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Abstract  16 

Cascading failure is the main mechanism for progressing large blackouts in power systems. 17 

Following an initial event, it is challenging to predict whether there is a potential for starting 18 

cascading failure. In fact, the potential of an event for starting a cascading failure depends on 19 

many factors such as network structure, system operating point and nature of the event. In this 20 

paper, based on the application of decision tree, a new approach is proposed for identifying 21 

harmful line outages with the potential of starting and propagating cascading failures. For this 22 

purpose, associated with each trajectory of the cascading failure, a blackout index is defined that 23 

determines the potential of the initial event for triggering cascading failures towards power 24 

system blackout.  In order to estimate the blackout indices associated with a line outage, a three 25 

stages harmful estimator decision tree (HEDT) is proposed. The proposed HEDT works based on 26 

the online operating data provided by a wide area monitoring system (WAMS). The New 27 

England 39-bus test system is utilized to show the worthiness of the proposed algorithm. 28 

 29 
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1. Introduction 31 

Security assessment with respect to critical contingency with the potential for triggering 32 

cascading failure leading to blackout is the main concern for complex modern power systems. 33 

Cascading failure is recognized as one of the major threats for a blackout in power systems. 34 

Cascading failures successively weaken the system and make further failures more likely so that 35 

a blackout can propagate to disable large portions of the electric power system. The failure can 36 

be due to a variety of means, including action or malfunction of the protection system, automatic 37 

or manual controls, and physical breakdown. Long, intricate cascades of events were the main 38 

cause of the August 2003 blackout in Northeastern America that disconnected 61,800 MW of 39 

power [1], and cascading failures from Germany to eastern Europe resulted in Europe blackout 40 

in 2006 [2].  41 

Typical contingency analysis based on the n-1 security is not able to reveal system vulnerability 42 

and harmful contingencies with the potential for developing blackout. Therefore, a blackout 43 

based security assessment is necessary for revealing harmful contingencies and vulnerable 44 

operating conditions. For this purpose, simulation of the cascading failure is a vital requirement. 45 

However, the process of cascading failure is very complex and time consuming to be 46 

implemented in the context of a contingency analysis algorithm.  47 

There are two approaches for modeling dynamic of cascading events and blackout in power 48 

systems. The first one is deterministic approaches in which each component is modeled in detail. 49 

Complete dynamical description of power system involves detailed knowledge of each 50 

component and its coupling to the rest of the system. Because all of the components and the 51 

physical laws governing their interactions are known, the simulation of the process for cascading 52 

blackouts and events would be possible. The second one is probabilistic approaches in which 53 
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events and process of cascading events and blackout are probabilistically modeled based on the 54 

random characteristic of the events [3].  55 

DC load flow analysis is an approximate method for the determination of static flows within a 56 

power system. The method is useful due to the fact that it produces approximate flows in a 57 

system with a linear non-iterative method. This is in comparison to the use of AC load flow 58 

analysis which makes use of iterative procedures, such as the Gauss-Seidel and Newton-Raphson 59 

methods, in order to find solutions [4], [5]. The DC load flow analysis is less accurate than a full 60 

AC load flow due to the fact that it is based on assumptions. These assumptions give good 61 

approximations to the flow distributions that occur after contingencies and therefore the large 62 

increase in the tractability, and a number of cascading events that can be analyzed, make the DC 63 

load flow approximation a useful tool in cascading failure modeling for power systems. In [6], a 64 

modified DC power flow-based cascading failure simulator to evaluate its utilization in the 65 

contingencies triggered by both bus and branch failures is presented in which simulation results 66 

of DC are compared and validated against the transient stability analysis based approach. In [7], 67 

by using “DC” load flow and analysis of hidden failures of the network, the blackout is modeled. 68 

In [8], the effect of the choice of DCOPF solution at each stage on the risk of cascading failures 69 

is shown. Using DC power flow, Ref. [9] proposes an open source MATLAB based package for 70 

academic purposes to analyze cascading failures due to line overloads in a power grid. 71 

