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Abstract 

Electric vehicle (EV) technology with a vehicle to grid (V2G) property is used in power systems to mitigate greenhouse gas 

emissions, reduce peak load of the distribution system, provide ancillary service, etc. In addition, demand response (DR) programs as 

an effective strategy can provide an opportunity for consumers to play a significant role in the planning and operation of a smart 

distribution company (SDISCO) by reducing or shifting their demand, especially during the on-peak period. In this paper, the optimal 

operation of a SDISCO is evaluated, including renewable energy resources (RERs) along with EV parking lots (PLs). RER and PL 

uncertainties and a suitable charging/discharging schedule of EVs are also considered. Furthermore, price-based DR programs and 

incentive-based DR programs are used for operational scheduling. To achieve this aim, a techno-economic formulation is developed 

in which the SDISCO acts as the owner of RERs and PLs. Moreover, DR programs are prioritized by using the technique for order 

preference by similarity to ideal solution method. In addition, a sensitivity analysis is carried out to investigate different factors that 

affect the operational scheduling of the SDISCO. The proposed model is tested on the IEEE 15-bus distribution system over a 24-h 

period, and the results prove the effectiveness of the model. 
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Nomenclature 
 
Indices 
b , bˊ Index for branch or bus tdep,min

 Lower bound of the departure time 
F Index for linear partitions in linearization Va, Vb

 Wind speed limit  
n , N Index for EV number Vci

 Cut-in speed of wind turbine (m/s) 
S , s Index for scenarios Vco Cut-off speed of wind turbine (m/s) 
Sb Index for slack bus Vr Rated speed of wind turbine (m/s) 
t , tˊ Index for time (h) V Rated

 Nominal voltage (V) 
Parameters  Vmax

 Maximum allowable voltage (V) 
A(t) Incentive of DR programs at t-th hour ($/kWh) Vmin Minimum allowable voltage (V) 
Ccd Cost of equipment depreciation ($/kWh) X b, bˊ Reactance between branches b and bˊ (Ω) 
E(t,t) Self-elasticity Z Impedance (Ω) 
E(t,tˊ) Cross-elasticity  ΔS Upper limit in the discretization of quadratic flow terms 

(kVA) 
I max, b, bˊ Maximum current of branch b, bˊ (A) ηch Charging efficiency (%) 
P(t) Customers’ demand at t-th hour after DR (kW) ηdch Discharging efficiency (%) 
P0(t) Initial demand at t-th hour (kW) θ Illumination intensity (w.m2) 
PL,DR Customers’ demand after DR (kW) θ r Rated illumination intensity (w.m2) 
PL,max  Maximum customers’ demand before DR (kW) µ Mean value 
PPV Output power of PV unit (kW) ρs Probability of each scenario 
PPV-Rated Rated output of PV unit (kW) σ Standard deviation 
PPV,max Maximum output power of PV unit (kW) Variables  
PW Output power of wind unit (kW) I,I2 Current flow (A), Squared current flow (A2) 
PW-Rated Rated output power of wind unit (kW) Pch

 Transferred power for charging EVs (kW) 
PW,max Maximum output power of wind unit (kW) Pdch Discharging power of EVs (kW) 
PEN(t) Penalty of DR programs at t-th hour ($/kWh) PG2L,DR Power purchased from the SDISCO by customer after DR 

programs (kW) 
Pr0(t) Initial electricity price at t-th hour ($/kWh) PG2PL

 Power purchased from the SDISCO by PLs (kW) 
Pr(t) Electricity price at t-th hour after DR ($/kWh) PLoss Power loss of the SDISCO (kW) 
Prch Charging tariff of EVs ($/kWh) PPL2G

 Power purchased from PLs by the SDISCO (kW)  
Prdch Discharging tariff of EVs ($/kWh) PPV2L,DR

 Power purchased from PV unit by customer after DR 



programs (kW) 
PrL,DR

 Electricity price after DR ($/kWh) PPV2PL
 Power purchased from PV unit by PLs (kW) 

PrWh2G Price of purchased electricity from the wholesale 
market by the SDISCO ($/kWh) 

PWh2G Power purchased from the wholesale market by the 
SDISCO (kW) 

P(v) Probability of the wind speed  PW2L,DR Power purchased from wind unit by customer after DR 
programs (kW) 

QL,DR
 Customers’ reactive power after DR (kVAR) PW2PL Power purchased from wind unit by PLs (kW) 

R b, bˊ Resistance between branches b and bˊ (Ω) P+ Active power flows in downstream directions (kW) 
Rch

 Charging rate (kWh) P- Active power flows in upstream directions (kW) 
Rdch

 Discharging rate (kWh) QWh2G SDISCO’s reactive power (kVAR) 
SOEarv

 Initial SOE of EVs at the arrival time to the PLs 
(kWh) 

Q+ Reactive power flows in downstream directions (kVAR) 

Sb Apparent power in bus b (kVA) Q- Reactive power flows in upstream directions (kVAR) 
Sb,max

 Maximum apparent power in bus b (kVA) V,V2 Voltage (V), Squared voltage (V2) 
SOEdep

 Desired SOE of EVs at the departure time from PLs 
(kWh) 

Xch Binary variable that shows the charge status of EVs  
(0 or 1) 

SOEini,min/max Truncation region for the initial SOE of EVs Xdch Binary variable that shows the discharge status of EVs  
(0 or 1) 

