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Abstract—The stochastic nature of the renewable generators
and price-responsive loads, as well as the high computational
burden and violation of the generators’ and load aggregators’
privacy can make the centralized energy market management
a big challenge for distribution network operators (DNOs). In
this paper, we first formulate the centralized energy trading as a
bi-level optimization problem, which is nonconvex and includes
the entities’ optimal strategy to the price signals. We tackle the
uncertainty issues by proposing a probabilistic load model and
studying the down-side risk of renewable generation shortage. To
address the nonconvexity of the centralized problem, we apply
convex relaxation techniques and design proper price signals that
guarantee zero relaxation gap. It enables us to address the privacy
issue by developing a decentralized energy trading algorithm.
For the sake of comparison, we use the dual decomposition and
proximal Jacobian alternating direction method of multipliers
(PJ-ADMM) for the algorithm design. Extensive simulations are
performed on different standard test feeders to compare the CPU
time of the proposed algorithm with the centralized approach and
evaluate its performance in increasing the load aggregators’ and
generators’ profit. Finally, we compare the impact of load and
generation uncertainties on the optimality of the results.

Keywords: Price-responsive load, renewable generation, bi-level
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NOMENCLATURE

h Index of an arbitrary time slot.
Ht The time period {t, . . . ,H}.
t Index of the current time slot.
z(h) Arbitrary scalar z in time slot h.
z(t) Arbitrary vector (z(h), h ∈ Ht).
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Abbreviations
ADMM Alternating direction method of multipliers.
DNO Distribution network operator.
ECC Energy consumption controller.
PAR Peak-to-average ratio.

Variables and Parameters for Generator j
βj(h) Penalty for generation shortage.
ρj(h) Price for active power generation.
%j(h) Price for reactive power generation.
∆j(t) Uncertainty budget.
pcon
j (h) Conventional unit’s output active power.
pren
j (h) Offered renewable generation.
pavg,ren
j (h) Average renewable generation level.

pmin,ren
j (h) Minimum renewable generation level.
qcon
j (h) Conventional unit’s output reactive power.
Variables and Parameters for Load Aggregator i
Aawake
i (t) Set of awake appliances.
Aasleep
i (t) Set of asleep appliances.

ea,i(h) Power consumption of appliance a.
Ha,i Scheduling horizon of appliance a.
lasleep
i (h) Total demand of asleep appliances.
li(h) Total load demand of all appliances.
φi Power factor.

Other Variable and Parameters
δb(h) Voltage phase angle of bus b.
vb(h) Voltage magnitude of bus b.
∆vb(h) Voltage drop at bus b.

I. INTRODUCTION

One goal of the emerging smart grid is to make distribution
systems smarter and more secure through integrating a two-
way communication infrastructure. The data exchange pro-
vides the distribution network operators (DNOs) with sophis-
ticated management techniques to perform complex analyses
and automated operations [1]. Meanwhile, different drivers
such as distribution organizations have accelerated the ap-
plications for smart grid technologies and the integration of
renewable generators [2]. The benefits include a more efficient
energy usage to reduce the load aggregators’ payment, a lower
operation cost for the generators, and a higher flexibility for
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the DNO to improve the system’s technical operation; thereby
reaching a triple-win result [3], [4].

The power system analysis and control is a challenging task
for the DNO. First, the uncertainties in the load demand and
renewable generation can cause unpredicted problems, such as
the voltage drop/rise. The second challenge is the violation of
the entities’ privacy, e.g., revealing the load aggregators’ de-
mand information and generators’ cost parameters to the DNO.
Third, the system analysis can be computationally difficult,
especially when the number of decision variables increases
with the participation of price-responsive load aggregators and
renewable generators in the energy market.

There have been some efforts in the literature to tackle
the above-mentioned challenges. We divide the related works
into three main threads. The first thread is concerned with
decentralized energy management programs for a market with
multiple suppliers and multiple users. Mechanisms such as
the multi-level game [5], Stackelberg game [6], dual decom-
position [7], and hierarchical bidding [8], [9] have been used.
However, these approaches did not consider the constraints
imposed by the topology and operation of the distribution
network. The second thread is concerned with including the
power flow equations in the decentralized energy management
procedure. To achieve this goal, different techniques such as
convex relaxation [10]–[12], quadratic programming [13], al-
ternating direction method of multipliers (ADMM) [14]–[16],
and Lagrange relaxation method [17]–[19] have been used.
These studies, however, did not consider the uncertainties of
the renewable generators and load demand. Furthermore, they
mainly focused on off-line algorithms, which are applicable to
day-ahead markets. The third thread concerned with the online
operation of distribution systems using different mechanisms
such as real-time closed-loop control [20], differential evo-
lution optimization [21], [22], stochastic programming [23],
online gradient method [24], projected gradient descent [25],
and online mirror descent [26]. These works, however, did not
mention how to consider the uncertainty of the load demand
for different types of users.

A. Goals and Contributions

Although there exist several studies on the energy market
with multiple load aggregators and generators (e.g., [5]−
[26]), the impact of uncertainties in the generation and load
demand on the online decision making of the entities has not
been studied comprehensively yet. In this paper, we focus
on designing a decentralized algorithm for an energy trading
market with renewable energy generators and price-responsive
load aggregators. In each time slot (e.g., every 15 minutes),
the load aggregators and generators jointly maximize their own
profit, while considering the uncertainty in the future demand
and renewable generation. The entities’ privacy is protected,
as the generators and load aggregators solve their own profit
maximizing problem using the locally available information.

The load management decision (e.g., load shifting, load cur-
tailment) of a load aggregator in the current time slot affects
its demand during the upcoming time slots. Meanwhile, the
generators must match their generation levels with the changes

Figure 1. The receding horizon control for energy trading.

in the load demands. It implies that for decision making in
the current time slot, the generation-load balance during the
current and upcoming time slots should be considered. Our
goal is to propose a receding horizon energy trading algorithm
for the load aggregators and generators. As Fig. 1 depicts,
the decision making horizon of the entities starts from the
current time until the end of the trading horizon. But, the
entities only apply the optimal decision for the current time.
This process is repeated for the next time slots. The main
challenges that we address are to tackle the uncertainty in the
load demand and renewable generation, as well as to determine
the appropriate control signals exchanged between the DNO,
generators, and load aggregators that enforce the proposed
decentralized algorithm to converge to the solution of the
DNO’s centralized problem with the objective of maximizing
the social welfare. This paper is an extension of our previous
work [27] by considering the renewable generation and load
demand uncertainties, as well as proposing an autonomous
energy trading in real-time energy markets. In particular, we
aim to answer two key questions:
Q.1 How do the entities determine their strategy in the current
time slot with the locally available information?
Q.2 How do the entities address the lack of information about
the demand and generation in the future time slots?

The main contributions of this paper are as follows:
• Problem Formulation: We formulate the DNO’s cen-

tralized approach as a bi-level optimization problem.
In the outer level, the social welfare is maximized by
considering the network’s physical constraints using the
linearized ac power flow and the impacts of the renewable
generation shortage on the bus voltages. The inner level
includes the optimal responses of the load aggregators
and generators to the price signals. To address the non-
convexity of the problem, we use convex relaxation tech-
nique incorporated with a price signal design procedure
such that the relaxation gap becomes zero.

• Addressing the Uncertainty Issues: To address the uncer-
tainty in the demand of the load aggregators, we propose
a probabilistic load estimation for the electric appliances
of the consumers. It enables each load aggregator to take
into account the impacts of the future load profiles on the
current scheduling decisions of the appliances. We also
consider an adaptive uncertainty set for the renewable
generators to study the down-side risk of renewable
generation shortage. It enables a generator to wisely offer
its renewable generation profile such that a high penalty
for power shortage is avoided. The DNO can also secure
the grid against a high voltage drop.
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• Distributed Algorithm Design: We first use the dual
decomposition technique [28] to develop a decentralized
algorithm that protects the privacy of the entities and
addresses the computational complexity of the centralized
problem. The proposed algorithm provably converges to
the solution of the centralized problem. This approach has
been used in [17], [18]. Next, we modify our algorithm
to a proximal Jacobian ADMMM (PJ-ADMM)-based
algorithm [29, Algorithm 4] in order to improve the
convergence speed. It is preferable to the proposed vari-
able splitting ADMM-based algorithm in [14]–[16], as
introducing the splitting variables substantially increases
the number of variables and constraints in the problem.

