW] 

��,�
���,��� The discharging power value of the 

ESS [kW] 
��,�

��,� The selling power value in the DA 
market [kW] 

��,�
��,� The buying power value in the DA 

market [kW] 
��,����� The reduced load in the ibDR program 

[kW] 
������ The total amount of reward in the ibDR 

program [€] 
��,�)*+ The power value in TOU program [kW] 

&�,���� The energy of ESS [kWh] 

,, -, . Dual variables for the robust model 
Binary variables 

/�,�
��,�//�,�

��,� Binary variable indicating that the 
aggregator is selling/buying to/from the 
DA market  

/�,����� Binary variable indicating the level of 
load reduction in the ibDR program 
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/�,�
���,�. Binary variable indicating the 

discharging mode of the ESS 

/�,�
���,���. Binary variable indicating the 

discharging mode of the ESS 

I. INTRODUCTION 

A. Background and Motivation 

HE power system has become increasingly dependent on 
the active participation by consumers as a result of the 

sharp increase in the use of distributed energy resources. 
Hence, managing this participation through the use of 
demand-side management techniques is essential to optimize 
the operation of the power system. The most effective 
solution for demand-side management is known as demand 
response (DR) [1].  

Various DR programs (DRPs) can be used to better balance 
the fluctuations in both the generation side and demand side. 
The two main categories of DRPs are price-based and 
incentive-based DRPs. Since offering several DRPs 
encourages consumers to participate more actively and this 
leads to acquiring more DR potential for the aggregator to 
maximize the total profit through trading in the wholesale 
energy market. Optimal DR scheduling by the aggregator 
should contain DRPs from both price-based and incentive-
based programs to provide a degree of freedom for the 
consumers to choose the program that suits their individual 
needs and preferences, thus facilitating their engagement with 
the DRP. Price-based programs are designed to shift a 
percentage of the consumption by using variable energy 
usage tariffs to optimize the power system operation. An 
example is shifting an amount of demand from the peak 
period to the off-peak period or vice-versa. Incentive-based 
DRP aims to reduce or curtail consumption by offering an 
incentive (often financial) to the consumers that participate in 
such DRPs. The main goal of DRPs is to alter a consumer’s 
energy usage profile and further incentivize them to engage 
in such programs. Implementation of DRPs reduces the 
energy consumption during peak periods while increasing the 
amount of energy usage during the off-peak periods [2].  

Several challenges are posed to the DR aggregator as an 
intermediary entity in the power system. One of the main 
challenges is that the DR aggregator is that the aggregator has 
to manage various uncertainties posed from the market side 
and also the consumer side in order to reach to its maximum 
profit. Since the aggregator should consider the uncertain 
behavior of the consumers during their participation in DRPs 
and also the uncertainty of the electricity market prices in 
order not to get affected in its profit negatively. To go more 
in detail, one of the significant challenges facing DRPs is how 
to incentivize the consumers to participate in the proposed 
DRPs and managing their correlating uncertainty. Individual 
consumers have a small amount of DR potential and this 
restricts their ability to directly trade their DR within the 
wholesale energy market. To resolve this issue, a DR 
aggregator is introduced into the energy system [3].  
The DR aggregator’s primary responsibility is to aggregate 
the obtained DR from individual consumers and trade the 
acquired DR into the wholesale market. Thus, two main 
sources of uncertainties exist, the behavior of the consumers 
in participation in DRPs and also the electricity market prices. 

Another responsibility of the aggregator is proposing the 
DRPs to the end-users. The aggregator usually seeks to 
maximize its profit or minimize its costs from trading the 
obtained DR in the wholesale market [4]. Addressing these 
challenges is indeed the main motivations in this study. 

B. Literature Review 

In recent years there have been various studies looking to 
optimize the operation of DR aggregators in wholesale 
markets considering the power system and consumers' 
constraints. Some of the most recent and closely-related 
research on DR aggregators is included for context and to 
show how the current paper extends the state-of-the-art. The 
DR optimization methods in the power system have been 
extensively reviewed in [5]. Examples of incentive-based 
DRPs include direct load control [6], load curtailment, 
demand bidding [7], and emergency demand reduction. On 
the other hand, the most common price-based DRPs are time-
of-use (TOU), critical peak pricing, and real-time pricing [8].  

According to the advantageous of employment of various 
DRPs from both price-based and incentive-based categories, 
we have employed DRPs from both classifications, which 
provides more flexibility for the consumers. Additionally, 
studying the behavior of the DR aggregators in the wholesale 
market is also essential to improve the scheduling process of 
the aggregator [9]. For instance, the authors in [10] proposed 
a self-scheduling optimization program that considers a price-
based DRP. Load uncertainty is addressed through a fuzzy 
method. The willingness of the consumers to participate in 
the DRPs are assumed to be uncertain. However, the 
uncertainty associated with the wholesale market is not taken 
into account.  

