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Abstract 

Short-term load and price forecasting is an important issue in the optimal operation of restructured electric utilities. This 

paper presents a new intelligent hybrid three-stage model for simultaneous load and price forecasting. The proposed 

algorithm uses wavelet and Kalman machines for the first stage load and price forecasting. Each of the load and price 

data is decomposed into different frequency components, and Kalman machine is used to forecast each frequency 

components of load and price data. Then a Kohonen Self Organizing Map (SOM) finds similar days of load frequency 

components and feeds them into the second stage forecasting machine. In addition, mutual information based feature 

selection is used to find the relevant price data and rank them based on their relevance. The second stage uses Multi-

Layer Perceptron Artificial Neural Network (MLP-ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

forecasting of load and price frequency components, respectively. The third stage machine uses the second stage outputs 

and feeds them into its MLP-ANN and ANFIS machines to improve the load and price forecasting accuracy. The 

proposed three-stage algorithm is applied to Nordpool and mainland Spain power markets. The obtained results are 

compared with the recent load and price forecast algorithms, and showed that the three-stage algorithm presents a better 

performance for day-ahead electricity market load and price forecasting. 
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NOMENCLATURE 

 
Index sets 
t Discrete time index 
l Length of signal index of wavelet decomposition 
j Decomposed level index of wavelet decomposition 
k Scaling index of wavelet decomposition 
Parameters 
η Correction rate for primary load and price forecast 
Δ Predefined parameter for primary load and price forecast 
n Number of step in primary load and price forecast 
a Spread control of mother wavelet filter 
b Translation parameter of mother wavelet filter 
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m  Integer value for mother wavelet filter 
n Integer value for mother wavelet filter 
φ Scaling function of coarse scale coefficients for mother wavelet filter 
c Scaling function of fine scale coefficient for mother wavelet filter 
ω Scaling functions of fine scale coefficient for mother wavelet filter 
 Mother wavelet function 

  Forecast horizon for mother wavelet filter 
Variables 
L (t) Primary load forecast variable 
x(+1) Model state matrix 
A() State transition matrix 
y() Measured signal 
C() Output matrix 
() System error 
() Measured error 
Q1 Noise covariance matrix 
Q2 Error covariance matrix 
K()

 
Kalman gain 

( 1)P    Error covariance matrix 
( )y   Kalman load forecast 

r Correlation coefficient between two random variables 
cov Covariance 
E Expected value 
 Standard deviations 
 Probability mass function 
  Joint entropy 
M , N Fuzzy membership functions of ANFIS 
  Firing strength of the ANFIS rule 
^

hV  Forecasted value of prices or load 

V  Actual value of prices or load 
V  Average forecasted value 
1. Introduction 

Load and market price forecasting are important tasks for system operators in restructured power systems [1], [2]. An 

Independent System Operator (ISO) is responsible for its system security and cost reduction; these tasks are highly 

dependent on hourly load and market price forecasting according to the fact that the hourly market price is dependent on 

hourly load [3]. Over the years, extensive works have been performed on the load and price forecasting methods that can 

be classified into three main categories [4], [5]. The first category is classical statistical methods that use linear analysis 

[6]. The second category deals with intelligent forecasting algorithms that are used for non-linear forecasting problem. 

The third category encounters new heuristic ideas in the forecasting paradigms that consist of combined and hybrid 

models [6]. Other methods can be recognized as a combination of the above categories [7].  

The classical statistical methods like Kalman filtering [8], Autoregressive Integrated Moving Average (ARIMA) [9], 

exponential smoothing [10], state space model [11], and Box-Jenkins models [12] are based on statistical models. The 

Intelligent techniques include Support Vector Machine (SVM) [13], Support Vector Regression (SVR) [14], fuzzy 

inference model [15], Knowledge-Based Expert System (KBES) [16], and Artificial Neural Network (ANN) [17], [18].  
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Hybrid load and price forecasting techniques are the most common methods that show more accurate and acceptable 

results as compared to custom separate load and price methods [19-21]; thus, in this paper, a hybrid method is proposed.  

The wavelet decomposition techniques have been used in some hybrid models [22-23] to decompose high and low 

frequency components of load and price to a set of sub-series. It facilitates the analysis of complex feature of load and 

price profile, and each part of the sub-series can be predicted easier than that of the original signal. This method is 

considered in this paper. In [22], Wavelet Transform (WT) and Adaptive-Network-based Fuzzy Inference System 

(ANFIS) are used. WT decomposes price series into a set of constitutive series, and these series are forecasted using 

ANFIS. In [23], the wavelet pre-processed time series are used after removing the higher frequency (fast changing) 

components. 

Any market-based load forecasting method cannot work well without considering price as an input. One of the hybrid 

methods for solving this problem is an iterative model that considers the full dependency of price and load [24-26]; this 

model is also considered in this paper. A mixed load and price forecasting method is proposed in [24] that consists of a 

two-level forecast algorithm. The first level uses forecasters for the price and load forecasting. The second level uses two 

final forecasters that they are equipped with Feature Selection (FS) algorithm. These hybrid methods assume that the 

Market Clearing Price (MCP) curve has a non-constant variance and average without any pattern [25-26]. Ref. [25] 

proposes a method that uses the cooperative co-evolutionary approach with adjustable connections in a recursive 

procedure. In addition, similar days-based methods have been used to investigate the days with similar characteristics 

including similar week/day indexes or weather parameters during the last two or three years [26].  The major drawbacks 

of these methods are in the way of finding the similar days and creating a linear function of the past load patterns. For 

solving this problem, a combination of similar days-based methods and machine learning algorithms is proposed in [27], 

in which similar days are selected by the felt temperature, and after wavelet decomposition, each frequency pattern is fed 

into an ANN as a machine-learning algorithm. This method is also considered in this paper. 