SOE max
 Maximum rate of SOE (kWh) Others  

SOE min Minimum rate of SOE (kWh) m Alternative quantity 
tarv

 Arrival time of EVs to the PLs o Attribute quantity 
tarv,max Upper bound of the arrival time SS Distance between each alternative and the ideal 

solution/nonideal solution 
tarv,min Lower bound of the arrival time V Ideal-solution/nonideal solution 
tdep Departure time of EVs from the PLs W Weight of attributes 
tdep,max Upper bound of the departure time λ Decision maker’s importance factor 
 

1. Introduction 

1.1. Motivation and Aims 

The penetration of electric vehicles (EVs) considering different types of charging can bring advantages and 

disadvantages to the owner of a smart distribution company (SDISCO). The operation of EVs can be classified into 

uncontrolled charging mode, controlled charging mode, and smart charging/discharging mode. If EVs are charged in an 

uncontrolled charging mode, improper results may occur such as increase in loss [1,2], high demand [3,4], unbalancing 

of the load [5,6], voltage drop [7], and decrease in the cable and transformer life [8,9]. EVs also offer a unique 

advantage in terms of a technology known as vehicle to grid (V2G) [10]. The V2G concept is essentially the ability of 

EVs to inject the electrical power to the SDISCO. Therefore, by using the controlled charging mode or smart 

charging/discharging mode, i.e., charging during the mid-peak or off-peak periods and discharging during the on-peak 

period, the performance of SDISCO is improved. This mode has many benefits for the SDISCO, such as ancillary 

service-spinning reserve [11-12], load leveling and peak load shaving [13-14], voltage regulation [15], and decreasing 

in CO2 gas emissions [16]. 

Moreover, demand response (DR) programs are a key element in the sustainable development of the SDISCO, which 

can be enabled by the SDISCO. DR is a set of actions for reducing the consumer’s demand that is implemented by 

changing the price of electricity or paying an incentive or receiving a penalty. These programs are implemented when 

interruptions occur in the conventional power plant or renewable energy resource (RER) generations. DR programs are 

also designed to improve the reliability of the SDISCO and reduce the electricity consumption during on-peak hours 

[17].  

Because the number of EVs may increase in the future, the management and operation of the SDISCO at present are 

more complicated than that in the past. One of the important solutions in this context is an efficient use of parking lots 

(PLs). EV owners do not use the EVs: 93– 96% of daytime. The high numbers of EVs having V2G capability can 

provide a good opportunity for the operation and planning of the SDISCO, if an optimal management of 

charging/discharging the EVs is implemented. Furthermore, uncertainty is one of the most important and inherent 



features of RERs and PLs. In the presence of uncertainty in the SDISCO, the operation and planning are also uncertain. 

Therefore, using DR programs is considered as a tool for reducing the amount of energy not-supplied (ENS).  

This paper aims at the operational scheduling of the SDISCO considering RERs and PLs and their uncertainties. To 

achieve this goal, a techno-economic formulation is developed to maximize the profit of the SDISCO. However, the 

uncertain nature of different RESs and PLs may have considerable effects on the optimal operation of the SDISCO. 

Therefore, uncertainties are modeled using the probability distribution function (PDF). Furthermore, the impact of 

several subgroups of DR programs, i.e., price-based DR (PBDR) programs, incentive-based DR (IBDR) programs, and 

combined PBDR and IBDR programs, on the operational scheduling of the SDISCO is also investigated. Moreover, DR 

programs are prioritized by using the technique for order preference by similarity to ideal solution (TOPSIS). 

Furthermore, the effects of controlled charging mode of EVs and the smart charging/discharging on the operation of the 

SDISCO are appraised. In addition, the impact of the size of wind and photovoltaic (PV) units and the number of EVs 

on the operation of the SDISCO is evaluated. Moreover, because the model includes different uncertainties, a stochastic 

programming is used to solve the objective function.  

1.2. Literature Review 

Among the related studies on EVs, several reviews are presented in [10, 18, 19]. In [10], different standards and codes 

for EVs, V2G concept and its benefits, the impact of charging strategies of EVs on distribution systems, and the 

comparison of an uncoordinated and coordinated strategy of charging are investigated. In [18], the EV history, the 

current status of EV technologies (power train configurations, development time-line of EV battery, EV battery type, 

charging levels, and converter topologies of EV charger), impacts of EV deployment (economic, environmental, power 

grid impacts), and the relationship between EVs and the smart grid are reviewed. In [19], a review is provided on plug-

in EV scheduling and optimization methods for integrating EVs in the power system. This review includes the impact 

assessment and analytical charging strategies, scheduling objectives, conventional mathematical optimization, and 

meta-heuristic algorithm approach, as well as a comparison of these methods. 

The US Department of Energy categorizes DR into IBDR and PBDR groups, which have several subgroups as 

explained in the following section [20]. In [21], an economic model for the responsive load is proposed. Price elasticity 

of the demand, electricity price, and the incentive and penalty values are the main factors that change in customers’ 

demand. To select the most efficient DR program, an analytical hierarchy process is used. In [22], a flexible responsive 

load economic model is presented. In this report, by using the linear function of demand curve, variable elasticity is 

calculated. Prioritization of ten programs and twenty scenarios with different participation levels is evaluated from 

individual stakeholders, i.e., customer, utility, and independent system operator (ISO). In [23], the nonlinear PBDR 

programs are modeled. The implementation of DR programs is investigated in different networks with different 

participation levels of the responsive load, elasticity, and electricity price. 

In [10, 18-23], a comprehensive description of EVs and DR programs is provided. In the following, we review the 

reports in which the effect of EVs and DR programs on the planning and operation of the SDISCO is investigated.  