In Ref. [10] a variety of methods are emerged to study the mechanism of cascading outages, and 72 

the theory can be divided into four categories: self-organized criticality, complex network theory, 73 

operational reliability theory, power system simulation theory. Carreras et al. have produced 74 

comprehensive work on self-organized criticality [11]-[13] in cascading failures using the AC 75 

power flow-based Manchester model [14], [15] and CASCADE model [16]. In [17], transmission 76 
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grid reliability concerning cascading line overloads and outages is studied. In [18] the system 77 

reliability of the cascading models is analyzed. In [19] angle stability of power system with 78 

multiple operating conditions considering cascading failure is proposed. In [20], a new method in 79 

detecting power system islanding contingencies using both the system's topological structure and 80 

real-time system dynamic state variables is presented. A probabilistic framework for online 81 

identification of post fault dynamic behavior of power systems with renewable generation based 82 

on decision trees is introduced in [21]. In [22], illustrates how complex network theory can be 83 

applied to modern smart grids in structural vulnerability assessment, cascading blackouts, grid 84 

synchronization, network reconfigurations, distributed droop control, pinning control for micro-85 

grid autonomous operations, and effective grid expansions. In [23], a decision tree assisted 86 

scheme is presented to determine the timing of controlled islanding in real time by using phasor 87 

measurements. The objective of [24] is to develop adaptive controlled islanding as a component 88 

of an emergency power system control strategy. In [25], a unified framework is proposed to 89 

clarify the important concepts related to DSE, forecasting-aided state estimation, tracking state 90 

estimation, and static state estimation.  91 

While a wide variety of models are proposed for modeling blackouts, but to the authors’ 92 

knowledge, rare studies are done in the prediction of blackouts. It demonstrates the importance 93 

of this paper. For instance, in Ref. [26] the stochastic processes in the dynamics of cascading 94 

failure propagations in power systems is studied which can provide predictive information for 95 

the failure spreading in the network. Ref. [27] proposes a probabilistic approach for prediction of 96 

cascading failure in power system, which predicts the next transmission line to trip based on the 97 

initial triggering event by considering the thermal limit of each line as a constraint.  98 

The present research proposes a new method for identifying critical line contingency with the 99 
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potential for developing cascading failure propelling power system toward blackout. This new 100 

approach is based on the Decision Tree Analysis. In this approach, at the pre-contingency steady 101 

state condition by online measurement of the active power of line by means of WAMS, the 102 

proposed DT is able to evaluate the harmfulness of the line outage for triggering cascading 103 

failure and blackout. The proposed method is based on the static model in which element 104 

overloading is considered as the main cause for creating and developing cascaded events. 105 

Finally, based on IEEE 39-bus test system, the simulations are conducted to demonstrate the 106 

effectiveness of the proposed model.  107 

The rest sections of this research are organized as follows: Cascading failure model is introduced 108 

in Section II. In Section III, the structure of the proposed approach is described. The simulation 109 

study of the research is done in Section IV. Finally, the relevant conclusions are included in 110 

Section V.  111 

2. Cascading failure modeling  112 

The Cascading failure is one of the important mechanisms to develop the large blackouts in 113 

power networks. The term “failure” indicates the outage of elements in power system due to the 114 

action of protection devices to prevent damages to the components of the system. Following an 115 

initial event, e.g., a fault or outage of a line with heavy loading, the system may experience some 116 

violations like severe voltage drop, line overloading or generator swing. If these violations can 117 

activate protective relays, the process of cascading failure will start and continue according to 118 

system vulnerability. System potential for triggering and propagating cascading failures 119 

following an initial event is referred as the risk of power networks for the blackout.  120 

The cascading failure process can be propagated and triggered based on the following 121 

characteristics of power networks. 122 



6 
 

1. Brittleness of system components (like a transmission line, transformer and generator) 123 

due to limit violations following each event.  124 

2. Activation of protective relays plays a key role to trigger new component outage leading 125 

to propagation of cascading events.  126 

3. The principal cause for bringing out new outage following an initial event is relay 127 

tripping of violated elements. Thus, the limit violation by system components 128 

accompanied by relay action is the prime reason for propagating cascading failure. On the 129 

developed stages of cascading failures, undesirable islands can propel power system into 130 

a blackout.  131 

For modeling the phenomena of cascading failure in power systems, various methods and 132 

algorithms are proposed. In the Following the main four methods are described.  133 