• Performance Evaluation: Simulations are performed on
the IEEE 123-bus test feeder with 5 generators and 118
load aggregators. When compared with the benchmark of
not performing load management and not using renewable
generation, the proposed decentralized algorithm benefits
the load aggregators and generators by increasing their
profit by 23.34% and 15.2% on average, respectively. It
also helps the generators to reduce the peak-to-average
ratio (PAR) by 16.9%. Our algorithm converges to the
solution of the centralized problem with a significantly
lower execution time and a smaller number of iterations.
The PJ-ADMM-based algorithm converges faster com-
pared to the dual decomposition-based algorithm. When
compared with the full ac power flow model, the optimal
objective value with the linearized ac power flow model
is slightly smaller (by 1.2% to 2.9%) due to power
losses impact. Our approach returns a near-optimal load
scheduling, as the difference between the scheduled load
profiles with and without uncertainty is only 3.84%.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, the DNO’s cen-
tralized problem is formulated. In Section IV, a decentralized
algorithm is proposed to solve the DNO’s problem. Section V
provides the simulation results, followed by Section VI that
concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 2, consider a distribution network with a
set I of load aggregators and a set G of generators. Each load
aggregator is responsible for managing the load demand of its
electricity consumers (e.g., residential households, commercial
sectors). Each generator sells electricity to the grid. The load
aggregators and generators use a two-way communication
infrastructure to exchange necessary information with the
DNO, which is a neutral entity responsible for monitoring the
power flow in the network. The trading horizon is denoted
by H , {1, . . . ,H}, where H is the number of time slots
with an equal length (e.g., each time slot is 15 minutes). For
simplicity in the problem formulation, we assume that each bus
has exactly one load aggregator or one generator. It enables
us to denote the set of buses by |I ∪G| and uniquely denote a
load aggregator or a generator by its bus index. Let L denote
the set of branches in the network.

To avoid an abuse of notations, we use index h for a time
slot in general and use index t specifically for the current

Figure 2. A distribution network consisting of a DNO, several load aggrega-
tors, and several generators with renewable and conventional power plants.

time slot. At the beginning of the current time slot t, the
entities observe the updated information and optimize their
demand/supply during the period Ht = {t, . . . ,H} ⊆ H, but
they apply only the decision for the current time slot t. The
scheduling is performed with uncertainty about the demands
and (renewable) generation in the future time slots h > t. In
the following subsections, we discuss the models of generators
and load aggregators.

A. Generator’s Model

In this subsection, we model the conventional and renewable
units of a generator, and formulate a generator’s local problem.

1) Conventional Plant Model: In the current time slot t,
generator j ∈ G with a conventional unit offers the active
power profile pcon

j (t) = (pcon
j (h), h ∈ Ht). The generation

cost function of the conventional unit of generator j in time
slot h can be modeled by a continuous increasing convex
function of the output power pcon

j (h), e.g., the following class
of quadratic functions has been commonly used:

Ccon
j (pcon

j (h)) = aj2
(
pcon
j (h)

)2
+ aj1p

con
j (h) + aj0, (1)

where aj0, aj1, and aj2 are positive coefficients. The output
active power of a conventional unit is bounded. That is

pmin,con
j ≤ pcon

j (h) ≤ pmax,con
j , h ∈ Ht. (2)

A conventional generation unit can inject/absorb reactive
power, which can be represented by operating with lagging
or leading power factors. Let qcon

j (t) = (qcon
j (h), h ∈ Ht)

denote the injected reactive power profile of generator j. The
generator’s loading capability determines the restriction on the
injected reactive power, which is limited by the the generator’s
armature current limit, the filed current limit, and the under-
excitation limit. For h ∈ Ht, the constraints for a typical
capability curve of a generator are as follows [30, Ch. 5.4]:(

pcon
j (h)

)2
+
(
qcon
j (h))2 ≤ (pmax,con

j

)2
, (3a)(

pcon
j (h)

)2
+
(
qcon
j (h)− qfield

j

)2 ≤ (qmax,con
j − qfield

j

)2
, (3b)(

pcon
j (h)

)2
+
(
qcon
j (h)− qend

j

)2 ≤ (qend
j − q

min,con
j

)2
, (3c)

where qfield
j > 0 and qend

j < 0 are constants depending on
the specifications of the generator. qmin,con

j and qmax,con
j are the
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lower and upper bounds for the reactive power of generator j,
respectively. The feasible space defined by (2) and (3) is closed
and convex. For the reactive power generation qcon

j (h), we can
determine a unique upper bound for pcon

j (h) as F(qcon
j (h)),

where F(·) is a strongly concave function.
2) Renewable Plant Model: In the current time slot t,

generator j with a renewable unit offers an active power profile
pren
j (t) = (pren

j (h), h ∈ Ht). We make the following assump-
tion regarding the output reactive power of the renewable units:

Assumption 1: The renewable plant of generator j ∈ G is
operated at unity power factor.
Renewable units (e.g., wind turbines) are generally equipped
with power electronic converters, and thus they can control
their output reactive power. One can consider the P-Q char-
acteristics of the converters [31] to obtain the operational
constraints similar to (3) for the renewable units. In our system
model, the conventional unit of generator j can control its
output reactive power. Hence without loss of generality, we can
make Assumption 2 and allow the conventional unit performs
the reactive power compensation in bus j.

An accurate prediction of the renewable generation is a chal-
lenge for a generator. The deviation of the actual renewable
generation from the predicted generation can cause voltage
rise/drop in the grid. The generator may simply choose to
curtail the renewable generation surplus at almost no cost,
and thus the voltage rise can be avoided. In the case of supply
shortage, however, the network experiences voltage drop, and
the DNO must operate backup generators to alleviate the gen-
eration shortage. The DNO charges generator j by the prices
βj(h), h ∈ Ht ($/MWh) that depend on the cost of alleviating
the generation shortage. This penalty can motivate generator j
to avoid overestimation of its renewable generation. Generator
j can use the historical data record to forecast the average
generation level pavg,ren

j (h), as well as a symmetric uncertainty
bound [pmin,ren

j (h), pmax,ren
j (h)] around the average value for

its actual renewable generation in time slots h ∈ Ht. A
worst-case model is particularly attractive when the probability
distribution of the renewable generation is unavailable to the
generator or the DNO. The worst-case generation shortage of
generator j is equal to pren

j (h) − pmin,ren
j (h) − (F(qcon

j (h)) −
pcon
j (h)), where pren

j (h) − pmin,ren
j (h) is the worst-case re-

newable generation shortage and F(qcon
j (h)) − pcon

j (h) is the
reserved capacity for increasing the conventional generation
from pcon

j (h) to the upper bound F(qcon
j (h)).

The down-side risk associated with the generation short-
age of generator j in time slot h can be defined as the
worst-case cost of generation shortage. Generator j considers
Γj(p

ren
j (t), qcon

j (t)) as the the down-side risk of generation
shortage during the upcoming time period Ht as follows:

Γj(p
ren
j (t), qcon

j (t)) =
∑
h∈Ht

βj(h)
(
pren
j (h)− pmin,ren

j (h)

−
(
F(qcon

j (h))− pcon
j (h)

))
. (4)

Note that the down-side risk (4) is the maximum cost of
generation shortage. Hence, our problem is to minimize the
maximum cost of generation shortage (similar to the min-max
problem in a robust optimization technique), and the solution

to the maximum cost of generation shortage is given in (4).
For decision making in the current time slot, minimizing (4)

will guarantee a low risk of large penalty for the generator.
However, for large values of βj(h), minimizing (4) leads to
offering pren

j (h) around pmin,ren
j (h), which is very conservative

and possibly inefficient. Inspired by the work in [32], we
consider the following adaptive ellipsoidal uncertainty space
for the generation profile pren

j (t) in the current time slot t:

P ren
j (t) =

{
pren
j (t)