The ANN-based load-forecasting methods are among the most popular forecasting algorithms, and many researchers 

have used unsupervised learning ANN (for example, Self-Organizing Map (SOM)) for better performance of Multi-Layer 

Perceptron (MLP) forecasting algorithms [28-31]. Selecting the best fitting data (as inputs) might be an important issue 

in load-forecasting methods. The most common inputs for ANN-based methods used in the previous works include 

weather data [28], historical loads [29], historical prices [30] and week/day index [31]. The historical MCP curve has a 

different characteristic from load curve, and no similar curve exists among the historical price data; this fact increases the 

complexity of the price-forecasting problem [31]. Mutual Information (MI) method is one of the FS techniques that can 

find the most relevant data and rank them according to their relevance to the target, which decreases the redundancy of 
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data set and is not time-consuming [19]. Elimination of unimportant and redundant data and reducing computational 

complexity are the main advantages of this method [32-33]; this method is considered in this paper.  

Several optimization algorithms have been proposed to optimize the parameters of the hybrid forecasting methods [4, 7, 

34-37]. For example, [34] uses fuzzy clustering to find the similar days; the proposed method combines the classical 

methods into one hybrid method that makes the forecasts based on a combination of recent historical data and similar day 

data. It consists of three units: a pre-processing unit, which is responsible for detecting that a season has changed and 

searching for similar days; the second unit is an SVM-based hourly predictor, and the third unit is for optimizing the 

SVM parameters based on the Particle Swarm Optimization (PSO). In [35], a hybrid model based on a modified firefly 

algorithm SVR reduces the possibility of trapping in local optima when increasing the convergence criterion. In [36], an 

algorithm that uses PSO-SVM is proposed, and the obtained results are compared to the classical training methods 

results. In [37], a hybrid model developed to forecast air conditioning electrical load, and comparisons are made among 

the applied methods to prove the advantages and applicability of the proposed method. 

It was observed that using optimization-based techniques for FS of Simultaneous short–term Price and Load Forecasting 

(SPLF) might not lead to an acceptable trade-off between accuracy and computational burden. It only increased the 

complexity of the proposed model and computational efforts without considerable improvement of the algorithm 

accuracy. Thus, optimization-based FS methods are not used in this paper; rather MI-based FS method has been used. 

The authors had many attempts to define a proper general layout for soft computing algorithms and to solve the high 

error problem of the simultaneous price and load forecasting methods. The results of different competitive soft 

computing paradigms were compared, and finally, the proposed layout and its soft computing algorithms were selected. 

The overall structure of the proposed method is the contribution of this paper. The trade-off between accuracy and 

computational complexity is one of the main targets of this research.  

This paper`s contribution includes: 

 introducing a model to find the best datasets of historical loads for ANN-based load forecasting model training;  

 using MI method as feature selection to generate the training data sets for ANFIS price forecasting model; and 

 improving load-forecasting accuracy by price forecasting amendment. 

The rest of the paper is organized as follows: Section 2 describes the problem description and modelling. Section 3 

proposes a performance evaluation of the proposed algorithm. Numerical results and analysis are presented in Section 4. 

Finally, the paper is concluded in Section 5.   
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2.  Problem description and modelling 

A pool market typically includes a day-ahead market, several adjustment markets, and balancing markets. In addition, the 

regulation reserve market is required to ensure the secure system operation.  

An ISO must forecast day-ahead load and MCP. The major challenge is that after clearing the day-ahead market, MCP is 

determined for each hour. It is understood that MCP curve is fluctuating such that it has a characteristic with non-

constant variance and average and has no pattern; on the other hand, the daily loads have similar pattern [24, 25]. 

However, the hourly MCP is dependent on hourly load, and vice versa. Thus, load-forecasting methods that are 

developed for price taker loads are not adequate tools [30], and SPLF algorithms must be designed.  

Based on the above discussion, this paper proposes an iterative method for the price and load forecasting. The block 

diagram of the proposed method is shown in Fig. 1. 

At first, a primary (not necessarily accurate) forecast is performed by an iterative model to generate a next 24-hour load 

and price profile. This stage uses WT and Kalman forecasting model. Each of the load and price data is decomposed into 

three frequency components, and Kalman machine is used to forecast each frequency components of load and price data 

based on the fact that the forecasting of frequency components of load and price is easier than that of the original data. 

Then a Kohonen SOM finds similar days of load frequency components and feeds them into the second stage load and 

price forecasting. In addition, MI-based FS is used to find the relevant price data and rank them based on their relevance. 

The second stage uses MLP-ANN and ANFIS for forecasting of load and price frequency components, respectively. This 

stage uses Kalman load and price forecasting of frequency components and the Kohonen similar days pattern recognition 

outputs. The third stage uses the second stage outputs and feeds them into its MLP-ANN and ANFIS machines to 

improve the load and price forecasting accuracy. The block diagram of the proposed method is shown in Fig. 1. 

2.1. Primary forecast model 

The primary forecast estimates the trend of next-day load profile. It is assumed that price and load are dependent on each 

other as they create each other in a recursive mode. Thus, an hourly estimation of price is essential, and a recursive 

algorithm of price and load forecasting is proposed. Fig. 2 shows the flowchart of this algorithm. 