In [11], a scheduling framework is proposed that uses 
stochastic programming and the alternating direction method 
of multipliers algorithm. This model only considered the 
behavior of the residential consumers and neglected the other 
types of end-users. The uncertainties of the consumption side 
are managed. However, the uncertainties of electricity market 
prices are not assessed and these fluctuations are important 
for the scheduling.  

Similar to the previous model, [12] only considered 
residential consumers and utilized stochastic programming 
methods for the uncertainty of load without considering 
market price fluctuations. Likewise, just industrial loads are 
studied in [13], [14] without considering other types of 
consumers.  

Several models only considered the uncertainty of the 
electricity market for DR frameworks [15], [16]. For instance, 
Abapour et al. proposed robust scheduling for a DR 
aggregator through game theory by the price uncertainty 
assumption in [15]. Moreover, the authors of [16] formulated 
an optimal bidding strategy for an aggregator. The electricity 
price of the day-ahead market is managed as the risk factor. 
However, the uncertainties that are originating from the 
behavior of the consumers are not directly assessed. The 
behavior of the various uncertain parameters in each sides of 
the aggregator could be modeled more realistically if the risk 
measure would be selected based on the characteristics of the 
uncertain parameter. Moreover, a taxonomy table is presented 
in Table I to demonstrate the novelty of the work through a 
caparison of the proposed model with the recent similar 
works. 

T
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TABLE I 
THE COMPARISON OF THE PROPOSED METHOD VS. SIMILAR WORKS 

Ref Study field 
Uncertainty Consumer Type* 

Storage 
Uncertainty 

model Market Load Res Com Ind 

[15] DR Aggregator ×  Not classified  Robust 

[17] DR Aggregator  × Not classified  
Genetic 

Algorithm II 

[18] DER Aggregator  × ×   × Robust 

[19] DER Aggregator ×   ×  × Stochastic 

[20] EV Aggregator ×  Not classified  

Hybrid 

Stochastic-

Robust 

[21] EV Aggregator × × Not classified  

Hybrid 

Stochastic-

Robust 

[22] Retailers ×  Not classified  Stochastic 

[23] DR Aggregator × × Not classified  Stochastic 

[24] DR Aggregator  × × × ×  Fuzzy 

This 

work 
DR Aggregator × × × × × × 

Hybrid 

Stochastic-

Robust 

*Res: Residential, Com: Commercial, Ind: Industrial 

C. Contributions and Paper Organization 

The above section shows that while there exist several 
models that investigate the scheduling framework for DRPs, 
several research gaps have been identified. The major 
research gap is the inclusion of uncertainties associated with 
both the wholesale market and the uncertainties from the 
consumer side. Additionally, respecting the characteristics of 
the uncertain parameters is necessary for selecting the best 
risk management strategies. For instance, in optimization 
models based on robust approaches, the robustness level of 
the uncertain parameter can be adjusted through the budget of 
uncertainty [25]. Based on the available characteristics of the 
load on the demand-side, stochastic modeling is more 
effective as a risk measure [26]. 

In the proposed model the day-ahead market price can be 
forecasted by the DR aggregator based on the available price 
history. The main uncertainty of the market prices is due to 
the price fluctuations that could be addressed through an 
effective robust management method. On the other hand, 
stochastic programming can be employed to handle the 
uncertainty of the engagement ratio, as the participation ratio 
of consumers in the DRPs is known. Thus, a combination of 
both robust and stochastic approaches is proposed to model 
the aforementioned uncertain parameters. Another advantage 
of the proposed hybrid model is the mixed-integer linear 
problem which has a convex mathematical formulation. 

Additionally, this model considers three types of 
consumers, industrial, commercial, and residential 
consumers, with different demand usage patterns, making the 
model more comprehensive.  

Thus, the main contributions of the proposed model are 
summarized as follows: 

• Proposing a hybrid mixed-integer linear programming 
(MILP) optimization framework for a DR aggregator 
that considers various uncertainties with different 
inherent characteristics of both the market and consumer 
sides through a combination of robust and stochastic 
methods, simultaneously. 

• Proposing a hybrid robust-stochastic model that 
considers the stochastic and non-stochastic uncertain 
parameters to improve the scheduling of the DR 
aggregator and its risk-based operation. 

• Providing more flexibility for the consumers regarding 
engagement in the DRPs by considering two types of 
DRPs and considering an energy storage unit for the DR 
aggregator. 

The organization of the paper is presented as follows.  
In the next section, the proposed hybrid stochastic-robust 
method is presented and explained. Section III presents the 
data used for the case study as well as the results of the 
simulation. Section IV contains the conclusions drawn from 
the most important findings. 

II. THE PROPOSED HYBRID MODEL 

A. The DR trading framework 

In this section, the proposed DR framework is introduced 
and presented in detail. As mentioned before, this model uses 
a hybrid stochastic-robust optimization approach. Two 
uncertain parameters are addressed and managed through the 
combination of risk measures. The proposed DR framework 
is designed as follows.  