In [24], the behavior of EV PLs by using a model for achieving optimal strategies is evaluated in both PBDR and IBDR 

programs and several subgroups. The aim of the objective function is maximizing the PLs’ profit considering PLs and 

electricity market uncertainties. The participation level of EVs in each DR program is also optimized. Results show that 

the type of DR programs affects the charging/discharging schedule of the EVs, traded energy with the grid, and the 

participation in the reserve and energy markets. In [25], a probabilistic framework is presented for the operation of 

distribution companies in the presence of distributed generations (DGs) and battery energy storage. In this model, the 



uncertainty of electricity prices and output power of DGs are also considered. In [26], operation costs and emissions are 

minimized by using a stochastic programming model in the presence of RERs and DR programs.  

In [27], by applying an IBDR program, sitting and sizing of PLs are performed for an increasing distribution company 

reliability by calculating the ENS and average sustained interruption duration indices (ASIDI). By using the genetic 

algorithm, the objective function is solved in four scenarios with different availabilities of EVs on a 33-bus radial 

distribution network. In [28], by using IBDR programs and a suitable charge/discharge schedule of EVs, an operational 

planning model of a microgrid (MG) is presented. The proposed model aims at minimizing the total operation cost of 

MG. For evaluating the robustness of the presented model, the case study is carried out in two scenarios. Results 

indicate that the application of DR and the participation of EVs in energy or reserve market causes a reduction in the 

total operational cost of MG. 

In [29], a mathematical model is presented to solve the static transmission network expansion planning problem 

considering RERs and EVs together with the IBDR program. The goal of objective function is to minimize the total cost 

of the system. By using the artificial bee colony algorithm and considering eight scenarios on three test systems, the 

mathematical model is solved, and the results indicate that the total system cost is significantly reduced. In [30], by 

considering wind generation and DR program, a stochastic operational scheduling of the SDISCO is proposed in the 

energy and reserve markets. By testing on an 83-bus distribution system, results show that the load's participation in the 

energy and reserve scheduling reduces the total operation costs. In [31], for the scheduling of local distribution systems 

with EVs and RERs, a model for minimizing the total cost of the network is presented including the cost of power 

supply for loads and EVs and the cost of ENS as the reliability costs. A modified bat algorithm (BA) is proposed and 

tested on a grid-connected MG to solve this problem.  

Although many studies have used the EVs and DR programs, the simultaneous consideration of RER and EV 

uncertainties and the PBDR and IDBR programs in the operation of the SDISCO has not been addressed in the 

literature.  

1.3. Contributions 

In this paper, a new model is presented for the optimal operation of the SDISCO considering the V2G property of EVs, 

RER and EV uncertainties, and IBDR and PBDR programs. The main contributions of the paper are as follows: 

1. Presenting a techno-economic model for the operational scheduling of the SDISCO by the simultaneous 

consideration of RER and EV uncertainties and the PBDR and IDBR programs. 

2. Presenting a sensitivity analysis to investigate the different factors that may affect the operational scheduling 

of the SDISCO. 

3. Investigating several subgroups of DR programs for the operation of the SDISCO in the presence of EVs and 

prioritizing the programs based on indices such as the SDISCO’s profit, network loss, and demand peak. 

1.4. Paper Organization 

The rest of the paper is organized as follows. A brief review of the EV and RER uncertainties is described in section 2. 

PBDR and IBDR programs are explained in section 3. Problem formulation is presented in section 4. Numerical results 

are discussed in Section 5. Finally, conclusions are reported in Section 6.  

2. EV and RER Uncertainties  



In this section, the modeling of PLs based on the specifications of EVs is carried out. Moreover, the modeling of RERs, 

i.e., wind and PV generation, considering their intermittent nature is performed. 

 

2.1. EV uncertainty 

The uncertainties of each EV owner involve the initial state of energy (SOE), duration of the presence of EVs in PLs, 

charge/discharge rate, battery capacity of EVs, and the desired final SOE. Many reports have studied the uncertainty of 

EVs; hence, appropriate PDFs have been suggested to have a maximum overlap with real data. On this basis, the 

behavior of EVs is modeled as a truncated Gaussian distribution [32].  

Thus, the behavior of each EV is modeled by Eqs. (1) - (3). 

  2 ,min ,max; ; ; ;ini ini ini
n TG SOE SOE n nSOE f X SOE SOE     n   (1) 

  2 ,min ,max; ; ; ;arv arv arv
n TG arv arv n nt f X t t     n  (2) 

  2 ,min ,max; ; ; max( , );dep dep arv dep
n TG dep dep n n nt f X t t t    n  (3) 

2.2. RER uncertainty 

There are two sources of uncertainty of RERs, i.e., the output power generation of wind and PV units. The stochastic 

wind speed and illumination intensity are the main factors that affect the wind and PV output. The modeling of these 

uncertainties is presented as follows. 

2.2.1.  Uncertainty of Wind Power Generation  

Because of the intermittent nature of the wind speed, many experiments prove that the stochastic wind speed in many 

regions roughly pursues the Weibull PDF [33-34]. Eq. (4) shows the Weibull PDF where c > 0 and k > 0 denote the 

scale and the shape factors, respectively. The wind speed probability can be computed by Eq. (5). On the basis of the 

recognized PDF of the wind speed, the relationship between the output power of a wind generating unit and the wind 

speed is formulated by Eq. (6) [35]. Eq. (6) shows that electricity can be generated when there is minimum wind speed, 

and electricity generation continues until the rated wind speed is reached. At the rated wind speed, the electricity 

produced is equal to the rated power of wind generation unit. If the wind speed is less than the minimum or more than 

the maximum limit, the power generated by the wind turbine is zero. 
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(6) 