The process is stopped as the difference between two sequential forecasted prices reaches a predefined parameter Δ.  

A correction of load L (t) in the n+1 step is calculated as: 

1( ) ( )n nL t L t     . (1) 

Where, the η parameter is the correction rate and is close to the learning rate of the NN training algorithm. Δ is a 

predefined parameter.  

First, wavelet decomposition is performed on the price and load historical data. Then using two levels of decomposition, 

three frequency components are obtained. Finally, Kalman forecasting algorithm is used to forecast the load and price 

frequency components. 
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2.1.1. Wavelet decomposition  

As mentioned earlier, wavelet decomposition is performed on the price and load historical data, and by two levels of 

decomposition, three frequency components are obtained. WT is used to divide load and price signals to a set of sub-

series [38, 39]. This method analyses each part of the sub-series separately because the prediction procedure of sub-series 

is easier than that of the original signal. Since the hourly load and price series are calculated, Discrete Wavelet Transform 

(DWT) must be used as: 

1
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Where, l and t are the length and discrete time indexes of f(t), respectively, and a and b are the spread control and 

translation parameters of mother wavelet filter and are defined as a=2m and b=n2m, respectively (m and n are integer 

values) [3]. 

The decomposition can be done by iterative upsampling and convolve by the original signal to the desired level. Finally, 

the main signal f(t) can be reconstructed from the calculated coefficients by the following equation: 
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Where, j is the decomposed level, k is the scaling index, φj0,k is the scaling function of coarse scale coefficients, and cj0,k, 

and ωj,k are the scaling functions of fine scale coefficients. During each level of decomposition, the length of original 

signal becomes half that is called down sampling. To recover the original signal length after reconstruction, a vector of 

zeros is placed between every two samples, called upsampling [23]. 

There are different kinds of wavelet functions; among them, Daubechies families (dbN) are more common [38]. Any 

selection among the wavelet functions should make a trade-off between smoothness and wavelength [3]. In the present 

study, db2 is used as the mother wavelet function, and the price and load signals are decomposed into two levels as 

depicted in Fig. 3. After finalizing the forecast stages, the decomposed forecasted signal components are combined to 

reconstruct the unified forecasted load and price by up sampling (Fig. 4).  

In this paper, wavelet decomposition is performed for load and priced data, and two high frequencies D1 and D2 and a 

low-frequency A2 are obtained for load and price, separately. High-frequency components may have noise components 

with values lower than A2. However, the noise values cannot be estimated, and the main signal is reconstructed after 

deleting the higher frequency components; only low-frequency components are used for reconstruction of the 

decomposed signals. 

Two Kalman forecasting machines are defined in the next stage. The first is called Kalman`s price forecast that is used 

for forecasting the three components of price frequencies, and the second one is Kalman`s load forecast that is used for 

forecasting the three components of load frequencies.  
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2.1.2. Kalman forecasting model 

Based on wavelet decomposition algorithm for D1, D2, and A2 frequencies, three Kalman forecasting processes are used 

for each of the load and price forecasting procedures, separately. 

The Kalman filter is used for the following reasons: 

1) The ability of Kalman filter for tracking of signals with time-varying frequencies [40]. 

2) It does not need learning mechanism. 

The basic discrete state-space model of Kalman filter is introduced, which has been implemented in [40] based on 

weather parameters and historical load as the state vector. The main discrete state equations are as below: 

( 1) ( ) ( ) ( )x A x       , (4) 

( ) ( ) ( ) ( )y C x      , (5) 

Where, x(+1) is model state matrix, A() is state transition matrix, y() is measured signal at , C() is output matrix, 

() is system error, and () is measured error. Noise and error covariance matrices are defined as: 

1 2[ ( ) ( )]   and  [ ( ) ( )]T TE Q E Q         , (6) 

Where, Q1 and Q2 are semi-definite and definite matrices, respectively. In this paper, it is assumed that the state vector 

measurement has no error; so () equals zero. Error covariance matrix is defined as Eq. (7):  

2( 1) [ ( ) ( ) ( )] ( )[ ( ) ( ) ( )] ( ) ( ).T TP A K C P A K C K Q K               
(7) 

In Eq. (6), K() is Kalman gain and can correct the state vector value as follows: 

ˆ ˆ ˆ( 1) ( ) ( ) ( )[ ( ) ( ) ( )]x A x K z C x          , (8) 

In addition, Kalman gain is as follows: 

1
2( ) [ ( ) ( ) ( )][ ( ) ( ) ( ) ]T TK A P C C P C Q         . (9) 

Using the weighted least squares, a prior estimation of 0x̂ and 0̂P  can be performed as: 

1 1 1
2 2 0ˆ (0) [ ]T Tx H Q H H Q Z   , (10) 

1 1
0 2[ ]TP H Q H  , (11) 

Where z0 is s×1 matrix and H is s×u matrix. These matrices are defined as: 
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Where, s is the number of samples defined by the user. 