∣∣∣ pren
j (h) ∈

[
pmin,ren
j (h), pmax,ren

j (h)
]
,

∑
h∈Ht

[
pavg,ren
j (h)− pren

j (h)

pavg,ren
j (h)− pmin,ren

j (h)

]2
≤ ∆j(t)

}
, (5)

where 0 ≤ ∆j(t) ≤ |Ht| is the uncertainty budget for gener-
ator j in the current time slot t. If ∆j(t) = 0, then the space
defined in (5) is a singleton, corresponding to the scenario
pren
j (h) = pavg,ren

j (h), h ∈ Ht. As ∆j(t) increases, the size of
the uncertainty set enlarges. The space includes all possible
scenarios when ∆j(t) = |Ht|. In [32], ∆j(t) ≈

√
|Ht|

is suggested to provide an acceptable uncertainty set. For
∆j(t) = 0, generator j offers the desirable generation profile
pavg,ren
j (h), h ∈ Ht. Increasing the value of ∆j(t) causes

the generator to offer pren
j (h) less than pavg,ren

j (h), h ∈ Ht.
Although the down-side risk in (4) becomes smaller, but the
revenue from selling renewable generation would be small too,
which can cause dissatisfaction for the generator. We consider
a discomfort cost function Dj(p

ren
j (t)) to model the dissatis-

faction of generator j by deviating its renewable generation
profile from the desirable profile pavg,ren

j (h), h ∈ Ht. That is,

Dj

(
pren
j (t)

)
= dj

∑
h∈Ht

(
pavg,ren
j (h)− pren

j (h)
)2
. (6)

The cost in (6) is based on the Euclidean distance between
the profiles of offered and desirable renewable productions.
Parameter dj is a weight coefficient in $/(MWh)2 that converts
the discomfort of generator j to the monetary units.

3) Local Optimization Problem: In the current time slot t,
generator j determines the decision variable xj(t) = (pcon

j (t),
qcon
j (t), pren

j (t)). The objective of generator j is to maximize
its profit πgen

j (xj(t)), which is the revenue from selling active
and reactive powers with prices ρj(t) = (ρj(h), h ∈ Ht) and
%j(t) = (%j(h), h ∈ Ht) minus the cost of conventional gen-
eration and the cost associated with the renewable generation
shortage with penalties βj(t) = (βj(h), h ∈ Ht+1). That is,

πgen
j (xj(t)) =

∑
h∈Ht

( (
pcon
j (h) + pren

j (h)
)
ρj(h)

+ qj(h)%j(h)− C con
j

(
pcon
j (h)

) )
−Dj(p

ren
j (t))− Γj

(
pren
j (t), qcon

j (t)
)
. (7)

The problem for generator j ∈ G in the current time slot t is

maximize
xj(t)

πgen
j (xj(t))

subject to constraints (2)−(3), (8a)
pren
j (t) ∈ P ren

j (t). (8b)
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Functions Ccon
j (pcon

j (h)) and Dj(p
ren
j (t)) are strongly convex.

Furthermore, Γj(p
ren
j (t), qcon

j (t)) in (4) includes the strongly
concave function F(qcon

j (h)). Hence, the objective function (7)
is strongly concave. The feasible space Xj(t) defined by (8a)
and (8b) is convex and compact. Therefore, if problem (8) is
feasible, then it has a unique optimal solution x∗j (t).

We consider the optimal control decision of the current time
slot t for generator j given vector (ρj(t),%j(t),βj(t)) as

Bj (ρj(t),%j(t),βj(t)) := argmax
xj(t)∈Xj(t)

πgen
j (xj(t)). (9)

B. Load Aggregator’s Model

In this subsection, we discuss the model for the load
aggregators. As Fig. 3 shows, a load aggregator may serve
multiple consumers. A consumer is equipped with an en-
ergy consumption controller (ECC), which is responsible for
monitoring the consumers’ appliances as well as providing
the load aggregator with necessary information through the
communication network on behalf of the consumer. In the
following, we discuss the consumers’ appliances model.

1) Consumers’ Appliances Model: In the current time slot
t, an electric appliance is either asleep or awake. Let Aasleep

i (t)
and Aawake

i (t) denote the sets of asleep and awake appliances
of all consumers in the current time slot t, respectively. An
awake appliance a ∈ Aawake

i (t) is available to be scheduled
for operation, i.e., the load aggregator schedules the power
consumption profile ea,i(t) = (ea,i(h), h ∈ Ht).

The ECC provides the load aggregator i with the scheduling
horizon, utility function, and type of an awake appliance a ∈
Aawake
i (t) of its consumers. The scheduling horizon Ha,i ⊆
Ht defines the time interval, in which the appliance should
operate. The utility function Ua,i(ea,i(t)) is used to model
the satisfaction of the customer in monetary units from using
the appliance. We make the following assumption [33, Ch. 1]:

Assumption 2: For appliance a, the utility Ua,i(ea,i(t)) is an
increasing concave function of the consumption profile ea,i(t).

The increasing concavity of Ua,i(ea,i(t)) implies that the
utility of using appliance a increases by ea,i(t), but the rate of
change decreases with ea,i(t). The type of appliance depends
on its specifications and the customer’s preferences. Inspired
by the work in [34], we consider three types of appliances:

a) Type 1 Appliances: The appliance a of type 1 should
be operated within the scheduling horizon Ha,i and turned
off during other time slots, e.g., electric vehicle (EV). Let
A1
i (t) ⊆ Aawake

i (t) denote the set of appliances of type 1 that
are awake in the current time slot t. For a ∈ A1

i (t), we have

ea,i(h) = 0, h 6∈ Ha,i, (10a)

emin
a,i (h) ≤ ea,i(h) ≤ emax

a,i (h), h ∈ Ha,i, (10b)

Emin
a,i ≤

∑
h∈Ha,i

ea,i(h) ≤ Emax
a,i . (10c)

The utility obtained from using a type 1 appliance de-
pends on the total power consumption. The utility can be
expressed as Ua,i(ea,i(t)) = Ua,i

(∑
h∈Ha,i

ea,i(h)
)

, e.g.,

κa,i u
(∑

h∈Ha,i
ea,i(h)− Emin

a,i

)
with an increasing concave

function u(·) and nonnegative constant κa,i.

Figure 3. A load aggregator is connected to the ECC of each consumer via
a two-way communication network.

b) Type 2 Appliances: The appliances of type 2 can be
operated in time slots out of the scheduling horizon, but the
customer attains a relatively lower utility, e.g., TV and PC.
Let A2

i (t) ⊆ Aawake
i (t) denote the set of appliances of type 2

that are awake in time slot t. For a ∈ A2
i (t), we have

ea,i(h) ≥ 0, h 6∈ Ha,i, (11a)

emin
a,i (h) ≤ ea,i(h)≤emax

a,i (h), h ∈ Ha,i, (11b)

Emin
a,i ≤

∑
h∈Ha,i

ea,i(h) ≤ Emax
a,i . (11c)

The utility function of type 2 appliances depends on both
the amount of power consumption and the time of con-
suming the power, i.e., the customer would gain different
benefits from consuming the same amount of power at dif-
ferent times, e.g., watching the favorite TV program. We
have Ua,i(ea,i(t)) =

∑
h∈Ht

Ua,i(ea,i(h), h). As an example,
utility function Ua,i(ea,i) =

∑
h∈Ha,i

κa,i(h)u
(
ea,i(h) −

emin
a,i

)
+
∑
k 6∈Ha,i

κ′a,i(h)u
(
ea,i(h)

)
with an increasing concave

function u(·) and time dependent nonnegative coefficients
κa,i(h) and κ′a,i(h), κ′a,i(h)� κa,i(h) is a viable candidate.

c) Type 3 Appliances: The appliances of type 3 can be
operated out of the scheduling horizon without any constraint
on their total power consumption, such as lighting and re-
frigerator. Let A3

i (t) ⊆ Aawake
i (t) denote the set of currently

awake appliances of type 3. For a ∈ A3
i (t), we have

ea,i(h) ≥ 0, h 6∈ Ha,i, (12a)

emin
a,i (h) ≤ ea,i(h) ≤ emax

a,i (h), h ∈ Ha,i. (12b)