On the demand-side of the aggregator, there are three 
consumer sectors, namely residential, commercial, and 
industrial sectors. The aggregator manages the participation 
of consumers through two different DR programs, namely the 
TOU program and incentive-based program. On the 
wholesale electricity market side of the aggregator, the day-
ahead market is available. The aggregator can participate in 
the day-ahead market as a price-taker entity to trade its 
acquired DR. The proposed model is shown in the flowchart 
in Fig. 1.  

According to Fig. 1, in stage zero, the input data are 
collected and employed, such as the electricity market 
specifications, DRPs specifications, and load data of the 
consumers who participate in this framework. The most 
significant sources of uncertainties that have the greatest 
impact on the profit of the aggregator are addressed and 
managed in this model which are the day-ahead market prices 
in the market-side of the aggregator and the participation ratio 
of the end-users in DR program in the consumption-side of 
the DR aggregator. Then, in the main stage, the combination 
of stochastic programming and robust optimization is 
considered. To do this, a number of scenarios for the 
participation ratio of consumers in the ibDR program are 
generated. In other words, the uncertainty of the consumers’ 
participation ratio is managed and addressed through 
stochastic programming to maximize the DR aggregator’s 
profit. In the stochastic phase, the uncertainty of market price 
is not considered. Then, the hybrid stochastic-robust model is 
introduced. The new uncertain parameter which is the 
electricity market price is considered to be accounted through 
another risk measure that can indicate the effect of the 
electricity market on the profit of the aggregator, which is 
robust optimization. 
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       Stage Zero: Input data

• The electricity market specifications
• DR programs specification
• Consumers load data

Main stage: 
The Hybrid Stochastic-Robust Model

 Part  1 : Stochastic programming          
Objective Function::
    Maximizing the DR aggregator profit  
Constraints:
    Power Balance  
    TOU DR program
    Incentive-based DR program              
    Energy Storage System
Uncertain parameter:

    Consumers participation ratio

Part 2: Robust programming

Objective Function::
    Maximizing the DR aggregator profit  
Constraints:
    Part 1 constraints     
    Duality constraints
Uncertain parameter:

    The electricity market price

       Final stage: Outputs

• Optimal profit of the DR aggregator 
• Self-scheduling of the aggregator
• Optimal DRPs participation
• Optimal operation of ESS

 

Fig. 1.  The flowchart of the proposed DR trading procedure 

 

Hence, both uncertain parameters are being managed 
through the hybrid stochastic-robust method. In the final step, 
the optimal result of the problem would be given and 
demonstrated. The full explanation of the hybrid model will 
be presented in the following sections. 

B. Mathematical problem formulation 

The problem formulation of the hybrid stochastic-robust 
model is presented and described in this section. According 
to the first step of the flowchart depicted in Fig. 1, the 
mathematical formulation of the stochastic programming is 
presented. This step is shown mathematically in (1)–(19). The 
problem is structured as a maximization model to achieve the 
highest possible amount of profit for the DR aggregator. In 
this section, the participation ratio is considered to be 
addressed through stochastic programming.  

The objective function is presented in (1).  

( ), ,
, ,

1

, , ,
1 1

, .
,, . deg.

, .
1 .

:  

J

T
DA s DA b DA

t t t

t

NT
ibDR ibDR

t t j t j

t j

ESS disT
tESS ch ESS

t ch bESS
t dis

Max P P

PR P R

P
P C

ω ω ω
ω

ω

ω
ω

π λ

η
η

=

= =

=


−



−

  
− −        

 





 
(1) 

The probability of each scenario is denoted by �(1). There 
are four terms in the objective function. The first term, i.e., 

2��,�
��,� − ��,�

��,�4����, indicates the revenue and cost from 
selling and buying the acquired DR in the day-ahead market, 
respectively. Afterwards, the next term that is denoted by 
���,���,�������,������, represents the amount of reward that has 
to be given to the consumers who participate in the ibDR 
program. This reward is paid to the consumers during the 
peak period and received from them during the off-peak 
period. Therefore, positive values for this term represent a 
reward for the demand reduction that is paid by the 
aggregator, being a potential revenue during off-peak periods 
due to the negative cost for the DR aggregator. Finally, the 
last term in this equation is related to the cost of the ESS that 
is operated by the aggregator to optimize its trading in the 
day-ahead market.  

The ESS is being served if the amount of power that is 
going to be offered in the day-ahead market is greater than 
the available DR. This mismatch is being cleared through 
operating the ESS. Charging the ESS imposes costs to the 
aggregator, which decreases its total profit, while discharging 
the ESS entity will help and improve the aggregator 
performance in order to gain more revenue.  