 134 

2.1. CASCADE model 135 

The CASCADE model is an analytically tractable model for general systems with the potential 136 

of cascading failure [16]. This model does not incorporate the complicated nature of power 137 

systems and the interactions of components within the system. It qualitatively describes the 138 

nature of cascading events in power systems and therefore is an appropriate model to introduce 139 

the concept of cascading failure in power transmission systems. The model comprises of a 140 

system of n identical components with each given an independent random initial loading. Each 141 

component has a loading failure threshold at which the component fails. After a component fails 142 

it transfers a fixed amount of its load to the other components of the system. A disturbance has 143 

occurred in the system which results in random increases in the loadings of the components.  If 144 

loading of any of the components goes above its threshold value it fails and its load will be 145 
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transferred to the remaining system components. The secondary increase due to the failed 146 

component may cause more components to go above their threshold values which cause 147 

cascading failure to propagate more. The cascade stops when all of the components are tripped 148 

out or none of the components have a value above their threshold. This relatively simple model 149 

captures the essence of cascading failures in power transmission systems.  150 

 151 

2.2. Hidden Failure Model  152 

The Hidden Failure model is based on the idea that cascading failure within power systems can 153 

occur due to the failure of protective relays which are physically and electrically close to a 154 

transmission line which has been forced out [28]. The hypothesis is that a line failure exposes a 155 

hidden failure in the protective equipment of neighboring branches. If a line fails, its neighbors 156 

are given a probability of failure that is a function of the new loading of the line. As a result of 157 

this cascading mechanism, as each neighbor fails, the initial disturbance can propagate through 158 

the system resulting in diminished transmission capacity and load shedding. This model while 159 

diverging from the simpler CASCADE model, by including the transfers of loading in a manner 160 

that is more consistent with power system operation, still shows characteristics that are close to 161 

that of the CASCADE model 162 

 163 

2.3. The Manchester Model   164 

The Manchester model uses a full AC load flow analysis [29] to model cascading failures 165 

through sympathetic tripping of components including generator instabilities in response to 166 

disturbances with subsequent load shedding. It is again observed in this model that the risk of 167 
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blackouts goes through a critical phase transition in response to an increase in the system 168 

loading. 169 

 170 

2.4. OPA model 171 

All of the above models simulate the evolution of cascades through a system in the short term 172 

and therefore model only is used for a given fixed topology, the full representation of real-world 173 

power transmission systems would include the engineering response to blackouts or perceived 174 

threats of blackout risk. The OPA model was developed to model this evolution of a power 175 

system to a dynamical state that is near a critical point [30-31]. The model represents in a very 176 

simplified manner the cascading dynamics of the electrical power transmission system, reduction 177 

in the generation capacity of the power system as well as the operation, maintenance and repair 178 

of the transmission system. These simplifications may lead to the behavior of the model to be 179 

unable to represent the actual dynamics of power systems appropriately. 180 

 181 

3. The Proposed Approach  182 

The conceptual structure of the proposed algorithm for identifying harmful line contingency with 183 

the potential for initiating and propagating cascading failures in power systems leading to 184 

blackout is shown in Fig. 1.  185 
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 186 

Fig. 1. The conceptual structure of the proposed algorithm for identifying harmful line outage. 187 

 188 

Based on the proposed approach, in a real-time environment, at any instant of system operation 189 

by using operational data gathered by WAMS through the system, the harmfulness of each line 190 

contingency for initiating cascading failure and propelling system to blackout is evaluated. For 191 

this purpose, a harmful estimator decision tree (HEDT) is designed and trained which can 192 

estimate the harmfulness of each line outage for initiating cascading failure leading to a blackout. 193 

The operational data required for HEDT consist of active power flow of lines which are 194 

measured directly by PMUs. If a line contingency is recognized as harmful with the potential for 195 

developing cascading failure and blackout, so, it remains to adopt proper preventive actions as 196 

remedial actions to mitigate line hazardously. 197 

 198 

3.1. Cascading Failure simulation 199 

In order to train harmful estimator decision tree (HEDT), it is required to prepare proper training 200 

data including cascading failures trajectories with the potential for creating a blackout in power 201 



10 
 

system. Fig. 2 shows the process of the procedure used for evaluating blackout size associated 202 

with harmful cascading failures. The process can be explained in the following steps.  203 

 204 

Fig. 2. The process of blackout evaluation due to cascading failure following an initial event. 205 