The utility Ua,i(ea,i) attained by the customer from us-
ing the appliances of type 3 depends on the amount of
power consumption ea,i(t) within the scheduling horizon
Ha,i, but not the time of consumption. The customer attains
a relatively lower utility out of interval Ha,i. For exam-
ple, function Ua,i(ea,i) =

∑
h∈Ha,i

κa,i u
(
ea,i(h) − emin

a,i

)
+∑

h6∈Ha,i
κ′a,i u

(
ea,i(h)

)
with an increasing concave function

u(·) and nonnegative constants κa,i and κ′a,i, κ
′
a,i � κa,i is a

viable candidate. The total utility of load aggregator i in time
slot t with decision xi(t) = (ea,i(t), a ∈ Aawake

i (t)) is

Ui(xi(t)) =
∑

a∈Aawake
i (t)

Ua,i(ea,i(t)), i ∈ I. (13)

2) Load Estimation: The scheduling of the awake appli-
ances depends not only on the current demand, but also on the
demand in future time slots. For example, if the future demand
is predicted to be high, then the currently awake appliances
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may be scheduled to operate at the current time slot.
The actual wake-up times of the appliances are not available

to the load aggregator in advance. To address this lack of
information, load aggregator i can collect the sleep-awake
historical data record of each appliance and estimate the
probability pa,i(h) that each appliance a ∈ Ai becomes
awake at each time slot h ∈ H. In practice, it may not
be possible for the load aggregator to reliably estimate the
appliances availability at the consumers’ appliance level. As
Fig. 3 shows, for practical implementation, the ECCs collect
the appliances’ sleep-awake historical data record and provide
the corresponding load aggregator with this information via
the communication network [35], [36]. In appendix A, we
show the conditional probability pa,i(h | t) that the appliance
becomes awake in an upcoming time slot h > t, given that it
has not become awake until the current time slot, t, is

pa,i(h | t) =
pa,i(h)

1−
∑t
h′=1 pa,i(h

′)
. (14)

A load aggregator has limited information about the
scheduling horizon, users’ utility functions, and type of the
appliances ahead of time. Predicting the controllability of an
appliance is a challenge with the lack of information about the
flexibility of a currently sleeping appliance. Thus, we consider
the worst-case scenario for the load demand in future time
slot, where the appliances that become awake in time slots
h > t should be operated once they become awake without
any control on their power and energy consumption. Mathe-
matically, the appliances are of type 1 and operate with the
nominal rating power enom

a,i and nominal energy demand Enom
a,i ,

i.e., emin
a,i (h) = emax

a,i (h) = enom
a,i and Emin

a,i = Emax
a,i = Enom

a,i .
The payment of the load aggregator in the worst-case

scenario is an upper-bound for its actual payment. Minimizing
the worst-case payment implies reducing the risk of high
payment. The expected electric demand lasleep

i (h) of the asleep
appliances in an upcoming time slot h > t is obtained as

lasleep
i (h) =∑
a∈Aasleep

i (t)

h∑
h′=max{t+1, h−Ta+1}

enom
a,i (h) pa,i(h

′ | t), (15)

where parameter Ta = Enom
a,i /e

nom
a,i ≥ 1 is the operation

duration of the appliance a ∈ Aasleep
i (t) that becomes awake

with the nominal specifications in the time slot h > t. The
summation in the brackets is equal to the probability that the
currently sleeping appliance a is operating in time slot h > t.

Let li(t) = (li(h), h ∈ Ht) denote the profile of total
active power consumption of load aggregator i during the time
interval Ht. We have

li(h) = lasleep
i (h) +

∑
a∈Aawake

i (t)

ea,i(h), h ∈ Ht. (16)

To model the reactive power consumption for load
aggregator i, we consider a constant power factor φi.
The reactive power for load aggregator i in time h is
li(h)sgn(φi)

√ (
1 − φ2

i

)
/φ2

i , where sgn(·) is the sign function.

3) Local Optimization Problem: Constraints (10a)−(16)
define the feasible space Xi(t) for decision vector xi(t) of
load aggregator i in the current time slot t. Load aggregator
i aims to maximize the profit πagg

i (xi(t)), which includes the
total utility in (13) minus the payment to the DNO during
period Ht. The DNO provides load aggregator i with price
ρi(h) for active power in each time slot h. We assume that
load aggregators do not pay for the reactive power. We have

πagg
i (xi(t)) = Ui(xi(t))−

∑
h∈Ht

li(h) ρi(h), i ∈ I. (17)

Load aggregator i solves the following optimization prob-
lem in time slot t to determine its decision vector ei(t):

maximize
xi(t)

πagg
i (xi(t)) (18a)

subject to xi(t) ∈ Xi(t). (18b)

Because (17) is strongly concave and the feasible space Xi(t)
is convex and compact, a unique solution x∗i (t) to problem
(18) exists if this problem is feasible. We consider the optimal
decision in the current time slot t for load aggregator i given
the market price vector ρi(t) = (ρi(h), h ∈ Ht) as

x∗i (t) = Bi(ρj(t)) := argmax
xi(t)∈Xi(t)

πagg
i (xi(t)). (19)

III. DNO’S RISK-AWARE SOCIAL-WELFARE PROBLEM

We consider the objective of maximizing the social welfare
for the DNO. Consider the grid-wide decision variable x(t) =
(xb(t), b ∈ G ∪ I). The DNO’s objective function is

fDNO (x(t)) =
∑
i∈I

Ui(xi(t))−
∑
j∈G

∑
h∈Ht

Ccon
j

(
pcon
j (h)

)
−
∑
j∈G

Dj

(
pren
j (t)

)
. (20)

The DNO is responsible for managing the market as well
as securing the operation of the power network. A linearized
ac power flow model [37] can be used to determine the
bus voltages and branch flows in a distribution network. Let
p(h) = (pb(h), b ∈ I ∪ G) and q(h) = (qb(h), b ∈ I ∪ G)
denote the vectors of injected active and reactive powers to all
buses in time slot h. We define the grid-wide bus voltage vector
v(h) = (vb(h), b ∈ I ∪ G) in time slot h. In Appendix B,
we show that there exist predetermined matrices R and X ,
and vector wv , such that v(h) = Rp(h) + X q(h) + wv .
The elements of matrices R and X depend on the admittance
matrix of the network. All elements of the vector wv are zero,
except the element correspond to the voltage magnitude of
the slack bus, which is set to 1 pu. For each bus b, we have
vmin
b ≤ vb(h) ≤ vmax

b . With the matrix notation, we have

vmin ≤ Rp(h) +Xq(h) +wv ≤ vmax, h ∈ Ht. (21)

We also consider the apparent power flow limits of the
branches. In Appendix B, we determine the linearized model
for the active power flow pflow

rs (h) and reactive power flow
qflow
rs (h) through line (r, s) ∈ L in time slot h. The apparent

power flow srs(h) through line (r, s) is upper bounded by
smax
rs , which implies that the feasible real and reactive powers
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are bounded by a circle. To linearize the constraint, we use a
piecewise approximation of the circular boundary by a regular
polygon with central angle α. In Appendix B, we obtain
constraint pflow

rs (h) cos (mα) + qflow
rs (h) sin (mα) ≤ smax

rs , for
line (r, s) ∈ L, where m = 0, . . . , 2π/α. We also express
pflow
rs (h) and qflow

rs (h) in terms of the vectors of active and
reactive power injections. We obtain the following equivalent
set of constraints for the branches’ power flow limit:

Sm p(h) + S̃m q(h) + w̃m ≤ smax, h ∈ Ht, (22)

where matrices Sm and S̃m, and vector w̃m depend on the
values of α, m, and the network admittance matrix.

The DNO considers the impact of renewable generation
uncertainty on the technical operation of the network. The
variation in the renewable generation can result in an unpre-
dicted voltage rise/drop. The DNO can curtail the renewable
generation surplus, and thus the voltage rise can be avoided
with almost no cost. However, in the case of generation
shortage, the DNO must perform some emergency actions,
such as operating the costly backup generators. Hence, the
voltage drop can be considered as an acceptable operational
metric to study the renewable generation shortage. We use
v(h) = Rp(h) + X q(h) + wv to obtain the voltage drop.
In the worst-case scenario, if the renewable generation levels
vary from the predicted value pren(h) to the minimum level
pmin,ren(h) and the conventional generation levels increase
from pcon

j (h) to the reserved capacity F (qcon
j (h)), then the

vector of voltage drops at all buses is obtained as

∆v(h) = R
(
pren(h)− pmin,ren(h)− (F(q(h))− pcon(h))

)
.