The energy balance constraint is presented in (2). The 
amount of demand that is traded in the day-ahead market is 
required to be equal to the amount that is obtained from the 
end-users through the ibDR and TOU programs and any 
shortfall would be compensated through the ESS. The 
negative value for ��,�)*+ is because of the nature of this 
program and is explained in more detail in the TOU constraint 
equations.  

, , , ,
, , , , , ,
DA s DA b ibDR ESS ch ESS dis TOU

t t t t t tP P P P P Pω ω ω ω ω ω− = + − −  (2) 

The constraints for the amount of power that could be 
traded are shown in (3)–(5). In (3) and (4), the capacities of 
offering and buying the amount of power in the day-ahead 
market are addressed as, currently, the aggregator can only 
trade in the wholesale market. Equation (5) requires that in 
each time interval, selling or buying of power cannot occur 

simultaneously through the use of the binary variables /�,�
��,� 

and /�,�
��,�.  

, , ,
, ,
DA s DA s DA Max

t tP I Pω ω≤  (3) 

, , ,
, ,
DA b DA b DA Max

t tP I Pω ω≤  (4) 

, ,
, ,0 1DA s DA b

t tI Iω ω≤ + ≤  (5) 

The constraints related to the implemented ibDR program 
are described in (6)–(9). The amount of demand is reduced 
through (6). ���,� indicates the participation ratio of the end-
user in this DRP in time interval t and scenario ω multiplied 
with ��,�����, which shows the amount of reduction chosen 
from the Demand Reduction Curve [27] through a binary 
variable denoted by /�,�����. The demand reduction curve is a 
table which the aggregator proposes to the consumers, 
highlighting the relationship between demand reduction and 
the correlated amount of incentive (reward) considered for 
the end-user, as addressed in (7). This reward is greater than 
the previous step and smaller or equal to the current step.  
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In other words, the amount of reward is within the range of 
��,(�56)����  and ��,�����, and ��,����� will be chosen as the reward 

amount (8). It should be noted that in each time interval only 
one step of this reduction curve can be selected, which is 
ensured through (9) using a binary variable /�,�����.  

, , , ,
1

JN
ibDR ibDR ibDR

t t t j t j

j

P PR P Iω ω
=

=  (6) 

,
1

JN
ibDR ibDR

t t j

j

R R
=

=  (7) 

,( 1) ,,( 1) , ,

ibDR ibDRibDR ibDR ibDR
t j t jt j t j t jR I R R I− − ≤ ≤  (8) 

,
1

1
JN

ibDR

t j

j

I
=

=  (9) 

As previously stated, there are two types of DRPs, the first 
type is introduced above and the second program is the TOU 
program. The TOU program is one of the most popular DR 
programs that can alter the usage pattern of the consumers 
through different energy tariffs in different periods such as 
peak and off-peak periods.  

This program is utilized in the proposed framework 
through (10).  0�,�(#, $) indicates the initial consumer’s 
load in scenario ω before the use of the TOU program in 
sector c and period p. The elasticity of consumers is assumed 
through a matrix that is &�(#, $). This matrix indicates how 
the end-users are elastic to the change in their energy usage 

pattern. The last term in this constraint 789,:58;
9,:

8;
9,: < denotes the 

new tariff after TOU employment in sector c and period p, 
i.e., �,� and the normal tariff, i.e., ��

,�.  

,

, ,
0

, ,
1 1 0

0 ( , )( , )
c p c pC P

TOU

t t c
c p

t p
P D c p E c pω ω

λ λ

λ= =

 −
=  

 
  (10) 

The specifications of the considered ESS are presented in 
(11)–(17). The amount of energy in time interval t and 
scenario ω is calculated in (11). The ESS energy is dependent 
on the previous time interval (t-1) and scenario ω plus the 
charging amount of power multiplied by the charging 
efficiency minus the discharging amount of power multiplied 
by the discharging efficiency [28]. As mentioned before, the 
ESS can be charged or discharged in each hour. In other 

words, at least one of the components of (11) that are ��,�
���,�. 

or ��,�
���,���. should be zero as the ESS cannot be charged and 

discharged at the same time. The energy level of the ESS 
cannot be less than &���,���  or higher than &���,	
� .  

( )
, .

,, .
, ( 1), , .

.

ESS dis

tESS ESS ESS ch ESS

t t t ch ESS

dis

P
E E P

ω
ω ω ω η

η
−

 
= + −   

 
 

 
(11) 

,min ,
,

ESS ESS ESS Max

tE E Eω≤ ≤  (12) 

The capacities related to the charging and discharging 
amount of power is limited through the inclusion of (13) and 
(14), respectively.  

, . , , .
, . ,0 ESS ch ESS Max ESS ch

t ch tP P Iω ω≤ ≤  (13) 

, . , , .
, . ,0 ESS dis ESS Max ESS dis

t dis tP P Iω ω≤ ≤  (14) 

As stated before, charging and discharging of the ESS 
cannot occur simultaneously, as considered in (15). It is also 
assumed that the initial and final energy of the ESS is equal 
as stated in (16).  