 206 

A. Step1: Initiating cascading failures 207 

The line outage, whose harmfulness for propagating cascading failure in the system is intended, 208 

is referred as the initial event. For all operating points with different network structures which 209 

are designed for training data preparation, the intended line is taken out as the initiating event, 210 

and its effect on the propagation of cascading failure in the system will be evaluated.  211 

B. Step2: Tripping overloaded lines 212 

Line tripping is one of the most general failures responsible for propagating cascading failures 213 

[4]. Each tripping element is referred to as a chain of the cascading failures, and the whole chain 214 

of the cascading failures following an initiating event leading to power system blackout is 215 
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denoted as a blackout trajectory. When the initial event occurs, it may cause overloading on 216 

some of the transmission lines. The protective relays are activated by overloading and trip 217 

dangerously overloaded lines. Tripping an overloaded line is regarded as a new cascaded event. 218 

In this paper, only line outages are considered as initial events. Tripping time of relays is not 219 

considered. Therefore, at each instant as soon as lines get overloaded, the line with the maximum 220 

overloading will be tripped immediately without any delay. System dynamic behavior and 221 

generator outage are not considered.  222 

C. Step3: DC load flow  223 

In order to evaluate the change in line flow after each line outage, DC load flow is utilized which 224 

can be modeled as follows [5].  225 

1

bus

line

line bus

P [ A ].
P [ B ].

P [ B ].[ A ] . P






 



 

 (1) 

where   is phase angle of bus voltages, busP  is net injection power at buses, lineP  is line active 226 

power flow, [ A ]  is reduced Jacobean matrix, [ B ]  is an incident matrix, ijB is susceptance of 227 

the line connecting buses i and j. 228 

Equations (1) can be written as (2): 229 

1
line busP [C ] . P

[C ] [ B].[ A ]



 (2) 

 230 

D. Step4: Islanding due to cascading Failure 231 

During the process of cascading failure, the initial network may be separated into several islands.  232 

Each island should be able to operate independently. In the case of unbalance load-generation the 233 

island may suffer from frequency or voltage instabilities, and it is necessary to shed excess 234 
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generation or load. The amount of load/generation trip is regarded as a criterion for measuring 235 

criticality of the initial event.  236 

 237 
3.2. Blackout index 238 

In order to assess the harmfulness of the initial event, an index denoted as blackout index is 239 

defined. According to this index, the potential of line outage for creating cascading failures 240 

leading to blackout can be determined. Also one can rank the lines outage severity according to 241 

their associated blackout indices. In this paper, the total power loss created due to cascading 242 

failures following an outage of a line, is regarded as blackout index. It is worth noting that the 243 

blackout index associated with each line contingency is strongly dependent on the system 244 

operating condition and network structure.  245 

In this paper, the technique of decision tree is used to evaluate the blackout index of each line 246 

contingency according to the current operating condition. Equation (3) shows blackout index in 247 

term of percentage of total load loss at the end of the process of cascading failure.  248 

0

loss

D

PBI
P

  (3) 

where 
oDP  and lossP  are system initial load power and total loss respectively.  249 

 250 
3.3. Harmful Estimator Decision tree 251 

As it is mentioned, the harmfulness of a line contingency for initiating cascading failure and 252 

blackout strongly depends on the system operating condition. Therefore the blackout index 253 

associated with a line outage may vary in a wide range with respect to change in system 254 

condition including load level, load-generation patterns and network structure. In this paper, in 255 

order to have an online and fast estimator for evaluating the harmfulness of a line contingency, 256 

the technique of decision tree is utilized in which by using online data acquired from WAMS, 257 
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harmfulness estimator decision trees HEDTs will predict the blackout indices of lines at the 258 

current pre-contingency operating condition.  259 

Noting that evaluating load curtailment and the number of islands, following the outage of a 260 

critical line is possible only when the system has experienced the consequent of cascading 261 

events. However, for evaluating the harmfulness of a line contingency, it is necessary to estimate 262 

the consequent harmful results following the outage of the line in advance. The techniques of 263 

artificial intelligence are very prone to such applications. They are usually trained based on the 264 

offline data and then utilized in real time operational environment using online data.  265 