The DNO aims to ensure vmin ≤ v(h) + ∆v(h), h ∈ Ht,
which can be expressed as

vmin ≤Rp(h) +X q(h) +wv +R
(
pren(h)− pmin,ren(h)

− (F (q(h))− pcon(h))
)
. (23)

Let y(t) = (ρ(t), %(t), β(t)) denote the vector of price
signals. The DNO’s centralized problem is

maximize
x(t),y(t)

fDNO (x(t)) (24a)

subject to constraints (21)−(23), (24b)
xj(t) = Bj(ρj(t),%j(t),βj(t)), j ∈ G, (24c)
xi(t) = Bi(ρj(t)), i ∈ I. (24d)

Inequality (23) guarantees that the bus voltages remain
at their safe limits, even if the actual renewable generation
profile deviates from its predicted generation profile. That is,
the solution to problem (24) remains feasible even with the
renewable generation shortage. The optimal decisions of the
entities are included into problem (24) through constraints
(24c) and (24d), i.e., the DNO takes into account the reaction
of the entities towards any price signals and takes it into
consideration when making decisions in a centralized manner.
This constitutes a bi-level optimization problem, where the
network operator solves the outer level and sends the signals
y(t) to all entities. Each entity responds with its optimal
strategy by solving local problems (8) and (18). Problem (24)
is difficult to be solved due to the nonconvexity of constraints

(24c) and (24d). We reformulate (24) as a convex optimization
problem with a price signal design.

We relax (24c) and (24d) and replace them with the feasibil-
ity requirements xj(t) ∈ Xj(t), j ∈ G and xi(t) ∈ Xi(t), i ∈
I, which are convex. For future development, we express the
inequalities (21)−(23) in the form of

∑
b∈I∪GAbxb(t)−c�0.

The convex relaxation form of (24) is as follows:

maximize
x(t)

fDNO (x(t)) (25a)

subject to
∑
b∈I∪G

Ab xb(t)− c � 0, (25b)

xj(t) ∈ Xj(t), j ∈ G, (25c)
xi(t) ∈ Xi(t), i ∈ I. (25d)

Problem (25) is a single-level convex optimization problem
and does not include the price vector y(t) as the decision
variable. It is not a trivial fact that there exist price signals
y∗(t) = (ρ∗(t),%∗(t),β∗(t)) such that constraints (24c) and
(24d) are satisfied. We will prove that such price signals exist
and the relaxation gap between problems (24) and (25) is zero.

IV. DECENTRALIZED ALGORITHM DESIGN

In this section, we first determine the price signals to
close the gap between problems (24) and (25). Then, we
propose a dual decomposition-based decentralized algorithm
that provably converges to solution of problem (25). Finally,
we modified our proposed algorithm to an ADMM-based
algorithm to improve the convergence rate.

Consider the global optimal point of problem (25). Let
λ
∗
b(h) and λ∗b(h) denote the dual variables associated with

the upper bound and lower bound in constraint (21) for bus b,
respectively. Let µ∗m,l(h) denote the dual variables associated
with the constraint (22) for line l ∈ L and m = 0, . . . , 2π/α.
Let γb(h) denote the dual variable associated with constraint
(23) for bus b. Consider the following theorem.

Theorem 1: The gap between problems (24) and (25) is zero
if and only if for i ∈ I, j ∈ G, h ∈ Ht, the DNO sets

ρ∗i (h) =
∑
b∈I∪G

(
λ
∗
b(h)− λ∗b(h)− γ∗b (h)

)
(
Rb,i +Xb,i sgn(φi)

√
(1− φ2i )
φ2i

)
+
∑
l∈L

µ∗m,l(h)(
Sm,l,i + S̃m,l,i sgn(φi)

√
(1− φ2i )
φ2i

)
, (26a)

ρ∗j (h) =
∑
b∈I∪G

(
λ
∗
b(h)− λ∗b(h)

)
Rb,j

+
∑
l∈L

µ∗m,l(h)Sm,l,j , (26b)

%∗j (h) =
∑
b∈I∪G

(
λ
∗
b(h)− λ∗b(h)− γ∗b (h)

)
Xb,j

+
∑
l∈L

µ∗m,l(h) S̃m,l,j , (26c)

β∗j (h) =
∑
b∈I∪G

γ∗b (h)Rb,j . (26d)
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The proof can be found in Appendix C. It suggests a
decentralized algorithm to find the solution to (25).

A. Dual Decomposition-based Decentralized Algorithm

We propose Algorithm 1 that can be executed by the load
aggregators, generators, and DNO. In Algorithm 1, when the
current time slot t begins, each load aggregator i determines
the power consumption profile e∗a,i(t) of the awake appliances
a ∈ Aawake

i (t). Each generator j obtains the profiles of active
and reactive powers p∗,con

j (t) and q∗,con
j (t) of its conventional

unit as well as the offered generation profile p∗,ren
j (t) of its

renewable plant. The entities apply their scheduling decisions
for the current time slot t and use the obtained scheduling
decisions for the upcoming time slots h ≥ t+ 1 as an initial
point. Algorithm 1 is executed in an iterative fashion. Let k
denote the iteration index. Fig. 4 shows the interactions among
generators, load aggregators, and DNO in Algorithm 1. Our
algorithm involves the initiation and market trading phases.
• Initiation phase: Lines 1 to 9 describe the initiation phase.
•Market trading phase: The loop involving Lines 10 to 17
describes this phase, which includes the following parts:

a) Information exchange: In Line 11, each load aggregator i
uses (16) to obtain its demand profile lki (t) = (lki (h), h ∈ Ht),
and sends to the DNO. Each generator j sends the profiles
pcon,k
j (t), qcon,k

j (t), and pren,k
j (t) to the DNO.

b) DNO’s update: In Line 12, the DNO receives the up-
dated vector zk(t) from the entities. Let Λk(t) = (λ

k
(t),

λk(t), µk(t), γk(t)) denote the vector of grid-wide dual
variables in iteration k. The DNO updates Λk(t) as follows:

Λk+1(t) =

[
Λk(t) + εk

( ∑
b∈I∪G

Ab x
k
b (t)− c

)]+
, (27)

where [·]+ is the projection onto the nonnegative orthant
and εk is the stepsize in iteration k. In Line 13, the DNO
uses (26a)−(26d) to compute the updated prices ρk+1(t) and
%k+1(t) and penalties βk+1(t) for all buses.

c) Generator’s update: Generator j receives ρk+1
j (t),

%k+1
j (t) and βk+1

j (t) from the DNO. In Line 14, it updates
its strategy xkj (t) = (pcon,k

j (t), qcon,k
j (t),pren,k

j (t)) by solving
its local problem (8). This problem is a convex optimization
and can be solved efficiently.

d) Load aggregator’s update: Load aggregator i receives
ρk+1
i (h), h ∈ Ht from the DNO. In Line 15, it updates it

strategy xk+1
i (t) by solving its local problem in (18) which is

a convex optimization problem.
e) Step size update: We use a nonsummable diminishing step

size, i.e., limk→0 ε
k = 0,

∑
k ε

k =∞, and
∑
k(εk)2 <∞. In

Line 16, the step size is updated.

B. ADMM-based Decentralized Algorithm

Algorithm 1 is based on the dual iterative method and it
is guaranteed to converge to the global optimal solution to
(25) (or (24)) for the non-summable diminishing step size
[28, Prop. 5.2.1] and [38, Sec. 3.5, Prop. 5.4]. However, the
convergence of such a method often tends to be slow in
practice. Its convergence rate for strongly convex problems

Algorithm 1 Decentralized Energy Market Trading Algorithm.
1: Set k := 1 and ξ1 = ξ2 := 10−3.
2: If t = 1
3: Each load aggregator i ∈ I randomly initializes its users’

appliances load profile e1i (t).
4: Each generator j ∈ G randomly initializes its conventional

generation profiles pcon,1
j (t) and qcon,1

j (t).
5: Each generator j sets the presumed generation levels to
pren,1
j (h) = pavg,ren

j (h) for h ∈ Ht.
6: DNO sets v1b (h) = 1 pu, δ1b = 0, b ∈ I ∪ G, h ∈ Ht, and

Λ1(t) = 0.
7: Else if t > 1
8: Load aggregators, generators, and DNO initialize their

decision variables with their most updated values in the
equilibrium at time slot t− 1.