2.2.2. Uncertainty of PV Units  

The output of a PV unit is predominantly affected by the illumination intensity. Because the illumination intensity is an 

uncertain variable, the output of the PV unit is also uncertain. In [35], it is shown that the distribution of solar irradiance 



is characterized by the Weibull PDF shown in Eq. (7). On this basis, electricity is generated when there is minimum 

illumination intensity and continues until the rated illumination intensity is reached. If the illumination intensity is 

higher than the rated illumination intensity, the electricity generated is equal to the rated power of PV.  
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(7) 

2.3. Simulation of uncertainties 

The stochastic programming is used for modeling and solving problems that involve various uncertainties. In stochastic 

programming, each uncertain parameter is considered a random variable. The random variables are usually described by 

a set of scenarios. These scenarios are obtained by the PDFs. For the uncertainty simulation, scenario generation and 

scenario reduction steps are needed. First, after collecting historical data, the output is gained by  

(1), (2), (3), (6), and (7). Then, by using a scenario tree technique, the different output states are described. By using the 

interval method, the initial output of the scenario set is achieved. Because most practical optimization problems are very 

large when all possible scenarios are considered, the number of scenarios should be reduced. Therefore, it is necessary 

to construct a scenario reduction method for deleting similar scenarios to save the computational cost. The basic 

concept of scenario reduction is to choose a reference scenario and then compare this scenario with other scenarios to 

remove the closest scenario. Here, the Kantorovich distance (K-distance) is utilized to calculate the distance between 

different scenarios under the objective function of the minimum K-distance between the initial scenario and the reduced 

scenario. The scenario with the minimum K-distance is deleted. The probability of a deleted scenario should be added 

to the reference scenario. Then, the final simulation scenarios and the probability of all scenarios can be calculated. The 

scenario reduction model is described in [34, 36]. 

3. Modeling of IBDR and PBDR programs  

On the basis of Eq. (8), the price elasticity of demand is defined as the demand sensitivity with respect to the price. 

0

0

Pr PE = .
PrP
∂

∂

 (8) 

If the electricity price varies at different periods or there is an incentive for demand reduction during the on-peak 

period, the responsive load reacts as follows. 

1. One part of demand of the responsive load (such as lighting demand) has a single-period sensitivity, because it cannot 

be transferred to other periods, and it can be only on or off during the same period. This part of demand is called the 

single-period elastic load. The elasticity of such demand that is not sensitive to the electricity prices at other periods is 

called self-elasticity [21]. The value of self-elasticity based on Eq. (9) is negative. 

0 0

0 0

Pr (t) P(t) P (t)E(t, t) . 0
P (t) Pr(t) Pr (t)


 


 (9) 

2. Another part of demand of the responsive load has a multiperiod sensitivity, because it can be transferred from one 

period to another period. This part of demand is called the multiperiod elastic load. The elasticity of this part of demand, 

which is sensitive to the electricity prices at different periods, is called the cross-elasticity [21]. The value of cross-

elasticity as presented in Eq. (10) is positive. 
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Fig. 1 shows that the DR programs are divided into two main categories, i.e., PBDR programs and IBDR programs.  

All the PBDR programs are voluntary programs such as the time of use (TOU), real-time pricing (RTP), and critical 

peak pricing (CPP); however, the IBDR programs include voluntary programs (emergency DR program (EDRP) and 

direct load control (DLC)), mandatory programs (interruptible/curtailable programs (I/C) and capacity market program 

(CAP)), and market-clearing programs (demand bidding (DB) and ancillary services (A/S) market). A detailed 

description of DR programs can be found in [21–23]. Therefore, for the load economic model, we have Eq. (11) [21]: 

0
0

0'

' ' ' '
'

'
t  T

Pr(t ) Pr (t ) A(t ) PEN(t )P(t) P (t) 1 E(t, t )
Pr (t )

   
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 
  

(11) 

According to Eq. (11), it is clear how the consumption of customers will change to yield the maximum profit. The 

SDISCO is responsible for implementing DR programs. Despite many benefits of DR, there is an additional cost as 

presented in Eq. (12). 

      0 con 0DRC A(t) P (t) P(t) PEN(t) P (t) P (t) P(t)        
(12) 

 
Fig. 1. Main and lateral categories of DR programs 

 

4. Problem Formulation 

In this paper, the objective function is to maximize the SDISCO profit in terms of income and cost. EV owners are one 

of the main players related to the operation of the SDISCO. EV owners expect to pay a lower cost for charging EVs or 

departure with the desired SOE from the PLs. The SDISCO because of the V2G capability of EVs, the management of 

charging/discharging schedule of EVs, and the implementation of DR programs is interested in achieving the objectives, 

i.e., reducing losses, improving voltage profile, increasing reliability index, and avoiding feeder and transformer 

congestions. 

4.1. Objective function 

For customer orientation and satisfaction, the SDISCO should provide the needed energy for the customers and 

charging the EVs. This energy is purchased from the wholesale market. The SDISCO can also use the RER generation. 

In this paper, it is assumed that the SDISCO also owns the EV PLs and renewable energy units. Indeed, by encouraging 

the EV owners, paying proper incentives, and considering the V2G capability, a part of the needed energy for the 

customers during the on-peak period can be supplied. In addition to paying this incentive to the EV owners, the 



SDISCO must pay a battery depreciation cost to the EV owners because of the participation in V2G modes. The 

SDISCO also implements the DR programs for using their benefits.  