, . , .
, ,0 1ESS ch ESS dis

t tI Iω ω≤ + ≤  (15) 

, 1,
ESS ESS

t T tE Eω ω= ==  (16) 

Moreover, the initial amount of energy of the ESS is 
dependent on the ESS maximum capacity as indicated by 
(17).  

,
1,

ESS ESS Max

tE Eω α= =  (17) 

{ }, . , . , ,
, , , , ,, , , , 0,1ESS ch ESS dis ibDR DA s DA b

t t t j t tI I I I Iω ω ω ω ∈  (18) 

, ,
, ,, 0DA b DA s

t tP Pω ω ≥  (19) 

After introducing stochastic programming, the hybrid 
robust-stochastic optimization method is implemented. The 
uncertainty of the day-ahead market price is handled through 
robust programming due to the high importance of the 
wholesale electricity market. Meanwhile, the uncertainty of 
the participation ratio of the consumers in the DRPs is 
addressed by the scenario-based stochastic approach. It is 
noteworthy to mention that the general mathematical 
formulation of the robust optimization is given and 
demonstrated in [29], [30]. Thus, regarding the general form 
of robust optimization, the proposed hybrid robust-stochastic 
DR framework is formulated using (20)–(24). 
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subject to:  

(2) - (19) (21) 

( ), ,min
, ,

DA Max DA

t t t tyω ω ωξ β λ λ+ ≥ −  (22) 

, ,
, , ,( )DA s DA b

t t tP P yω ω ω− ≤  (23) 

, ,, , 0t tyω ω ωξ β ≥  (24) 

The hybrid robust-stochastic framework is solved through 
the reformulation of the maximization problem into a 
minimization problem, as shown in (20).  
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In the mathematical formulation of the DR model, 

��,�
��,�, ��,�

��,� , ���,�, ��,�
���,� , ��,�

���,��� , ��,����� , &�,���� are the 

decision variables. While the day-ahead market price (����) is 
assumed to be the uncertain parameter managed through the 
robust management method. The day-ahead market price can 

fluctuate from ��
��,��� to ��

��,	
�. As mentioned in [29], there 
is an important integer item in the robust optimization that is 
the budget of uncertainty, denoted by Γ. The budget of 
uncertainty is employed to enforce limitations of the 
electricity market price, which is considered as the uncertain 
parameter of the market side of the framework and these 

limitations are given as ��
��,��� to ��

��,	
�.  
Moreover, Γ controls the level of conservativity of the DR 

framework during the scheduling time. Therefore, the value 
of the budget of uncertainty can be given as follows: Γ ∈
{0,1,2, … , C}. In the case Γ=0, the uncertainty of the day-
ahead market price is ignored and the results are suitable for 
risk-neutral decision-makers. As the budget of uncertainty 
increases, the proposed DR framework results would be 
better suited for risk-averse decision-makers and the model 
would become more conservative. Hence, the most 
conservative condition (worst-case scenario) will occur when 
Γ = T. In this condition, it is assumed that the day-ahead 
market price would fluctuate from its corresponding 
forecasted value in all the scheduling time horizon, [0- Γ]. 
Additionally, ., β, and y are dual variables of the constraints 
considered due to the reformulation of the problem. 

III. SIMULATION AND RESULTS 

A. Data Preparation 

In this section, the data and the test system assumptions are 
introduced and explained in detail. This problem is 
formulated as a mixed-integer linear programming (MILP) 
model and the CPLEX solver in the GAMS programming 
environment was used to obtain the optimal solution. The 
number of single equations in our simulation is equal to 
4,057. Moreover, 3,950 is the total number of the single 
variables, 1,898 of them are discrete variables. The execution 
time in our modeling was approximately 12.5 seconds on a 
personal computer with 6 GB RAM and 2.41 GHz of CPU 
speed.  

B. Data Assumptions 

As explained in the previous section, the day-ahead market 
is chosen from the wholesale market for the upper side of the 
aggregator, allowing the DR aggregator to trade its acquired 
DR. The day-ahead market price is assumed to be an 
uncertain parameter managed through the robust 
management method. The day-ahead market price can 

fluctuate from ��
��,��� to ��

��,	
�. The energy prices are 
taken from the Portuguese day-ahead market [31]. The prices 
are shown in Fig. 2. According to this figure, the lowest 
market prices occur at 6:00 in the morning, while the highest 
prices are seen at 12:00, 14:00, and 22:00.  

Additionally, Fig. 3 illustrates the input data for the 
cumulative demand of each consumers’ sector, which is 
based on real scenarios that are derived from Portugal. 
According to this figure, three consumer sectors are 
considered in this case study which illustrates the sum of the 
demands of the consumers that are classified in several 
sectors: residential, commercial, and industrial.  

 

Fig. 2.  The Electricity price in the studied period. 