9: End if
10: Repeat
11: Each load aggregator i and generator j sends its load

profile lki (t) and generation profiles pcon,k
j (t), qcon,k

j (t),
and pren,k

j (t) to the DNO.
12: DNO obtains vector Λk+1(t) using (29).
13: DNO uses (26a)−(26d) to compute the updated values of

control signals ρk+1(t), %k+1(t), and βk+1(t), and sends
the control signals to the corresponding entity in each bus.

14: Each generator j updates its decision vector.
15: Each load aggregator i updates its load profile.
16: k := k + 1. The step size is updated.
17: Until |δkb (t)− δk−1b (t)| ≤ ξ1, |vkb (t)− vk−1b (t)| ≤ ξ2.

is O(1/
√
k) [28]. Another effective distributed approach is

based on the ADMM. The ADMM-based algorithm has at-
tracted attention in the literature (e.g., in [14]–[16]) due to its
higher convergence rate compared to the dual decomposition
technique. The commonly used form of the ADMM approach
is the variable splitting ADMM algorithm [29, Algorithm 1].
Introducing splitting variables can substantially increase the
number of variables and constraints. To overcome this issue,
we use a Jacobi-type scheme that updates all the variable
blocks in parallel. In the following, we develop an algorithm
based on the PJ-ADMM [29, Algorithm 4] with prox-linear
method [39] to solve problem (25).

First, we develop the augmented Lagrangian of problem
(25) with the augmented term τ a

2

∣∣∣∣Ax(t)−c
∣∣∣∣2
2
, where τ a > 0

is a weight coefficient. Next, we decompose the augmented
Lagrangian into the local problems for the load aggregators
and generators. Consider iteration k of Algorithm 1. For the
prox-linear method [39], we add the proximal term τ p

b

2

∣∣∣∣xb(t)−
xkb (t)

∣∣∣∣2 to the objective function of the local problem asso-
ciated with bus b ∈ G ∪ I, where τ p

b > 0 is the proximal
parameter. The price signals ykb (t) = (ρkb (t), %kb (t), βkb (t))
for bus b ∈ G ∪ I in (26a)−(26d) are modified as follows:

ỹkb (t) = ykb (t) + τ aAT
b

[ ∑
b′∈I∪G

Ab′ x
k
b′(t)− c

]+
. (28)
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Figure 4. Interactions among generators, load aggregators, and DNO.

The DNO’s update in (29) is modified to

Λk+1(t) =

[
Λk(t) + ζ τ a

( ∑
b∈I∪G

Ab x
k
b (t)− c

)]+
, (29)

where 0 < ζ < 1 is a damping parameter. The modified
algorithm has global convergence with rate O(1/k) under the
condition τ p

b > τ a||Ab||2 |G∪I|2−ζ for all buses [29, Lemma 2.2].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
decentralized algorithm on the IEEE 123-bus distribution test
feeder shown in Fig. 5. The original test system is unbalanced.
We consider only phase a, and consider the balanced config-
uration, where all switched are open. The trading horizon is
one day with H = 96, 15-minute time slots. The lines data
for the test system can be found in [40]. The limit for the
apparent power flow of branches is 1.05 pu. Parameter α is set
to 15◦. The limits on the bus voltages are 0.96 pu and 1.04 pu.
The test system has no generator in its original structure. We
modify this feeder by adding 5 generators in different buses.
For the quadratic cost functions of the conventional units of
generators j ∈ G, the coefficients aj2 and aj1 are randomly
chosen from the intervals [0.01 $/(kW)2, 0.025 $/(kW)2] and
[0.2 $/kW, 0.4 $/kW], respectively, and coefficient aj0 is set
to zero. We use the data in [30, Ch. 5.4] to model the loading
capability of the generators. We assume that three generators
have PV panels and two generators have wind turbine. To
obtain the samples for the output power of the renewables, we
scale down the available historical data from Ontario, Canada
power grid database [41], from November 1 to November 21,
2016. The weight coefficients dj , j ∈ G are chosen randomly
chosen from the interval [0.02 $/(kWh)2, 0.05 $/(kWh)2].

We assume that each load aggregator serves between 30
to 60 residential households. To model the demand of each
load aggregator, we assume that each residential customer
has the major appliances including EV, dish washer, washing
machine, dryer (as type 1), TV, PC, oven (as type 2), lighting,
refrigerator, freezer, and fan (as type 3). The nominal power
of the appliances can be found in [42]. For each appliance,
the awaking time probability distribution pa(h) is set as a
truncated normal distribution lower bounded by zero. Its mean
value is chosen at random from 8 pm to 6 am for the EV, 12
am to 12 pm for the refrigerator and freezer, and 10 am to 10
pm for other appliances. The standard deviation is set to 45
minutes. When an appliance becomes awake, its scheduling
window is selected between the awake time to the end of the

Figure 5. A modified IEEE 123-bus test system [40] with 5 generators and
118 load aggregators. The generators in buses 18, 51, and 150 have PV
panels, and the generators in buses 60 and 86 have wind turbines.

operation cycle, H. The length of the scheduling windows are
uniformly chosen at random from set {4 hr, 5 hr, . . . , 10 hr}
for the EVs, {7 hr, 2 hr, . . . , 23 hr} for the the refrigerator and
freezer, and {1 hr, 2 hr, . . . , 5 hr} for other appliances.

We use the logarithmic utility function u(·). For ap-
pliances of type 1, constant κa,i is randomly chosen
from [0.5 $/kW, 1.5 $/kW]. For appliances of type 2,
time dependent coefficients κa,i(h) and κ′a,i(h) are ran-
domly chosen from intervals [0.5 $/kW, 1.5 $/kW] and
[0.1 $/kW, 0.3 $/kW], respectively. For appliances of type
3, constants κa,i and κ′a,i are randomly chosen from inter-
vals [0.5 $/kW, 1.5 $/kW] and [0.1 $/kW, 0.3 $/kW], respec-
tively. For the benchmark scenario, we consider a system
without renewable generation for the generators and without
demand response for the load aggregators, and thus the users
operate their appliances right after they become awake with
the nominal power consumption. We use MOSEK solver and
perform simulations using Matlab R2016b, CVX in a PC with
processor Intel(R) Core(TM) i7-3770K CPU@3.5 GHz.

A. Load Aggregators’ and Generators’ Strategy

Each load aggregator executes Algorithm 1 to schedule the
appliances of its users. Fig. 6 shows the total load profiles
of the load aggregators in buses 17, 23, 90, and 110 in the
benchmark scenario and the scenario with load scheduling.
Peak shaving can be observed in the load profiles. Results
for all load aggregators verify that by executing Algorithm 1,
the peak load demand is reduced by 19.73% on average. Load
scheduling is performed by each load aggregator with the goal
of increasing the profit in (17). Fig. 7 shows that the profit of
the load aggregators 17, 23, 90, and 110 increases with demand
response. Specifically, results show that the profit for all load
aggregators is increased by 22.34% on average, since they
can observe the price fluctuations and modify the appliances’
schedule accordingly. Moreover with renewable generation,
the electricity price is reduced. Thus, the load aggregators can
benefit from lower prices during the day.
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Figure 6. The profiles of total load demand during one day with 96 time
slots for buses 17, 23, 90, and 110 with and without demand response and
renewable generation.
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Figure 7. The profit for load aggregators with and without demand response
and renewable generation.
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Figure 8. (a) The generation of the conventional unit of the generator in bus
18; (b) the PV panel’s historical data samples; and (c) the offered and actual
generation profiles of the PV panels installed at bus 18.