 

According to the abovementioned data, the objective function is composed of the following terms: 

1. The income from selling the energy to EV owners, 

2. The income from selling the energy to the customers, 

3. The cost of energy purchased from the wholesale market, 

4. The cost of energy purchased from EV owners for supplying it to the customers, 

5. The cost of battery depreciation, 

6. The cost of implementation of DR programs. 

Term 1 is the income from selling the energy to EV owners for charging the EVs. The income is presented in Eq. (13).  

 
24 24

ch 2 2 2 ch
1 , , t , , , , , , t

1 1 1 1 1 1

Pr ×Δt Pr ×Δt
Ns N Ns N

ch G PL W PL PV PL
s n t s s n t s n t s n t s

s n t s n t

F P P P P
     

             
(13) 

 

Term 2 is the income from selling the energy to residential, industrial, and commercial loads. This income is formulated 
in Eq. (14).  

 
24 24

L,DR L,DR 2 , 2 , 2 , L,DR
2 b,t t , , , t

2 1 2 1

P × Pr ×Δt Pr ×Δt
Nb Nb

G L DR PV L DR W L DR
b t b t b t

b t b t

F P P P
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        
(14) 

Term 3 is the cost of energy purchased from the wholesale market to supply various loads and charge the EVs. This cost 

is expressed in Eq. (15). 

NSb 24
Wh2G

3 t
Sb 1 t 1

F Pr ×ΔtW h2G
Sb,tP

 

    
(15) 

Term 4 is the cost of the EV owner’s bid to the energy market that results from the discharge of the EV batteries during 

the on-peak period. This cost paid to EV owners is given by Eq. (16).  

24 24
dch 2 dch

4 , , t , , t
1 1 1 1 1 1

Pr ×Δt = Pr ×Δt
Ns N Ns N

dch PL G
s n t s s n t s

s n t s n t

F P P
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          
(16) 

Term 5 is the cost of battery depreciation. In general, the depth of discharge affects the life of EV battery [37, 38]. This 

term is computed using the amount of power exchange between EVs and the SDISCO. This cost paid to the EV owners 

is presented in Eq. (17). 

Ns N 24
cd

5 s
s 1 n 1 t 1

F C ×Δtdch
n,t,sP
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      
(17) 

Term 6 is the cost of implementation of DR programs. As previously mentioned, by implementation of the DR, the 

SDISCO will also incur costs because of the type of DR programs. This cost can be calculated by Eq. (18). 

    
Nb 24

L L,DR con L L,DR
6 t b,t b,t t b,t b,t b,t

b 2 t =1

F A P - P - PEN P - P + P × Δt


   
(18) 

It can be noted that the time interval in this paper is 1 h (Δt=1). After a description of the income and cost, the objective 

function is as presented in Eq. (19). 



1 2 3 4 5 6MAX   OF = F + F - F - F - F - F   (19 ) 

It should be noted that the energy purchased from the wholesale market is used for meeting the customers’ demand and 

charging the EVs. The SDISCO also purchases the energy from the wholesale network that leads to lower losses. 

Therefore, the presented model for the operational scheduling of the SDISCO is a techno-economic model.  

4.2. Constraints 

In the following, the constraints related to the objective function are defined. 

1) RER generation  

Based on Eqs. (20) - (21), wind and solar generation units are limited to the forecasted power generation in each hour 

according to the wind speed and solar radiation, respectively. 

,max
, ,0 W W

b t sP P    (20) 

,max
, ,0 PV PV

b t sP P   (21) 

2) Bus Voltage and Line Thermal Capacity 

Because of the line thermal capacity, the power flow of each branch must be less than the maximum permissible power. 

The voltage of each bus should be also between the minimum and maximum range of the voltage. Therefore, Eqs.  

(22) - (23) are used. 

,max
, ,

b
b t sS S   (22) 

maxmin
, ,0.95 1.05b t sV V V     (23) 

3) Linear Power Flow 

According to this constraint, the generated total energy or power must be equal to the consumed total power or energy. 

In this paper, a linear power flow is considered based on [32]. This power flow is used only in radial distribution 

networks. Therefore, a term is considered as a block to avoid nonlinearities. Note that the EVs in the PLs act as a source 

during the on-peak period and as a load during the off-peak or mid-peak periods. The active and reactive power balance 

in this power flow is shown in Eqs. (24) and (25), respectively: 
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Note that I2 refers to an auxiliary variable linearly representing the squared current flow I2 in a given branch. At most 

one of these two positive auxiliary variables, i.e., Pb,b,t,s and Qb,b,t,s , can be nonzero at a time. This condition is again 

implicitly enforced by optimality. Moreover, Eqs. (26) and (27) limit these variables by the maximum apparent power 

for completeness. 
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Eq. (28) is presented for balancing the voltage between two nodes. It should be noted that V2 in Eq. (28) is an auxiliary 

variable that represents the squared voltage relation. 
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Eq. (29) is used for linearizing the active and reactive power flows that appear in the apparent power expression. 
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For piecewise linearization, Eqs. (30) - (34) are presented. The number of blocks required to linearize the quadratic 

curve is set to five according to [39], which maintains the right balance between accuracy and computational 

requirements. Further descriptions, justifications, and derivations of the network model used in this paper can be found 

in [40-41]. 
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4) Power Balance 

According to this constraint, the total power generated is equal to the total power consumed. This constraint is shown in  

Eq. (35). 

2 L,DR
, , , , , , , , , , ,

N N

W h G W PV dch Loss ch
Sb t b t s b t s n t s b t t s n t sP P P P P P P         (35 ) 

5) DR constraint 

DR programs are generally considered in the reduction of power during the on-peak period. Hence, at another time, a 

new peak load may occur because of the implementation of DR. Therefore, in this paper, with Eq. (36), the unexpected 

peak load is avoided. 