The price and load in the scale of a country will be forecasted. Thus, it is not reasonable to use weather indexes because 

the weather parameters are not the same in all regions of a country [24]. However, the average temperature is used in the 

second stage forecast. Hence, the load can be written as a linear model of past loads and prices for a particular time   as: 
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1 1
( ) ( ) . ( ) . ( )

jt

i i i i
i i

y load load price       
 

      , (13) 

Where, ( )iload   and ( )iprice   are past load and price parameters, respectively. In addition,  and  are derived 

from adapted transition matrices, and i and i are the indexes of previous loads and prices, respectively. In this section, 

a correlation analysis is used to select the most appropriate indexes of the past loads and prices. Thus, the variables that 

have a higher correlation with the target are retained. The correlation coefficient between two random variables,  and , 

with expected values (E),   and
 , and standard deviations   and   is defined as [13]: 

,

[( )( )]cov( , ) E
r  
 

   

    
   

 
  , (14) 

Where, cov is the covariance. 

The mentioned process for each frequency component is performed to find a normalized load profile. The load forecasted 

by this stage is very similar to the next 24-hour real load. Thus, finding similar days among the historical days can be 

easily performed.  

There are two kinds of data selection in this stage: 1) Data window selection, which determines the number of inputs for 

Kalman forecasting machine, and 2) Historical day’s selection, which determines the number of tracking processes. The 

historical day’s selection has more effects on the process that should be determined by the user according to the structure 

of the case study.  

Then the primary forecast results are fed into the secondary forecast model, and a more accurate price prediction is used 

for the next hour load forecast. 

2.2. SOM-based similar days finding 

A Kohonen network reduces the high dimensionality of a set of data to a two-dimensional grid based on the most similar 

characteristics of a definite pattern. In this paper, an 8×8 hexagonal lattice network is used [41, 42]. The detailed 

formulation of SOM network will be discussed in the Numerical Results section. 

2.3. Mutual information  

MI has been developed as a feature selection method [43, 44]. The MI method is a statistical and probabilistic method for 

price forecasting. In [32], the authors present a new MI formulation for price forecasting. Some main concepts of MI are 

noted here. Entropy is defined as: 

2
1

( ) ( ) log ( ( ))
ns

i i
i

X X X


     , (15) 

Where, (X) is a Probability Mass Function (PMF), and the discrete variable X has "ns" different possible outcomes. 

The joint entropy of two variables is defined by: 
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Entropy can be calculated as follows: 
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(17) 

According to the chain-rule, it is understood that the entropy of random variable X contains some entropy by itself and 

some common information with the variable Y. This can be written as: 

( , ) ( ) ( | )X Y X Y X    , (18) 

Eq. (25) yields the value of common information between Y and X, known as MI. This concept is very similar to the 

correlation with the favour of considering probability. Finally, MI(X, Y) is as follows. 

2
1 1

( , )
( , ) ( , ) log ( )

( ) ( )

ns ms
i j

i j
i j i j

X Y
MI X Y X Y

X Y 


 

  , (19) 

The higher MI value between two random variables shows the more relation between them, and zero MI coefficients 

imply an independent relation. After normalization, the median of each variable set is defined, and any value less than the 

median is rounded to zero and those higher than the median are rounded to one. More details will be given in the 

Numerical Results section. 

2.4. Secondary forecast model 

More accurate price and load forecast is the main goal of this forecasting stage. It contains two forecasting machines 

including ANN and ANFIS; the former predicts the load and uses the first stage load and price as inputs, and the latter 

improves the price forecast.  

Selecting the training data for ANN model is very important. Insufficient or irrelevant data can make a non-perfect 

relationship between the inputs and outputs and may yield a high error. On the other hand, too many data can cause over-

learning.   

2.4.1. Multi-layer feedforward perceptron (MLP) 

One of the most common forms of ANN is MLP. If the number of inputs and nodes, which form the hidden layer, are 

selected properly, a good relationship can be established between the inputs and outputs.  

ANN inputs play an essential role in its performance. Hence, the input data selection is one of the most important parts of 

any intelligent model. Since this paper considers a country load forecasting, so the temperature does not have any 

meaning as an input because the weather changes countrywide, and there is not a constant weather index all over the 

country. By the way, weather conditions, especially temperature, have a significant effect on load. Therefore, daily 
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temperature average of a country in the forecasting day and a day before as two ANN inputs are used. Last hours’ and 

days’ load and price are also used as inputs for the ANN models, which have a good correlation with the load. For each 

hour and the frequency component of load, an ANN machine is used separately. 

There is no direct approach to find the best and the most optimal structure of an ANN [45-47]. One can find it by trial 

and error in the way of evaluation of results with different numbers of ANN parameters [5, 48].  

In the similar day-based forecasting approach, the daily load patterns are used, which have the most similarity with the 

load of the forecasting day. Accordingly, a three-layer network with a 20-node hidden layer and 25 inputs is considered. 

Thus, The MLP ANN trained by backpropagation works properly with fewer neurons in the hidden layer than in the 

input layer. Many references used the same configuration that the inner layer has fewer neurons than the input layer [48-

50].  

 

2.4.2. ANFIS 

Since the electricity price for the next 24 hours is not definite, it should be forecasted. However, the price forecasting 

results have an error, which will have drastic effects on the load forecasting results. Thus, an ANFIS model is employed 

to improve the price forecasting results. ANFIS has the advantages of both ANN and Fuzzy set theory; however, it 

causes an unnecessarily large computational burden for large scale of inputs and membership functions [51]. On the other 

hand, there is not a definite pattern for the price to feed into ANFIS. Accordingly, ANFIS model with just four inputs and 

MI-based feature selection is employed to find the best-fitted inputs for the second stage price forecasting. Outputs of 

ANFIS are used to update the price database for the next hour ANN load forecasting; this can improve the load 

forecasting results. Some papers proposed ANFIS-based models for load forecasting [52], and some others used it or 

fuzzy systems to refine the load forecasting accuracy [53].  