The generators can benefit from the renewable units’ pro-
duction and users’ load scheduling to smooth out their con-
ventional generation profiles; thereby reducing their generation
cost during the peak hours. For example, Fig. 8 (a) shows
the conventional generation profile of the generator in bus
18. With renewable generation and demand response, the
peak generation level is reduced from 537 kW to 413 kW
per time slot (i.e. 24% reduction). This generator has a PV
panel with the historical generation record shown in Fig. 8
(b). The generator executes Algorithm 1 and responds to the
penalties βj(t) from the DNO in each time slot to set the
generation level for its PV panel. The uncertainty budget is set
to ∆j(t) =

√
Ht. Fig. 8 (c) shows the result for the offered and
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Figure 9. (a) The generation of the conventional unit of the generator in bus
60; (b) the wind turbine’s historical data samples; and (c) the offered and
actual generation profiles of the wind turbines installed at bus 60.
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Figure 10. The offered renewable generation of the generator in bus 60 for
different values of the uncertainty budget ∆j(t).
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Figure 11. (a) The PAR in the generation and (b) the profit of the generators.

actual renewable generations. The offers may not be equal to
the actual production; however by considering the generation
uncertainty, the offered generation results in the optimal risk
of energy shortage in bus 18. Fig. 9 (a) shows the conventional
generation profile of the generator in bus 60. The reduction
in the peak generation can be observed. This generator has a
wind turbine with the historical generation record shown in
Fig. 9 (b). Fig. 9 (c) shows the offered and actual generation
profiles for the wind turbine in bus 60.

The offers for the generation of renewable units mainly de-
pends on the uncertainty budget of the generators. In particular,
Fig. 10 shows that when parameter ∆j(t) in (5) is zero, then
the generator in bus 60 offers pren

j (h) = pavg,ren
j (h), h ∈ Ht.

As ∆j(t) increases, the size of the uncertainty set enlarges.
In [32], ∆j(t) ≈

√
|Ht| is suggested and we can observe

that the offered generation is slightly lower than the average
generation levels. If ∆j(t) = |Ht|, then the generator becomes
risk-averse and offers a relatively lower generation level to the
market. Although with ∆j(t) = |Ht|, the generator will pay
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Figure 12. Average voltage magnitude of all buses during the day with and
without renewable generation and demand response program.

lower penalty for the generation shortage, this is not preferable
because the generator will have a significantly lower revenue
from selling renewable generation. To quantify the strategic
behaviour of the generators, we consider the PAR of the
generation. Fig. 11 (a) shows that the PAR is reduced for the
generators by 16.9% on average. A lower PAR means a lower
generation cost, and thus a higher profit. Fig. 11 (b) shows
that the generators’ profit is increased by 15.2% on average.

B. DNO’s Strategy for the Voltage Profile

We study how the demand response and renewable gen-
eration affect the voltage profile. We consider the average
voltage magnitude of all buses in different time slots for
three scenarios: (i) the scenario with renewable generation and
demand response, (ii) the scenario with renewable generation
and without demand response, and (iii) the scenario without
renewable generation and with demand response. Fig. 12
shows that the average voltage is higher in the first scenario.
The demand response deployment results in a lower peak load,
and thus a lower voltage drop in different buses. The DNO also
takes into account constraint (23) to ensure sufficient margin
for the voltage drop. The DNO aims to guarantee the network
safe operation in case of high renewable generation shortages.
Hence in the first scenario, the DNO operates the network
with a larger voltage margin from the lower bound 0.96 pu.
In the second scenario, we can observe a lower voltage levels
specially during the intervals [12 pm, 5pm] and [7 pm, 11 pm].
The reason is the higher demand during these time periods
(see Fig. 6) without demand response. In the third scenario,
the lack of renewable generation causes the DNO to be certain
about the total generation level in the system. Hence, it will
operate the system with a smaller voltage margin from 0.96 pu
with the goal of reducing the conventional generation levels
and achieving a higher social welfare.

C. Algorithm Convergence and Running Time

We study the required number of iterations for convergence
of Algorithm 1 with the dual decomposition and PJ-ADMM
methods. For instance, we consider the convergence of the
average voltage magnitude of all buses at 12 pm. Fig. 13
shows that Algorithm 1 with the dual decomposition converges
in about 45 iterations. Whereas, 22 iterations are enough for
the convergence of Algorithm 1 with the PJ-ADMM. We
also consider six test systems in Table I. All test systems
can be found in [40] except the system with 1300 buses,
which is a part of 8500-bus test system. In the test networks
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Figure 13. The convergence of average voltage magnitude at 12 pm.

Table I
THE AVERAGE NUMBER OF REQUIRED ITERATIONS OF THE DUAL
DECOMPOSITION-BASED AND PJ-ADMM-BASED ALGORITHMS.

Average Number of Requiered Iterations

Test System Dual Decomposition-based PJ-ADMM-based

IEEE 13-bus 15 11

IEEE 34-bus 18 13

IEEE 37-bus 27 16

IEEE 123-bus 41 22

IEEE 1300-bus 139 102

IEEE 8500-bus 191 127

other than IEEE 123-bus system, the number of generators
is set to 10% of the number of load aggregators. Half of
the generators are equipped with PV panels and the others
have wind turbines. The specifications of the generators and
load aggregators are set according to the simulation setup.
We observe that Algorithm 1 with the PJ-ADMM method
converges faster. However, it does not imply that PJ-ADMM
method is always preferable to the dual decomposition method.
Algorithm 1 with the dual decomposition method leads to
a profit maximization subproblems for the entities, which is
practical. Whereas, the PJ-ADMM method requires the DNO
to motivate the entities to add a proximal term to their objective
functions, which may not be implementable in practice.

Next, we evaluate the scalability of Algorithm 1 by compar-
ing its running time with the centralized algorithm for different
test systems. In the centralized algorithm, the DNO solves
problem (25). In Fig. 14, we provide the average running
time of Algorithm 1 and the centralized approach for six
test systems. The centralized algorithm suffers from a high
execution time due to the large number of decision variables
and constraints. On the other hand, Algorithm 1 is executed by
each entity to solve its own local optimization problem with
its locally available information in a distributed and parallel
fashion. Hence, the number of decision variables for each
entity becomes independent of the size of the test system. The
overall running time of Algorithm 1 increases almost linearly
with the number of buses due to the increase in the required
number of iterations for convergence in larger test systems.
The running time with the PJ-ADMM is lower due to the
smaller number of iterations required to converge.
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Figure 14. The running time of the centralized and decentralized algorithms.

Table II
THE OPTIMAL VALUE OF THE DNO’S PROBLEM (25) WITH LINEARIZED

AC AND FULL AC POWER FLOW MODELS.

Optimal Objective Value

Test system Linearized ac Power Flow Full ac Power Flow

IEEE 13-bus 14,280.18 14,136.74

IEEE 34-bus 31,449.23 30,954.47

IEEE 37-bus 39,751.48 39,204.61

IEEE 123-bus 124,041.68 121,863.09

IEEE 1300-bus 1,582,458.48 1,538,505.67

IEEE 8500-bus 5,374,020.35 5,218,818.64

D. Linearized ac and Full ac Power Flow Models

We elaborately investigate the approximation in using the
linearized AC power flow model. We compare the optimal
value of the DNO’s problem (25) with the linearized ac power
flow and full ac power flow models. We apply semidefinite
programming (SDP) to obtain the global optimal value of
the DNO’s problem with the full ac power flow model [43],
[44]. The calculation results in Table II show that the optimal
value of the DNO’s problem with full ac power flow model
is lower by about 1.2% (in 13-bus system) to 2.9% (in 8500-
bus system) than the optimal value with linearized ac power
flow model. A main difference is that the full ac power flow
includes the network losses, while the linearized ac power flow
is a lossless model. The inclusion of the power losses leads
to a higher generation cost and lower bus voltages, and thus
a slightly smaller optimal value for the DNO’s problem.