, ,max
,
L DR L

b t bP P   (36 ) 

6) EV constraint  

Eq. (37) indicates that the charge and discharge of EVs are not simultaneous. According to Eq. (38), the total SOE of 

the EVs cannot exceed the minimum and maximum SOE of each EV. Also, according to Eqs. (39) - (40), the SOE of 

EVs at each hour appertains many factors including the remaining SOE of the EVs from the previous hour, the amount 

of power exchanged with the SDISCO and the PLs, the charge/discharge efficiency, and the initial SOE of EVs [31, 

38]. The amount of power purchased by each EV from the PLs is limited to its maximum value. Further, the amount of 



power that each EV can sell to the PL is also limited to a maximum value. These two constraints are shown in Eqs. (41) 

and (42), respectively. Finally, according to Eq. (43), the management of charging/discharging the EVs should be 

accurate in such a way that at the departure time, the SOE of EVs reaches the desired value.  
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4.3. The problem-solving process 

In this paper, a stochastic programming is used for solving the objective function. In fact, stochastic programming is 

used for modeling and solving the problems that involve different uncertainties. Uncertainties in the application of 

stochastic parameters are considered as random variables. These variables are usually expressed by a set of scenarios. 

As noted, these scenarios are obtained using the PDFs (in this paper, truncated Gaussian distribution and Weibull 

distribution). On the basis of the customers’ demand, duration of the presence of EVs in PLs, wind and PV unit output, 

power purchased from the wholesale market by the SDISCO, and DR implementation, the framework of the proposed 

model and the flowchart of the stochastic operational scheduling of the SDISCO are shown in Fig. 2 and Fig. 3, 

respectively. 

The decision variables in the proposed model are binary and integer variables. The presence of such variables leads to 

the mixed-integer problem. In addition, because of the linear objective function and constraints, the model is linear. 

Therefore, by considering all the relations, the proposed optimization model is a mixed-integer linear programming 

(MILP) problem. Therefore, in this paper, the simulation is carried out through CPLEX solver of GAMS. A scenario 

tree of all uncertainties is generated by the Monte Carlo method. The simulation is implemented in a laptop with Core i7 

up to 3.5 GHz CPU, 12 GB RAM (DDR4), and 4 MB Cash.  
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Fig. 2. Framework of the proposed model 

 

 
Fig. 3. Flowchart of the stochastic operational scheduling of the SDISCO 

 

5. Numerical Studies and Discussion 

The proposed methodology is tested on the standard IEEE 15-bus distribution system over a 24-h period. The data of 

this test system are shown in Fig. 4 [42]. A wind turbine and a PV system are installed on bus 12 with a rated power of 

200 kW. For the wind turbine, the cut-in, nominal, and cut-out speeds were 4, 14, and 25 m/s. The shape and scale 

indices for the wind generation are 2 and 6.5, respectively [35]. For PV generation, the rated illumination intensity is 

1000 w.m-2, and the shape and scale indices are 1.8 and 5.5, respectively [35]. The modified details of EVs’ probability 

distributions are presented in Table 1 [32]. The PL is installed on bus 11. It is assumed that 100 EVs can be parked in 

the PL. The power factor of all loads is 0.95 lagging.  

The wind and PV units are also assumed to have a fixed power factor equal to 1. Twenty-four hours are divided into the 

off-peak period (1-7 and 22-24), mid-peak period (8-9 and 15-18), and on-peak period (10-14 and 19-21). The charge 

and discharge efficiencies of EV batteries are assumed to be 90% and 95%, respectively.  

The battery capacity is assumed to be 50 kWh, and the maximum charging and discharging rates of EV batteries are 10 

kW per hour. Depletion of EV batteries is assumed up to 85% of the rated battery capacity for life-time optimization.  



The price of degradation cost of V2G is 0.03 $/kWh [43]. The price elasticity of the demand is considered as listed in 

Table 2 [21]. To study the operational scheduling, various PBDR and IBDR programs are considered, as presented in 

Table 3. The hourly prices of the energy market in RTP programs are extracted from [44]. 

Table 1. Probability distribution of EVs 

 Mean Standard Deviation Min Max 
Initial SOE (%) 50 25 30 60 
Arrival time (h) 8 3 7 10 
Departure time (h) 20 3 18 24 

Table 2. Self- and cross-elasticities 

 On-peak Mid-peak Off-peak 
On-peak -0.1 0.016 0.012 
Mid-peak 0.016 -0.1 0.01 
Off-peak 0.012 0.01 -0.1 

Table 3. Cases considered for PBDR and IBDR programs 

Program Electricity price for load,  
charging and discharging EVs ($/MWh) 

Incentive value 
($/MWh) 

Penalty value 
($/MWh) 

Base case 171.125 flat rate 0 0 
TOU 85.562, 171.125, and 342.25 for off-peak, mid-peak, and on-peak periods, 

respectively 
0 0 

CPP 400 at 19, 20, and 21 h and 171.125 at other hours 0 0 
RTP As reference [30] 0 0 

TOU+ CPP 85.562,171.125, and 342.25 for off-peak, mid-peak, and on-peak periods, 
respectively and 400 at 19,20, and 21 h 

0 0 

EDRP 171.125 flat rate 150 0 
CAP 171.125 flat rate 150 50 

TOU+ EDRP 85.562,171.125, and 342.25 for off-peak, mid-peak, and on-peak periods, 
respectively 

150 0 

TOU+ CAP 85.562,171.125, and 342.25 for off-peak, mid-peak, and on-peak periods, 
respectively 

150 50 

 

 
Fig. 4. The considered 15-bus distribution system 

 
 

For an accurate and comprehensive study of the impacts of DR programs, RERs, and EVs on the operation of the 

SDISCO, the profit, peak, and loss are investigated in four cases. It is noted that the demand of the SDISCO in the 

presence of EVs could increase 1 MW during the off-peak and mid-peak periods because of the presence of 100 EVs 

with a maximum charging rate of 10 kW per hour. The same amount of power with the smart charging/discharging 

during the on-peak period is available for the SDISCO to meet the customers’ demand.  