The structure of an ANFIS model with two inputs is shown in Fig. 5.  

The functionality of ANFIS is as below: 

Each layer has some adaptive nodes as j
iO , which denotes the output of jth node of ith layer.  

In layer 1, the function of each node is [53]: 

1 ( )i iO M x  ,                  i=1,2, (20) 

1 ( )i iO N y  ,                  i=1,2, (21) 

Where, x and y are the input of ith node, and M and N are the linguistic expressions called membership functions. 

Different membership functions can be used according to the case. In this paper, the Gaussian function is used as 

follows: 
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 , (22) 

Where, 1m and 1k  are the parameters to be set during the training.  

Layer 2 contains multiplier nodes such that: 

2 ( ) ( )i i i iO M x N y    ,       i=1,2, (23) 

Where i is called firing strength of the ith rule.  

Layer 3 normalizes the firing strengths as: 

3 i
ii

j
j

O
 

  


 ,     i=1, 2. 
(24) 

The contribution of each rule in the total output is calculated in layer 4 as below: 

4 ( )i ii i i i iO z x y  
 

       ,     i=1,2, (25) 

Where i



 is defined based on Eq. (25), and { , ,i i i   } are consequent parameters. 

Layer 5 has one node to sum all of the incoming signals: 

5 ,                 1,2.i i
i

O z i


          (26) 

In this paper, ANFIS is used to forecast the next hour price. The triangular-shaped fuzzy membership functions and 

Sugeno inference engine are considered. 

2.5. Tertiary forecast model 

This stage aims to improve the accuracy of the previous price and load forecasting stages. The third stage has ANN and 

ANFIS machines; the former uses the second stage load and price data as inputs, and the latter uses the improved load 

forecasting data of the second and third stages as inputs. The parameters of the third stage ANN and ANFIS machines are 

the same as their corresponding machines in the second stage. 

 

3. Performance evaluation 

In most of the papers, Mean Absolute Percentage Error (MAPE) has been used to evaluate the accuracy of forecasting 

results. The MAPE is defined as [22]: 

^

1

100 | |h h

h

V VMAPE
V



 


  , (27) 

Where 
^

hV and hV are, respectively, the forecasted and actual prices or loads at hour h,   is the forecast horizon and V is 

the average forecasted value that is expressed as follows: 
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  . (28) 

There is a drawback in MAPE criterion; if the mean value of signal V is zero, the fraction will be indefinite. The mean 

value of D1 and D2 may be zero; in this case, it is not possible to use MAPE, and Mean Absolute Error (MAE) is used for 

this condition instead as below: 

^

1

1 | | .h h
h

MAE V V


 

   (29) 

While MAE is in the form of MW or $/MWh, MAPE is expressed in percent. 

 

4. Numerical results 

The proposed approach was applied to forecast load and price in the electricity market of the DK2 area of Nordpool and 

the electricity market of the mainland Spain. The algorithm codes were developed in MATLAB, and all of the study 

cases utilized the neural network, ANFIS and Kohonen SOM toolboxes of MATLAB. 

4.1. DK2 area of Nordpool’s electricity market load and price forecasting 

The data from Nordpool’s official website from January 2011 to December 2012 of DK2 area were used to test the 

proposed price and load forecasting algorithm. The simulation was carried out on a PC (Intel Core 2, 2.93 GHz, 4 GB 

RAM). 

At first, wavelet decomposition was performed. Table 1 shows the level of wavelet decomposition. As seen, the a2 

component, interpreted as the base load, has a large contribution to the original load. The noise components d1 and d2 had 

the effect of less than 5%. Hence, the wavelet decomposition was performed on two levels.  

The data window for Kalman was determined according to the correlation between the actual load and the input 

parameters of forecasting. 

Fig. 6 shows a high correlation between a load and its past parameters. For example, when the load in the day d and the 

hour t had a perfect linear relation with the hour before, it had not enough correlation with the load of two days before at 

the same hour. On the other hand, the correlation value between load and price was very little, so it was sorted by the 

given values. As depicted in Fig. 6, there is no special difference between the correlation of the price of three days before 

and the same day with the target day load. Table 2 indicates the load and price candidates’ correlation. 

The number of parameters and candidates was selected according to Table 2, and the correlation values of each price 

candidate were calculated to select the highest values of correlations.  

Then primary load forecasting was performed using the Kalman filter. The frequency outputs’ data of wavelet were used 

for forecasting. Data were delivered to the Kalman filter, and three frequency components of load and price forecast were 
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found. The starting day was January 1, 2011, and totally, 600 days were considered. Fig. 7 illustrates the outputs of the 

Kalman filter for June 19, 2012, that was one of the hard cases for accurate load and price forecasting. 

In order to recognize similar load patterns and to map them into a two-dimensional grid, the Kalman load and price 

forecasting results of each frequency were normalized and fed to the SOM network to find similar load among the 

historical data.  

An 8×8 hexagonal lattice Kohonen network was used for each frequency component. The SOM epochs were selected 50, 

and a selected lattice is shown in Fig. 8. 

For example, the similar day load patterns for the D1, D2 and A2 frequency components for June 19, 2012 are:  

Similar day load patterns for D1: {126, 152, 161, 167, 175, 179, 511, 517, 524, 528, 529, 530, 531, 532}. 

Similar day load patterns for D2: {126, 165, 483, 516, 517, 524, 525, 528, 529, 530, 531}. 