In this paper, a three stages HEDT scheme is used for estimating harmfulness associated with 266 

each line contingency. Fig. 3 shows the overall structure of the proposed three-stage HEDT 267 

scheme. The proposed scheme uses pre-contingency lines active power flows and then estimates 268 

the severity and harmfulness of each line contingency in term of the amount of power loss which 269 

can be resulted due to cascading failure following the contingency.  In fact, the proposed scheme 270 

is able to estimate the potential of each line contingency for initiating cascading failure and 271 

propelling system toward blackout. In order to simplify the training and estimating task of each 272 

DT, the process of harmfulness estimation is divided into three stages. The input data for all DTs 273 

is the active power flows of the line at the pre-contingency current operating point. 274 

Corresponding to each line contingency, a specific estimation scheme shown in Fig. 3 is 275 

designed and trained.  276 

The first DT estimates whether following the outages of a line any blackout will occur or not. In 277 

the case of any potential for creating blackout, the second and third DTs estimate the size of the 278 

blackout in terms of MW loss. The classification of the harmfulness of the line contingency is 279 

depicted in Table 1.  280 

 281 
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Table 1. The output of HEDTs for estimating harmful contingency 282 

Harmfulness of line 
contingency HEDT1 HEDT2 HEDT3 The size of the 

Associated blackout (MW) 
safe 0 0 0 0 

Partial blackout 1 0 0 >0 & <500 
critical blackout 1 1 0 >500 & <1000 
Large blackout 1 1 1 >1000 

 283 
 284 

4. Simulation studies 285 

In order to show the ability of the proposed algorithm for estimating harmfulness of line 286 

contingency with the potential for triggering cascading failure and propelling the system toward 287 

blackout; it is applied on IEEE 39 bus test system consisting of 46 transmission lines, ten 288 

generating units and 19 load buses. In this study, the harmfulness of line #26 (bus16-bus17) is 289 

supposed to be examined. Therefore, according to the proposed algorithm a 3 stage HEDT 290 

scheme is trained to estimate harmfulness of line #26 as an initiating event for creating cascading 291 

failure and developing blackout. It is worth noting that for estimating harmfulness of each line 292 

contingency, an individual HEDT scheme is supposed to be trained. 293 

 294 

4.1. Training data for HEDT 295 

For training DTs of a HEDT scheme, proper training data should be provided. Provision of 296 

training data needs a wide range of system operating conditions including a versatile range of 297 

load level, load-generation pattern on buses. These operating conditions should contain different 298 

degrees of vulnerability including harmful line contingencies and safe contingencies with no 299 

potential for cascading failures and blackout. System base load is 6250 MW according to which, 300 

five loading level as 80%, 90%, 100%, 105%, and 110% are examined. 301 

 302 
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 303 

Fig. 3. Overall structure of the three stages HEDT scheme 304 

 305 

Corresponding to each load level, there is a base load-generation pattern for which, around the 306 

corresponding base load-generation pattern, load and generation of all buses are changed 307 

randomly by ±15% by which 300 load-generation patterns are produced. In order to take into 308 

account the effect of network topology on the harmfulness of line contingencies, in addition to 309 

the basic structure of the network, single and double lines outage due to maintenance are 310 

considered in the network topology. In fact, by this way, the proposed HEDT will be robust with 311 

respect to topology change due to line maintenance. Table 2 shows the set of lines whose single 312 

and double outages are considered in the network topology. By combining these outages, as 313 

single or double outages, totally 90 different topology patterns are obtained.  314 

Concerning each load-generation pattern, from 147 topology patterns, two maintenance patterns 315 

are adopted which resulted in total 600 operating scenarios from which 200 scenarios are for 316 

basic topology and 400 scenarios for maintenance topology with a versatile range of 317 

vulnerability from secure to worst cases. Pre-contingency steady state condition of each 318 

operating point is evaluated by power flow calculation. 319 
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Table 2. Lines whose outage are considered in the network topology.    