Moreover, as shown in Table 3, nine programs are considered for a comprehensive review of the impact of DR 

programs. In this paper, it is assumed that the total number of signed contracts for the participating customers in DR 

programs is equal to 20% of the total customers’ demand during the scheduling period. In the base case, the flat rate 

price is implemented where no DR program is adopted.  

Therefore, the four cases are as follows: 

1. SDISCO with EVs by controlled charging, without wind and PV units. 

2. SDISCO with EVs by controlled charging, with wind and PV units. 

3. SDISCO with EVs by smart charging/discharging, without wind and PV units. 

4. SDISCO with EVs by smart charging/discharging, with wind and PV units. 

The profit of the SDISCO and the peak and loss in the four cases are shown in Table 4. By comparing the data provided 

in Table 4, from different viewpoints, the following results can be obtained: 

Profit point of view 

1. In each program, case 4, i.e., SDISCO with EVs by smart charging/discharging with wind and PV units, results 

in the highest profit.  

2. Among PBDR programs, RTP is the worst program in terms of profit. Because in the third and fourth cases, 

EVs do not participate in the smart discharging program, and the results are similar to those for the first and 

second cases. Furthermore, the CPP is the best program in terms of profit. 

3. Among IBDR programs, the CAP is better than EPDR. 

4. Among the combined programs, TOU+CAP is the best combination. 

Network Loss point of view 

1. In each DR program, case 2, i.e., SDISCO with EVs by controlled charging with wind and PV units, leads to 

the lowest loss. Because in this case, in addition to the use of RERs, EVs are charged in 1 or 2 h only, and the 

SDISCO purchases less power from the wholesale market.  

2. Among PBDR programs, the RTP is the worst program in terms of loss. 

3. Among IBDR programs, the CAP is better than EPDR. 

4. Among the combined programs, TOU+CAP is the best combination. 

Peak point of view 

1. In each program, case 3, i.e., SDISCO with EVs by smart charging/discharging without wind and PV units, 

leads to the highest peak. Because, in this case, because of the lack of RERs and a very high 

charging/discharging the EVs, more power is purchased from the wholesale market. 

2. Among PBDR programs, the TOU+CPP is the worst program in terms of peak. 

3. Among IBDR programs, the CAP is better than EPDR. 

4. Among the combined programs, TOU+CAP is the best combination. 

As can be seen in the first program, the profits of the SDISCO, even by the controlled charging of the EVs, are 

negative. It is shown that the penetration of EVs in the future will challenge the distribution company. Furthermore, in 

25 programs, despite the encouraging incentives for consumers to reduce their consumption, the SDISCO still faces a 

negative profit. Therefore, it is very cost-effective for the SDISCO to use RERs, appropriate DR programs, and a smart 

charging/discharging mode of EVs. 



Table 4. Technical comparison of the programs 

Program no. Programs Case Loss (kW) Profit ($) Peak (kW) 
1  

Flat rate 
1 644.59 -268.833 2124.29 

2 2 554.35 596.782 1975.34 
3 3 721.90 692.658 2511.07 
4 4 630.32 1552.66 2360.76 
5  

TOU 
1 635.54 842.128 2227.60 

6 2 547.65 1705.71 2078.49 
7 3 720.49 1293.42 2534.08 
8 4 633.50 2150.32 2383.69 
9  

RTP 
1 652.67 176.978 2390.68 

10 2 560.20 1043.39 2171.92 
11 3 652.67 176.978 2390.68 
12 4 560.20 1043.39 2171.92 
13  

CPP 
1 624.90 922.112 2143.56 

14 2 537.98 1786.29 1994.57 
15 3 705.64 1874.30 2530.45 
16 4 617.86 2732.80 2380.07 
17  

TOU + CPP 
1 631.52 1066.75 2232.46 

18 2 543.74 1930.29 2083.34 
19 3 717.63 1517.46 2538.97 
20 4 631.20 2374.01 2388.56 
21  

CAP 
1 602.50 210.618 2169.19 

22 2 516.79 1074.04 2020.16 
23 3 693.36 1165.41 2556.22 
24 4 607.94 2022.05 2405.75 
25  

EDRP 
1 611.99 -198.207 2157.96 

26 2 525.99 665.457 2008.95 
27 3 700.1 757.938 2544.93 
28 4 613.34 1615.43 2394.50 
29  

TOU + EDRP 
1 607.68 288.223 2261.28 

30 2 522.46 1150.26 2112.12 
31 3 702.84 734.252 2567.94 
32 4 618.14 1930.22 2417.44 
33  

TOU + CAP 
1 598.41 489.367 2272.50 

34 2 515.86 1350.235 2123.34 
35 3 697.24 933.500 2579.23 
36 4 611.45 1786.30 2428.69 

 

In the following, the prioritization of DR programs based on some indices is performed by using the TOPSIS and 

entropy method [21]. The TOPSIS is one of the most important techniques for solving multiattribute decision making 

(MADM) problems. It is based on the basic rule that the chosen alternative should be as far as possible from the 

negative ideal solution and as close as possible to the positive ideal solution. The negative ideal solution maximizes the 

cost criteria and minimizes the benefit criteria, whereas the positive solution maximizes the benefit criteria and 

minimizes the cost criteria. The optimal performance is, therefore, that the alternative is the farthest from the negative 

ideal solution and the closest to the ideal solution. The steps in the implementation of this technique are given below. 