Finally, similar day load patterns for A2: {119, 167, 187, 200, 201, 230, 466, 508, 509, 510, 524}. 

Figs. 9, 10 and 11 show the clustered load shape by SOM for D1, D2 and A2 frequency components, respectively.  

Fig. 12 presents similar days results found by Kohonen for June 19, 2012 load; as shown, there is an acceptable 

performance of the proposed algorithm in finding the similar days in different components. 

Then the MLP ANN was trained based on the loads, prices, and an average temperature of days as inputs. The MLP 

inputs, hidden layers, and outputs were 25, 20, and 1, respectively. In this paper, logsig and tansig transfer functions 

were considered; tansig associates with the lower MAPE in comparison with logsig transfer function. The MLP training 

process was a back-propagation method, and an MLP was used for each hour load forecasting.  

Fig. 13 shows the learning procedure of MLP for the low-frequency component of the load for June 19, 2012. It shows 

that after two epochs, the error reaches to 10-8, and validation tests confirm these results. 

Next, load forecasting was performed by the trained MLP for different frequency components. The average temperature 

of the next day was calculated based on a meteorological forecast. Test data were used to verify the proposed model. 

Table 3 shows the MAPE values for the test data.  

Fig. 14 further compares the real and forecasted loads for different frequency components given by the second stage and 

shows a very accurate tracking of low-frequency load.  

As Figs. 14a, 14b, and 14c depict, D1 and D2 components have less amplitude than the original signal, and their 

oscillations are faster than the A2 oscillations. In addition, the average amplitudes of D1 and D2 components have 

negative values. 

Then the proposed MI machine was used. The load and price data of the past 50 days were stored in a matrix of size 

(50×99). The resulting matrix consisted of the following data: 
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1- The past 24-hours price data (24 elements) 

2- The past 24-hours load data (24 elements) 

3- The same hour price data for the past 50 days (50 elements) 

4- The same hour price data (1 element) 

The values of MI were calculated and sorted. Tables 4 and 5 show the values of the calculated MI for 6/19/2012 4:00 PM 

and 6/19/2012 5:00 PM, respectively. 

Next, for every hour and based on Fig. 1, a forecasting procedure was performed by the ANFIS machine. As illustrated in 

Fig. 6, the correlation between the loads in any hour is very high with the last hours` and days` loads, and very low with 

their price. Thus, price lost the competition versus load in the ANFIS input selection. Hence, a selection of two load 

variables and two price variables was proposed to make a trade-off between tracking the trend of price and the best 

correlation selection. The price forecasting process had better performance, which is depicted in Fig. 15. 

Table 6 presents the performance of the proposed method in three stages of price and load forecasting for June 19, 2012. 

The results showed the improvement in forecasting after using the ANN-ANFIS model to improve the price forecasting.  

There were no outstanding differences between the first and second stages` results in d1 and d2 components (Table 6). 

Obviously, a better performance of the second stage was provided in a2; therefore, the results became remarkably well. 

This point was also seen in the price forecasting process (Fig. 15 and Table 6). Accordingly, it can be concluded that 

Kalman`s performance at high frequencies, especially in d1, was better than that of ANN model for two reasons: 1) High-

frequency components had a random pattern, and training data finding was impossible among the historical days, and 2) 

ANN model`s performance at high frequencies was basically poor; hence, wavelet decomposition was employed. 

Final simulation results for this day are depicted in Fig. 16. As shown, there is better tracking of load signal by the third 

stage forecast and an acceptable prediction for the price. The computation time was about 279 seconds. 

Table 7 shows a comparison between one-step-ahead prediction errors for the proposed price forecasting method and 

four other algorithms [54] for Nordpool electricity market. The same weeks and data as in [54] were selected for 

comparison of the results. 

4.2. Mainland Spain electricity market load and price forecasting 

The algorithm was applied to forecast load and price in the electricity market of mainland Spain for two different case 

studies. For the first case study, the same weeks as in [55] were selected for comparison of the price forecasting results 

that were four weeks corresponding to four seasons of the year 2002. Table 8 shows a comparison between the proposed 

price forecasting method and nine other algorithms (AWNN [56], FNN [57], WNN [58], ARIMA [55], Mixed [59], HIS 



 15 

[60], wavelet-ARIMA [55], MLP-NN [48] and WPA [3]) for the weekly MAPE criteria. For the load and price-

forecasting model, a week ahead predictions were computed. 

The computation time was about 248 seconds. The proposed algorithm provided a better forecasting accuracy than 

previous approaches, and improvement of the MAPE index with respect to the nine previous algorithms was 41.4%, 

47.34%, 50.08%, 60.24%, 57.41%, 43.18%, 51.17%, 88.77% and 21.89%, respectively. 

Then, for the second case study, the SPLF was performed for the electricity market of mainland Spain to predict all the 

daily loads and prices in summer 2008, autumn 2008, winter 2009 and spring 2009 (365 days), and the same data were 

selected for comparison of the load and price forecasting results [61].  

The Average Seasonal Forecasting Error (ASFE) was used for this case study as below: 

^
7 24

1 1 1

| ( ) ( ) |1 1 1 100 ,
7 24 ( )

jI
ij ij

j i tj ij

V t V t
ASFE

I V t  


    (30) 

Where Ij is the number of weeks containing the jth day, ( )ijV t   
^

( )ijV t are actual and the forecasted values (load or price), 

respectively [61]. 