No. Line No. Bus i Bus j 
1 1 1 2 
2 3 2 3 
3 6 3 4 
4 7 3 18 
5 8 4 5 
6 9 4 14 
7 11 5 8 
8 15 7 8 

 320 

4.2. Calculation of blackout index 321 

With respect to the contingency of line #26 as the initial event whose harmfulness is intended to 322 

be evaluated by the proposed scheme, cascading failure simulation shown in Fig. 2 is performed 323 

for all operating scenarios. Corresponding to each operating scenario, the harmfulness of line 324 

#26 is evaluated. The active power flow of all lines at the pre-contingency steady state condition 325 

constitutes the input data for training HEDT associated to line #26, while the blackout (load loss) 326 

associated to the contingency of line #26 due to the cascading failure constitutes the output data 327 

of HEDT.  328 

Table 3 shows a statistics overview of the harmfulness of line #26 within all 600 scenarios.  As it 329 

can be seen, for example, 169 operating scenarios are within the load range 6000-6500 MW from 330 

which 69 scenarios are vulnerable concerning the contingency of line #26 as a harmful line. 331 

Total power loss associated with the outage of line #26 for all 69 vulnerable scenarios is 155453 332 

MW. The average power loss corresponding to each scenario is 919.8 MW as shown in the last 333 

row. As it can be seen, by increasing system load level mean blackout index is showing 334 

harmfulness of line #26 will increase. 335 

 336 

 337 
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Table 3. Statistic of harmfulness of line #26 in all scenarios 338 

 Load level 1  Load level 2  Load level 3 Load level 4 Load level 5  
Loading  (MW) <5500 5500-6000 6000-6500 6500-7000 >7000 
No. of scenarios 130 145 169 115 41 

Critical scenarios 41 62 69 56 18 
%Critical scenarios  31.5% 42.8% 40.1% 48.7% 44% 

Total blackout (MW) 72640 129430 155453 117048 43118 
Mean blackout  (MW) 558.8 892.6 919.8 1017.8 1051.7 

Table 4 shows the sequence of cascading failures which are automatically triggered following 339 

the outage of line #26 as an initial event for a typical scenario (#261) in which system loading is 340 

5954 MW and line #9 (bus4-bus14) is out for maintenance. Blackout size associated with the 341 

contingency of line #26 at this scenario is evaluated to be 2239 MW.  342 

 343 
Table 4. The sequence of cascading failures following an outage of line #26  344 

No. Event type Line Outage Bus i Bus j Pline before outage 
(MW) 

1 Initiating event 26 16 17 -247 
2 1st cascaded failure   10 5 6 763 
3 2nd cascaded failure   12 6 7 -1094 
4 3rd cascaded failure   24 14 15 -629 
5 4th cascaded failure   6 3 4 -570 
6 5th cascaded failure   2 1 39 -608 

 345 

The pattern of line active power flow at the pre-contingency condition of this scenario which 346 

constitutes the input of HEDT is illustrated in Fig. 4. 347 

 348 

Fig. 4. Pattern of line active power flow for scenario #261 349 
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Fig. 5 shows islanding pattern created at the end of five cascading failures in Table 4. As it can 350 

be seen, the power grid is separated into four islands and finally after 2239 MW load loss, has 351 

been settled down in a new steady state condition.  352 

 353 

Fig. 5. Islanding pattern due to cascading failures initiated by the contingency of line #26 at scenario #261 354 

 355 

Regarding all 246 vulnerable scenarios (out of 600), there are 246 corresponding blackout 356 

trajectories, each consisting of a chain of cascading failures. In order to rank the contribution of 357 

each line outage for participating in the chains of cascading failure, a contribution factor (CF) 358 

can be defined for each line #j as follows.   359 

j
j

max

NC
CF

N
  (4) 

where jNC  is the total number of times which line #j has participated in all blackout trajectories 360 

as a chain of outages. maxN  is the total number of blackout trajectories which is here 246.  361 
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The contribution factor of a line shows the number of times whose trip participates in the chains 362 

of cascading failures. As big as CF of a line, it will become more critical for propagating 363 

cascading failures following the initial outage of line #26.  Fig. 7. shows the contribution factor 364 

of each line for participating in the cascading failures of 246 blackout trajectories following an 365 

outage of line #26 as initiating the event.  366 

 367 

Fig. 6. Contribution factor of lines for participating in cascading failures within 246 blackout trajectories triggering 368 

by the outage of line #26 as the initial event 369 

 370 

Fig. 7 shows a number of times by which each line trip has participated in the chain of cascading 371 

failure of all blackout trajectories as the first cascaded outage. For example, the trip to line #6 372 

(bus3-bus4) has participated 42 times out of 246 blackout trajectories as the first cascaded outage 373 

after the initial outage of line #26. So, the line #6 can be regarded as a critical line for 374 

propagating blackout through the network.  375 
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 376 