E. Impacts of Uncertainties

We also compare the performance of Algorithm 1 for the
scenario with uncertainty in the load demand and renewable
generation and the scenario with complete information. As an
example, we consider the load profile of the load aggregator
110 in Fig. 15. The lack of information makes the load
aggregator to be more conservative, since it considers the
worst-case demand for the currently sleeping appliances in
the upcoming time slots. Whereas, when the load aggregator
has complete information, it can better manage the appliances
especially during the peak hours. The difference between the
two load profiles is 3.84%. It shows that using a receding
horizon technique can lead to a near-optimal load scheduling
compared to the scenario with complete information. The
receding horizon technique enables the load aggregator to
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Figure 15. Load scheduling for bus 110 with and without uncertainty.

observe new information and modifies its load estimation at
the beginning of every time slot.

VI. CONCLUSION

In this paper, we proposed a decentralized algorithm for
energy trading among the load aggregators and generators.
We considered the uncertainty in the generation and load. The
centralized problem was formulated as a bi-level optimization
problem. Convex relaxation techniques were used to convexify
the problem. We proved the zero relaxation gap and developed
a decentralized the IEEE 123-bus test feeder showed that the
proposed algorithm helped the load aggregators and generators
by increasing their profit by 23.34% and 15.2% on average,
respectively. It also helped the generators to reduce the PAR
by 16.9%. Our algorithm converged to the solution of the
centralized problem with a significantly lower execution time
and a smaller number of iterations. Our algorithm with the PJ-
ADMM converged faster compared to the dual decomposition.
When compared to the full ac power flow, the optimal objec-
tive value with the linearized ac power flow model was smaller
by 1.2% to 2.9%. The difference between the scheduled load
profiles with and without uncertainty was only 3.84%, which
shows the acceptable performance of our algorithm.
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APPENDIX

APPENDIX A: THE PROOF OF EQUATION (14)

By definition, with probability pa(h), a ∈ Ai, h ∈ H, each
appliance a becomes awake at each time slot h ∈ H. We use
the Bayes rule to compute pa(h | t). We have

pa(h | t) = Prob{e1|e2}

=
Prob{e2|e1}Prob{e1}

Prob{e2}
, (30)

where e1 is the event that the appliance becomes awake in the
upcoming time slot h > t and e2 is the event that the appliance
has not become awake until the current time t. The conditional
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probability Prob{e2|e1} is equal to 1, since appliance a is
asleep with probability 1 in time t if it becomes awake in the
upcoming time slot h > t. By definition, Prob{e1} is equal
to pa(h). Prob{e2} is equal to 1−

∑t
h′=1 pa(h′). Substituting

these probabilities in (30) completes the proof. �

APPENDIX B: LINEARIZED AC POWER FLOW MODEL

We use the approach in [37] to formulate the linearized ac
power flow model. Let δb(h) denote the voltage phase angle of
bus b in time h. Let Grs and Brs denote the real and reactive
parts of the entry (r, s) in admittance matrix Y . Let brr and
grr denote the shunt susceptance and conductance at bus r.
The linearized ac power flow can be expressed as [37][

p(h)
q(h)

]
=

[
−B′ G′

−G −B

] [
δ(h)
v(h)

]
, h ∈ Ht, (31)

where the diagonal element (r, r) of matrices B and B′ are
Brr and Brr − brr, respectively. The non-diagonal elements
(r, s) of both B and B′ are Brs. The diagonal element (r, r)
of matrices G and G′ are Grr and Grr − grr, respectively.
The non-diagonal elements (r, s) of both G and G′ are Grs.
The approach is performed around flat voltage profile and
negligible angle difference. We exclude the row and column
correspond to the slack bus. We invert the remaining matrix
equation (31). We add a row and column with all zero elements
correspond to the slack bus index. We can write the voltage
angles and magnitudes of all buses (including the slack bus)
in terms of the injected powers as follows:[

δ(h)
v(h)

]
=

[
X ′ R′

R X

] [
p(h)
q(h)

]
+

[
wδ
wv

]
, h ∈ Ht, (32)

where the elements of matrices R, R′, X , and X ′ depend
on the admittance matrix of the network. All elements of the
column vector wδ are zero. All elements of the column vector
wv are zero, except the element correspond to the voltage
magnitude of the slack bus, which is set to 1 pu. The linearized
power flow through line (r, s) can be obtained as:

pflow
rs (h) =

Rrs(vr(h)−vs(h))+Xrs(δr(h)−δs(h))

R2
rs +X2

rs

, (33a)

qflow
rs (h) =

Xrs(vr(h)−vs(h))−Rrs(δr(h)−δs(h))

R2
rs +X2

rs

. (33b)

We define the vectors pflow(h) = (pflow
rs (h), (r, s) ∈ L) and

qflow(h) = (qflow
rs (h), (r, s) ∈ L) in time slot h. Equations

(33a) and (33b) can be expressed as[
pflow(h)
qflow(h)

]
=

[
Lδ Lv
L′δ L′v

] [
δ(h)
v(h)

]
, h ∈ Ht, (34)

where r-th and s-th elements in the row that corresponds to
line (r, s) ∈ L for the |L| × |I ∪ G| matrices Lv , Lδ , L′v , L′δ
are Rrs

R2
rs+X

2
rs

, Xrs

R2
rs+X

2
rs

, Xrs

R2
rs+X

2
rs

, and − Rrs

R2
rs+X

2
rs

, respectively.
Other elements are zero. Combining (32) and (34), we obtain
the following matrix equation for the branch flows:[
pflow(h)
qflow(h)

]
=

[
L̂p L̂q
L̂′p L̂′q

] [
p(h)
q(h)

]
+

[
ŵp
ŵq

]
, h ∈ Ht. (35)

The apparent power flow srs(h) =
√
p2rs(h) + q2rs(h) in

line (r, s) is upper bounded by smax
rs , which is a circle. To

linearize the constraint, we use a piecewise approximation
of the boundary by a peripheral regular polygon with central
angle α. We have

pflow
rs (h) cos (mα) + qflow

rs (h) sin (mα) ≤ smax
rs , (36)

where m = 0, . . . , 2π/α. Substituting (35) into (36), we obtain

Sm p(h) + S̃m q(h) + w̃m ≤ smax, h ∈ Ht, (37)

where Sm = cos (mα)L̂p+sin (mα)L̂′p, S̃m = cos (mα)L̂q+

sin (mα)L̂′q , and w̃m = cos (mα)ŵp + sin (mα)ŵq . �

APPENDIX C: THE PROOF OF THEOREM 1

We first develop the Lagrangian of problem (25). Let Λ(t) =
(λ(t), λ(t), µ(t), γ(t)) denote the vector of dual variables.

L(x(t),Λ(t)) =

fDNO (x(t))− Λ(t)T

( ∑
b∈I∪G

Ab xb(t)− c

)
. (38)

Now we consider the first-order optimality conditions for
(25). For b ∈ I ∪ G and all xb(t) ∈ Xb(t), we have

∇xb(t)L(x∗(t),Λ∗(t))
(
xb(t)− x∗b(t)

)
≤ 0. (39)

If we write the optimality condition in (39) for xi(t), i ∈ I,
pcon
j (t), qcon

j (t), and pren
j (t), j ∈ G, then the results will be the

optimality conditions for the local problems (8) and (18) with
the price signals in (26a)−(26d). As an example, consider load
aggregator i ∈ I. Then, we have

∇xi(t)L(x∗(t),Λ∗(t)) =

∇xi(t)

(
Ui(x

∗
i (t))− Λ∗(t)T(Ai x

∗
i (t))

)
. (40)

We can show that the term ∇xi(t)Λ
∗(t)T(Ai x

∗
i (t)) in (40)

can be expressed as
∑
h∈Ht

l∗i (h)ρ∗i (h), where ρ∗i (h) is
given in (26a). Hence, the optimality condition in (39) for
xi(t), i ∈ I is in fact the optimality condition for the
local problem (18) with price signal ρ∗i (h) in (26a), i.e., we
have x∗i (t) = Bi(ρ∗i (t)). In a similar way, we can show
that x∗j (t) = Bj(ρ∗j (t),%∗j (t),β∗j (t)) with the price signals
in (26b)−(26d). Hence, the solution to problem (25) with
the price signals in (26a)−(26d) is feasible for the original
problem (24). Since (25) is the relaxation form of (24), the
relaxation gap is zero with price signals in (26a)−(26d). �
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