Table 9 compares the proposed load and price forecasting method with five other algorithms (ARIMA [61], FNP-D [61], 

FNP-R [61], SFPL-D [61], and SFPL-R [61]) for the average seasonal forecasting error values. 

The proposed algorithm provided a better forecasting accuracy than previous approaches, and improvement of the 

seasonal forecasting error index with respect to the five previous load forecasting algorithms was 25.63%, 36.23%, 

29.6%, 23.25% and 17.5%, respectively. In addition, improvement of the seasonal forecasting error index with respect to 

the five previous price forecasting algorithms was 49%, 52.75%, 52.85%, 46.78%, and 45.38%, respectively. Thus, the 

results show that the three-stage algorithm presents a better performance for day-ahead electricity market load and price 

forecasting. 

 

5. Conclusions 

In this paper, a new intelligent hybrid model was presented for SPLF based on feature selection. The SPLF was 

organized based on a three-stage algorithm. At the first stage, a wavelet-Kalman-Kohonen model was introduced to make 

a primary forecast of load and price, and the results were used to generate the proper data set for MLP-ANN training. At 

the second stage, an MI method was utilized to train ANFIS for price forecasting. The ANFIS machine improved the first 

stage results by improving the accuracy of price forecasting. In addition, using wavelet decomposition, ANN 

performance was improved by cancelling the noise component in the base load. Finally, at the third stage, the accuracy of 

load and price forecasting was improved using MLP-ANN and ANFIS machines for load and price forecasting, 



 16 

respectively. Simultaneous prediction of load and price has been ignored by most of the papers, and each one has been 

assumed known to predict the other one. Unlike the load patterns, price acts like noise, and thus it is difficult to find a 

proper ANFIS training set of inputs. In this paper, an MI method was used to find the best datasets to train ANFIS for 

price forecasting. The proposed algorithm was applied to Nordpool and mainland Spain power markets; the results 

showed that MAPE was about 5% and 4%, respectively. Thus, the proposed algorithm provided a better forecasting 

accuracy than previous approaches for both electricity markets. At the same time, as future work, some modifications can 

be performed for better feature selection in order to enhance the efficiency of the proposed method. 
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Figures: 

 

 
Fig.1. Overall flowchart of proposed forecasting structure. 
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Fig. 2.  The proposed first stage iterative load and price forecast model. 
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Fig. 3. Two-level wavelet decomposition of signal. 

 
 
 
 

 
Fig. 4. Wavelet reconstruction of signal. 

 
 
 
 

 
Fig.5. ANFIS structure. 
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Fig. 6. Dependency between the target and historical loads. 
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Fig. 7. Primary load forecasting graphs by Kalman for 19 June 2012 
(a) A2 frequency component of load, (b) D2 frequency component of load, (c) D1 frequency component of load, and 

(d) Kalman forecasted load. 
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Fig. 8. The 8×8 hexagonal lattice Kohonen network. 
 

 

Fig. 9. The clustered load shape for D1 frequency component of load. 
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Fig. 10. The clustered load shape for D2 frequency component of load.  

 
 
 
 
 
 
 

 

Fig. 11. The clustered load shape for A2 frequency component of load.  
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Fig. 12. Similar days finding results by Kohonen for 19 June 2012 load:  

(a) D1 frequency component of load, (b) D2 frequency component of load, and (c) A2 frequency component of load. 

 
Fig. 13. The learning procedure of MLP ANN for June 19, 2012.  
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Fig. 14. Second and third stage load forecasting results in different components for 19 June 2012:  

(a) D1 frequency component of load, (b) D2 frequency component of load, and (c) A2 frequency component of load. 
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Fig. 15. Price forecasting results in different frequency components given by the second and third stage:  

(a) D1 frequency component of price, (b) D2 frequency component of price, and (c) A2 frequency component of 
price. 

 

 
Fig. 16. Final simulation results for 19 June 2012: (a) load, and (b) price. 
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Tables: 

Table 1.Wavelet decomposed frequency components in 2012 DK2 load profiles. 
 

d2 d1 a2 Month 
0.0674 0.0389 0.9524 January 
0.0667 0.0401 0.9535 February 
0.0715 0.0414 0.9672 March 
0.0683 0.0406 0.9832 April 
0.0655 0.0419 0.9829 May 
0.0595 0.0381 0.9820 June 
0.0595 0.0372 0.9870 July 
0.0702 0.0405 0.9880 August 
0.0763 0.0432 0.9812 September 
0.0741 0.0424 0.9595 October 
0.0703 0.0389 0.9497 November 
0.0658 0.0384 0.9641 December 
0.0679 0.0401 0.9709 Aver. 

 
 

Table 2 .Load and price candidates’ correlation. 
 

Correlation Candidate input Correlation Candidate input 
0.2947 Pd-1,t-3 0.3206 Pd,t 

0.2989 Pd-1,t-4 0.3254 Pd,t-1 
0.2997 Pd-1,t-5 0.3189 Pd,t-2 

0.2523 Pd-2,t-1 0.3110 Pd,t-3 

0.2528 Pd-2,t-2 0.3032 Pd,t-4 

0.2528 Pd-2,t-3 0.2952 Pd,t-5 

0.2525 Pd-2,t-4 0.2863 Pd,t-6 
0.4925 Pd-7,t-1 0.2765 Pd,t-7 

0.5028 Pd-7,t-2 0.2670 Pd,t-8 

0.5133 Pd-7,t-3 0.2587 Pd,t-9 

0.5222 Pd-7,t-4 0.2803 Pd-1,t 

0.4754 Pd-8,t-1 0.2850 Pd-1,t-1 
0.4689 Pd-8,t-2 0.2898 Pd-1,t-2 

 

Table 3. MAPE of MLP ANN for load forecasting.  
 