Fig. 7. Frequency of lines trip as the 1st cascaded event within 589 blackout trajectories following the initial outage 377 

of line #26 378 

4.3. Input vector of HEDT 379 

The input vector of each DT of the proposed HEDT scheme consists of lines active power flow 380 

at the pre-contingency condition as shown in Fig. 4 for a sample scenario. This vector can be 381 

prepared online using data from WAMS. The negative value shows a reverse direction of power 382 

on the line. 383 

1 2 46L L Li LP [ P ,P , ... ,P , ... ,P ]  (4) 

where LiP  is the active power of line #i. 384 

The set of vectors of active power flow corresponding to different scenarios constitutes the input 385 

matrix [P] for training HEDT. The number of rows is equal to the number of training patterns. 386 

Each vector of active power flow corresponds to a particular operating condition of the power 387 

system.  388 

 389 

4.4. Training HEDT 390 

In the proposed scheme, the first HEDT1 is responsible just for detecting the potential of the 391 

blackout. The second HEDT2 classifies vulnerable scenarios with respect to smaller or bigger 392 
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than 500MW blackout, and the third HEDT3 classifies vulnerable scenarios concerning smaller 393 

or bigger than 1000MW blackout. All HEDTs are trained and tested by 60% and 40% of 394 

prepared scenarios respectively. The proposed HEDTs are trained based on top-down search 395 

method for data classification. In this method by starting from a root node, samples are classified 396 

by submitting a series of questions about the properties associated with the data. A node is 397 

bisected into two sub-branches on the basis of the feasible answers for its question. Table 5 398 

shows the training/test performance of HEDT1 in which from 360 training scenarios, 135 399 

scenarios experienced a blackout and perfect classification is achieved.   400 

 401 

Table 5. Training/Test Performance of HEDT1 402 

 Training Test 

Blackout risk No. of training 
scenarios 

False 
learning 

%correct 
learning 

No. of test 
scenarios 

False 
estimate 

%Correct 
estimate 

Vulnerable 135 0 100 142 0 100 

Secure 225 0 100 98 0 100 

Table 6 shows the training/test performance of HEDT2 in which from 600 scenarios, 136 and 86 403 

training and test scenarios respectively experienced blackout greater than 500 MW. The 404 

corresponding accuracy of training and test are %97.8 and %98.8 respectively.  405 

Table 6. Training/Test Performance of HEDT2 406 

 Training Test 

Blackout risk 
(MW) 

No. of 
training 
scenarios 

False 
learning 

%correct 
learning 

No. of test 
scenarios 

False  
estimate  

%Correct 
estimate  

<500 224 2 %99.1 154 2  %98.7  
>500 136 3 %97.8 86 1  %98.8  
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Table 7 shows the training/test performance of HEDT3 in which from 600 scenarios, 114 and 74 407 

training and test scenarios respectively experienced blackout greater than 1000 MW. The 408 

corresponding accuracy of training and test are %98.2 and %98.6 respectively. 409 

Table 7. Training/Test Performance of HEDT3 410 

 Training Test 

Blackout 
risk (MW) 

No. of 
training 
scenarios 

False 
learning 

%Correct 
learning 

No. of 
training 
scenarios 

False 
estimate 

%Correct 
estimate 

<1000 246 3 %98.8 166 3 %98.2 
>1000 114 2 %98.2 74 1 %98.6 

 411 

5. Conclusion 412 

In this paper, an approach for predicting system vulnerability with respect to an outage of a line 413 

with the potential for cascading failures was established in the decision tree theory. In fact, the 414 

proposed scheme was able to estimate the potential of each line contingency for initiating 415 

cascading failure and propelling system toward blackout. A three stages HEDT scheme was used 416 

for estimating the harmfulness associated with each line contingency. DC power flow was used 417 

for modeling cascading failures. The procured results revealed that the proposed method was a 418 

powerful technique for online identification of critical branches. A large collection of system 419 

operating conditions including a versatile range of load level, load-generation pattern on buses 420 

was used for decision tree construction. The capability of the proposed algorithm was assessed 421 

through a 39-bus test system. The proposed decision tree was a valuable technique that was 422 

deemed robust under topological changes. The one of the most interesting topics for future work 423 

would be to develop precise models for blackout problem. 424 

 425 
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