 
Fig. 3. The cumulative load profile of the consumers in the studied day 

The residential and the commercial’s behavior are similar 
to each other. However, the load data of the industrial sector 
indicates a significant difference. The residential and 
commercial’s peak period starts from 9:00 in the morning and 
ends at 22:00. The peak period for the industrial sector occurs 
at 9:00 and ends at 18:00. The hours that are not considered 
in the peak period are assumed to be off-peak periods. 

Regarding the parameters that are considered for the ESS, 
it should be noted that the maximum and minimum capacities 
of the ESS are 200 kWh and 100 kWh, respectively. The 
charging/discharging SOC of the ESS are assumed to be  
20 kWh. It is worthwhile to mention that the initial SOC of 
ESS is considered to be set by the optimal solution. The 
efficiency of the battery for both charging and discharging 
mode operation is chosen as 90% from the nominal value. 
Finally, the degradation cost of the battery is supposed to be 
0.07 €/kWh. 

As stated in the problem formulation section, the ratio of 
participation by the consumers in the DRP is considered to be 
the uncertain parameter that is handled through stochastic 
programming. To this end, a number of scenarios are 
generated. After the scenario reduction process, 20 scenarios 
have been chosen as the final number of scenarios describing 
the ratio of participation of consumers in the incentive-based 
DR program.  

In the incentive-based DR program, 20 steps of demand 
reduction are selected to correlate with a certain amount of 
reward [32]. Regarding the TOU program, the values used in 
the matrix of elasticity are taken from [27].  
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In the proposed hybrid stochastic-robust problem, the price 
of energy in the day-ahead market is chosen as the second 
uncertain factor that is being addressed through the robust 
approach. To this end, a price variation of 20% from the 
assumed values is considered and this is shown in Fig. 2.  
It means that, in robust programming, it is supposed that the 
prices are fluctuating 20% from the forecasted values. 

C. Simulation and Result Discussion 

1) The Performance of TOU DR Program 

In this section, the key results derived from the simulation 
of the proposed model are shown and discussed. The first 
result discussed is related to the impact of the TOU DR 
program, as shown in Fig. 4. As indicated in this figure, the 
total reduction amount of the demand through the 
implementation of TOU program is  illustrated. 

According to these results, it can be seen that during the 
off-peak period, there are positive values and during the peak 
period, there are negative values. The positive values mean 
that by implementing the TOU program, the consumers 
increase their consumption compared to their consumption 
without the TOU program. The negative values during the 
peak period indicate a decrease in consumption relatively to 
the consumers’ usage pattern without the TOU program.  

As explained in the problem formulation, the TOU 
program has a direct relation to the amount of demand of each 
sector.  Thus, the participation of consumers in this program 
in the residential and commercial sectors is lower than the 
corresponding values in the industrial sector. This is because 
the daily power use of the industrial consumers is greater than 
the daily usage in the other sectors. Therefore, the largest 
share of the total TOU program that is shown in Fig.4. is due 
to the industrial sector. Note that the peak and off-peak period 
is not the same for all the sectors. Thus, from 18:00 to 22:00, 
the industrial sector is in the off-peak period and the other two 
sectors are still in the peak period, the total TOU is the 
summation of negative values in the residential and 
commercial section and positive values in the industrial one. 
This is the main reason that these hourly values are different 
relatively to others in the studied time horizon. It should also 
be noted that from 18:00 to 22:00, as the industrial sector is 
in its off-peak period and since it has the largest share of 
demand, the total amount of obtained demand is based on the 
behavior of the industrial sector. 

 

 

Fig. 4. The impact of the implemented TOU DRP 

2) The Performance of ibDR Program 

As explained in the previous section, the ibDR program is 
also considered in this model. In this program, the 
participation ratio of consumers is assumed to be uncertain 
and modeled through stochastic programming. Moreover, the 
day-ahead market prices are modeled using robust 
programming. As explained before, the budget of uncertainty, 
i.e., Γ, plays the most crucial role in investigating the impact 
of the uncertain parameter. Therefore, three values are chosen 
for the budget of uncertainty, which are G = {0, 2, 12}. When 
G = 0, it means that the robust impact is not considered and 
the results shown in this case are the same as when only 
stochastic programming is taken into account. In the second 
condition, it is assumed that the price can fluctuate in two 
hours from the observed hours, i.e., G = 2. It corresponds to 
a small share of robustness. Finally, in the last case, G = 12 
is selected. It means that the optimal schedule is the most 
robust against fluctuations in market price, which is the 
uncertain parameter.  