Min  MAPE Max MAPE Month Min  MAPE Max MAPE Month 
2.4 2.59 August 1.12 2.03 January 
1.51 1.31 September 2.19 3.21 February 
1.81 2.68 October 2.24 3.32 March 
1.35 2.29 November 1.62 2.1 April 
2.05 2.07 December 1.71 2.47 May 

1.75 2.34 Average 1.69 2.20 June 
1.34 1.85 July 

 

Table 4. The values of the calculated MI for 6/19/2012 4:00 PM 
  

MI Candidate Rank MI Candidate Rank MI Candidate Rank 
0.0573 L(d,t) 13 0.0956 P(d,t-22) 7 0.4706 P(d,t-1) 1 
0.0573 L(d,t-1) 14 0.0956 P(d,t-23) 8 0.4706 P(d,t-2) 2 
0.0573 L(d,t-2) 15 0.0956 P(d-12,t) 9 0.4615 P(d,t-3) 3 
0.0573 L(d,t-3) 16 0.0956 P(d-46,t) 10 0.2769 P(d-21,t) 4 
0.0573 L(d,t-23) 17 0.0573 P(d,t-10) 11 0.1445 P(d,t-21) 5 
0.0573 L(d,t-24) 18 0.0573 P(d,t-11) 12 0.0943 P(d,t-20) 6 
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Table 5. The values of the calculated MI for 6/19/2012 5:00 PM  
  

MI Candidate Rank MI Candidate Rank MI Candidate Rank 
0.0573 L(d,t-6) 13 0.0956 P(d,t-22) 7 0.2781 P(d,t-1) 1 
0.0573 L(d,t-24) 14 0.0956 P(d-25,t) 8 0.1445 P(d,t-4) 2 
0.0573 P(d-15,t) 15 0.0573 P(d,t-9) 9 0.1438 P(d-14,t) 3 
0.0573 P(d-29,t) 16 0.0573 P(d,t-12) 10 0.1441 P(d-22,t) 4 
0.0573 P(d-32,t) 17 0.0573 L(d,t) 11 0.0957 P(d,t-2) 5 
0.0573 P(d-40,t) 18 0.0573 L(d,t-5) 12 0.0956 P(d,t-3) 6 

 
 

Table 6. Comparing MAE of the first, second and third stage results (19 June 2012) 
 

Third Stage Second Stage First Stage   
MAE (€/MWh) MAE 

 (MW) 
MAE 

(€/MWh) 
MAE (MW) MAE (€/MWh) MAE 

 (MW) 
Frequency 
Component 

3.07 9.74 3.23 12.18 3.48 18.76 A2 
0.86 7.26 1.09 9.13 1.59 10.19 D2 
0.74 5.81 0.97 6.54 1.13 7.34 D1 
2.78 17.59 3.07 20.18 3.28 22.89 Total 

 

Table 7.  One-step ahead prediction MAPE for the proposed price forecasting method and four other algorithms for 

Nordpool electricity market. 

 ARFIMA-ANN[52] ANN[52] ARFIMA [52] Zhang’s Hybrid model[52] Proposed 

MAPE% 6.47 10.93 13.89 9.23 4.06 

 

 
Table 8. Weekly MAPE values in terms of percentage (%) for proposed price forecasting method and nine other 

algorithms for 4 weeks of the Spanish electricity market in year 2002. 
Test 

Week 
]54AWNN[ FNN[55] WNN[56] ARIMA[53] Mixed 

Model[57] 
]58HIS[ -Wavelet

]53ARIMA[ 
-MLP

NN[42] 
WPA[1] Proposed 

Winter 3.43 4.62 5.15 6.32 6.15 6.06 4.78 5.23 3.37 2.82 
Spring 4.67 5.30 4.34 6.36 4.46 7.07 5.69 5.36 3.91 3.64 

Summer 9.64 9.84 10.89 13.39 14.90 7.47 10.70 11.40 6.50 4.98 
Fall 9.29 10.32 11.83 13.78 11.68 7.30 11.27 13.65 6.51 4.11 

Average 6.76 7.52 8.05 9.96 9.30 6.97 8.11 8.91 5.07 3.88 

  

 
Table 9. Average seasonal forecasting error values in terms of percentage (%) for proposed load and price forecasting 

method and five other algorithms for the Spanish electricity market in year 2008-2009. 
 Load forecasting seasonal forecasting errors (%)  Price forecasting seasonal forecasting errors (%)  

ARIMA FNP-D FNP-R SFPL-D R-SFPL Proposed ARIMA FNP-D FNP-R SFPL-D SFPL-R Proposed 
Summer 2.55 3.04 3.08 2.78 2.59 2.31 6.78 7.21 7.24 6.33 6.41 3.78 

Fall 3.27 4.15 3.82 3.50 3.20 2.59 7.96 8.76 8.58 7.49 7.44 4.38 
Winter 4.27 3.86 3.44 3.55 3.43 2.71 11.64 12.16 12.25 11.30 10.95 5.16 
Spring 4.14 5.51 4.69 3.96 3.60 2.95 7.98 8.97 9.10 7.82 7.29 3.97 

Average 3.55 4.14 3.75 3.44 3.20 2.64 8.59 9.27 9.29 8.23 8.02 4.32 

 

 