As illustrated in Fig. 5, the participation of consumers in 
the ibDR program during the off-peak period for all the 
considered cases are the same. It means that the participation 
of consumers in this DR program is not dependent on the 
robustness of the market price. However, during the peak 
period, the impact of robustness varies. According to this 
figure, when G = 0, consumers participation is at its 
maximum. For instance, the DR aggregator obtains more than 
200 kW at 12:00 from the participants in this DR program. 
This is due to the high market price during these hours. Since 
the impact of robustness is neglected, consumers increase 
their participation in order to receive the high reward from the 
aggregator. However, by increasing the budget of 
uncertainty, the worst cases are simulated, and to make the 
programming robust against the price variations, the acquired 
demand from this type of DRP is decreased. Therefore, it is 
completely reasonable that the lowest demand is obtained 
from the consumers that are related to G = 12. 
3) The Performance of ESS 

The hourly operation of the ESS is illustrated in Fig. 6. 
According to this figure, when the level of energy in the ESS 
is increasing, it indicates that the ESS is in its charging mode. 
When the energy level in this entity decreases compared to 
the previous hour, the ESS is in discharging condition.  

Table II explains the behavior of the ESS in detail. In this 
table, the behavior of the ESS for various budgets of 
uncertainty is given. According to the problem constraints, it 
was expected that both charging and discharging of the ESS 
cannot occur simultaneously. This is the reason why in every 
hour, one of the values in the charging or discharging related 
columns are zero.  

Since the initial stored energy in the EES is supposed to be 
100 kWh, at the end of the first hour, the stored energy has 
increased by 20 kWh, according to Table II. The results given 
in Table II and Fig. 6 show that the ESS charges until 03:00 
regardless of the value of budget of uncertainty, while the 
behavior of storage changes from 04:00.  

In the first two cases, i.e., G = {0, 2}, the ESS starts to 
discharge, while in the worst-case scenario that occurs when 
G = 12; the ESS is still charging, but not to the full capacity. 
It is worthwhile to mention that the number of charging 
cycles of ESS in each scenario is as follows: five when  
G = 0, four when G = 2, and seven when G = 12. The 
number of charging and discharging cycles in the first two 
scenarios is similar.  
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Fig. 5.  The ibDR program engagement in the proposed framework. 
 

 

Fig. 6.  The operation of the ESS over the scheduling period. 
 

TABLE II 
THE CHARGING AND DISCHARGING BEHAVIORS OF THE ESS 

T Hybrid Γ=0 Hybrid Γ=2 Hybrid Γ=12 

 ����,� 
(kW) 

����,��� 
(kW) 

����,�
 (kW) 

����,���
 (kW) 

����,�
  (kW) 

����,���
  (kW) 

1 20 0 20 0 20 0 
2 20 0 20 0 20 0 
3 20 0 20 0 20 0 
4 0 20 0 20 15.8 0 
5 0 20 0 20 0 20 
6 0 8.6 0 8.6 20 0 
7 15.8 0 20 0 20 0 
8 20 0 20 0 20 0 
9 0 20 20 0 0 20 
10 20 0 20 0 0 20 
11 20 0 20 0 20 0 
12 20 0 8.1 0 0 20 
13 20 0 0 17.2 20 0 
14 20 0 0 19.1 0 2.4 
15 0 20 0 20 0 20 
16 20 0 0 20 0 20 
17 0 20 20 0 0 20 
18 0 20 20 0 16.7 0 
19 0 20 0 20 14.8 0 
20 0 20 0 20 0 19.6 
21 20 0 20 0 19.8 0 
22 20 0 20 0 0 18.7 
23 0 18.6 0 15.9 20 0 
24 0 20 0 20 0 19.5 

However, it is not the case in the worst-case scenario. In 
the worst-case scenario, it is considered that in 12 hours there 
is a price variation that affects the profit of the aggregator 
negatively. Thus, the aggregator operates the ESS to 
minimize the negative effect of price variations. 
4) The Scheduling of DR aggregator in DA market 

The daily schedule of the aggregator is depicted in Fig. 7. 
In this figure, the amount of power that the aggregator trades 
with the day-ahead market is shown. According to the results, 
the flow of energy during the off-peak hours is from the day-
ahead market to the consumers. While in the peak hours, 9:00 
to 22:00 for the residential and commercial sectors and from 
9:00 to 18:00 for the industrial sector, the flow is reversed. In 
other words, during the peak period, the aggregator offers its 
acquired demand to the day-ahead market.  

As there are some hours which are peak periods for the 
residential and commercial sectors and off-peak periods for 
the industrial sector, namely from 18:00 to 22:00, the 
aggregator is still offering its demand to the day-ahead market 
in these hours. In contrast, this amount is much smaller than 
the previous hours. Since the majority of demand belongs to 
the industrial sector, it has a large impact on the results 
relatively to the other two sectors. In the worst-case scenario 
(G = 12), the aggregator is not trading at all. In other words, 
the amount of power reduction during the peak period of 
residential and commercial sectors is equal to the demand 
increase during the off-peak period of the industrial sector, 
which occurs between 18:00 and 22:00 during the worst-case. 
5) The Sensitivity Analysis of Proposed Method 

Comparing the three cases, it can be seen that as the budget 
of uncertainty increases, the total amount of traded power in 
the day-ahead market decreases during the peak period and 
vice-versa in the off-peak period. Hence ���� reaches to zero 
during the worst-case at 18:00. The salient results obtained 
are depicted in Fig. 8, which provides the sensitivity analyzes 
of the proposed model. As it was stated in the previous 
sections, the profit is affected directly by the budget of 
uncertainty and the market price variations.  

The variations for the day-ahead market price are chosen 
to be 0, 5%, 10%, 15%, and 20%, while the budget of 
uncertainty is selected from zero to 12 (worst-case). For a 
fixed value of G, as the price variation increases, the total 
profit of the aggregator decreases. The minimum value for the 
profit of the DR aggregator occurs during the worst-case 
scenario and maximum price variations from the forecasted 
values, that is, 39,070 € at G = 12 and ' = 20%. On the 
other hand, the maximum profit of aggregator is 257,300 € 
when there are no price variations and the budget of 
uncertainty is equal to zero. 

 

Fig. 7.  The traded amount of energy in the DA market. 
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Fig. 8. The sensitivity analysis of the considered test system on the proposed 
hybrid model. 

6) The After the Fact Analysis of the Proposed Method 

In this section, the effectiveness and usefulness of the 
proposed model is demonstrated. To this end, three 
optimization techniques are applied to the employed case 
study which is named as after the fact analysis [33]. In the 
robust optimization approach, it is considered that the 
uncertain parameter is addressed and handled through the 
robust method.  

On the other side, the uncertain parameters are only 
managed through the stochastic optimization approach. The 
actual and forecasted day-ahead electricity market are 
considered in this stage for seven days which is illustrated in 
Fig. 9. As seen in this figure, the forecasted market prices are 
slightly lower than the actual values during the first four days 
of the considered period. Then, in the remaining days of the 
assumed period, it is reversed where the forecasted prices are 
greater than the actual values of the day-ahead market. 

Table III indicates the profit of the DR aggregator for the 
proposed hybrid, the stochastic and robust optimization 
methods using the actual day-ahead electricity market prices. 
According to the results, the total profit of the aggregator 
through the application of the hybrid robust-stochastic 
approach will be greater than the other two studied methods, 
i.e., robust method and stochastic method in the typical week. 
Moreover, it can be seen that the total performance of the 
proposed approach is better than the other ones whenever the 
forecasted prices are greater than the actual prices or even 
when the forecasted prices are lower than the actual prices. 

 
 
Fig. 9. The hourly day-ahead electricity market prices for a week. 

 

TABLE III 
THE COMPARISON OF THE PROFIT OF THE DIFFERENT METHODS 

Day Hybrid profit (€) Stochastic profit (€) Robust profit (€) 

1 133042 136131 130821 

2 147101 147015 144876 

3 153564 151217 151147 

4 154140 151904 151830 

5 167679 159383 165028 

6 177394 165097 174096 

7 168765 160681 165988 

T 1101689 1071431 1083788 

IV. CONCLUSIONS 

A hybrid stochastic-robust model is proposed in this paper 
to provide a better analysis for the DR aggregator in the 
evaluation of adverse scenarios during the scheduling of DR 
programs for the end-user. A stochastic method is applied to 
manage the engagement rate of the demand-side in the DRPs, 
which include three sectors of consumers, namely industrial, 
residential and commercial end-users. A robust approach is 
implemented on the upper side of the aggregator that contains 
the wholesale electricity market. Fluctuations in the day-
ahead market prices that can affect the profit of the aggregator 
are considered. The TOU and ibDR programs are utilized for 
the consumers and an ESS entity is operated by the 
aggregator. Unique peak and off-peak periods are considered 
for each sector of consumers to enhance the model’s 
effectiveness on a real case study. The results indicate that the 
demand of the industrial consumers affects the profit of the 
aggregator more than the other sectors due to their high 
demand during the peak period. Regarding the ESS operation 
in the first hours of the off-peak period, the behavior of ESS 
is the same in all cases, that is, in the charging mode. The ESS 
remains in the charging mode in the worst-case scenario, 
while it begins to discharge in the other scenarios to prevent 
any economic loss for the aggregator. Additionally, for a 
fixed value of the budget of uncertainty, as the price 
fluctuations increase, the total profit of the aggregator 
decreases in response. Moreover, the minimum profit of the 
DR aggregator occurs during the worst-case scenario and 
maximum price variations from the forecasted values. For 
future work, other electricity markets such as balancing 
market, spinning market, and forward contracts could be 
considered to make this model more comprehensive. Another 
interesting development that can be done on this work is 
considering the prosumers as the clients of the aggregator 
instead of consumers. Meanwhile, multi-energy systems can 
be included alongside the electricity market to optimize the 
consumers’ behavior in the gas and heating engagement, as 
well as the electricity demand. 
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