Step 1: Establishing the decision matrix  

First, the decision matrix for the analysis must be created. In this paper, the decision matrix has m alternatives, i.e., 

PBDR and IBDR programs, presence or absence of RERs, controlled charging or smart charging/discharging the EVs, 

and o attributes, i.e., the SDISCO’s profit, loss, and peak.  

Therefore, a 32×3 matrix is formed for the analysis. It is noted that programs 1 and 25 because of the negative profits, 

and programs 11 and 12 because of the similarity to programs 9 and 10, respectively, are eliminated. 

 



Step 2: Normalizing the decision matrices 

A decision matrix is normalized by a normalization method as presented in Eq. (44). Xlk is the performance of the l-th 

alternative regarding k-th attribute. rlk represents the normalized intersection of each alternative and attribute.        
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Step 3: Determining the weight by the entropy method 

The weights attributed to the various criteria represent the importance of each criterion in the assessment procedure and 

directly affect the ranking order of alternatives. The methods for finding the weights are grouped into two classes: 

subjective and objective weighting methods. The objective methods, such as entropy and multiple objective 

programming, allow the vector weights to be obtained without any influence from the decision maker’s judgments. In 

other words, the objective weighting methods are based only on a mathematical computation using the measurement 

data and information. Among the objective weighting methods, the Shannon entropy concept is a particularly useful 

approach for assigning weights to criteria. To calculate the weights by the entropy measure, the decision matrix has to 

be first normalized by adjusting the values measured on different scales to a notionally common scale. Therefore, Eq. 

(45) is used for calculating each weight based on the entropy method. 
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After normalization, by Eq. (46), the entropy values are computed.  
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where m is the number of alternatives. The larger the E, the less is the information transmitted by the kth criterion. 

Then, the degree of divergence (dk) of the information of each criterion can be obtained by Eq. (47): 

1k kd E    (47) 

A larger dK is the most important kth criterion for the problem. Therefore, the weight is calculated by Eq. (48): 

1

k
k n

k
k

d
W

d





  

(48) 

This expresses the degree of importance of the kth criterion. Furthermore, the weights are improved, if the decision 

maker has a previous consideration about the importance factor of attributes. Improved weights are described in Eq. 

(49). 
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Step 4: Creating weighted decision matrices  



The weighted normalized decision matrix is constructed by multiplying the decision matrix with its associated weights 

as in Eq. (50). 

lk k lkV W r    (50) 

Step 5: Determining ideal and nonideal solutions 

In this step, the ideal and nonideal alternatives are identified. The ideal solution is the maximum value for the positive 

criterion and the minimum value for the negative criterion in each column. Similarly, the nonideal solution Vk
- is the 

minimum and the maximum values for the positive and the negative criteria, respectively, in each column. These values 

are calculated using Eqs. (51) and (52). 

 max   , min         1,...,k lk lkV V k k V k k l m        (51) 

 min   , max         1,...,k lk lkV V k k V k k l m        (52) 

Step 6: Calculation of Separation Measure    

In this step, the Euclidean distance of each alternative and the ideal and nonideal solution is formulated by Eqs.  

(53) and (54), respectively. 
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Step 7: Calculation of relative closeness to the ideal reference point  

Finally, the value of relative closeness (RC) is calculated by Eq. (55). A higher Cl coefficient is the most effective 

program (alternative). 
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The flowchart of the proposed portfolio sorting the operational scheduling programs is shown in Fig. 5. 



 
Fig. 5. Flowchart of the proposed portfolio sorting the operational scheduling programs 

After establishing the decision matrix (32×3), the attributes are weighted by the entropy method. These weights are 

shown in Table 5. The SDISCO also modifies the weights depending on its decision. In fact, the weights of loss, profit, 

and peak can be modified by the following factor: 

λn = {0.3,0.35, 0.35} 

The improved weights of attributes are obtained using the above factors in Eq. (49) and presented in Table 5. Now, to 

determine the priorities of implementing different programs, the TOPSIS method is established. Table 6 shows the 

results of the prioritization. As it can be seen, program 16, i.e., CPP with EVs by smart charging/discharging with wind 

and PV units, has the highest priority. On the contrary, program 9, i.e., RTP with EVs by controlled charging without 

wind and PV units, has the lowest priority. 

Table 5. Weights and improved weights of attribute 
Attribute Losses Profit Peak 

Weights 0.038 0.942 0.0190 
Improved weights 0.033 0.947 0.0192 

 
Table 6. Priority of programs 

Programs Program No. SSl+ SSl- Cl Priority 
 

Flat rate 
1 - - - - 
2 0.281 0.045 0.138 28 
3 0.271 0.055 0.170 26 
4 0.178 0.148 0.453 12 

 
TOU 

5 0.255 0.072 0.219 23 
6 0.162 0.164 0.504 9 
7 0.206 0.120 0.368 15 
8 0.114 0.212 0.650 3 

 
RTP 

9 0.326 8E-04 0.002 32 
10 0.233 0.093 0.286 20 
11 - - - - 
12 - - - - 

 
CPP 

13 0.246 0.080 0.246 22 
14 0.153 0.173 0.53 8 
15 0.144 0.183 0.559 6 
16 0.051 0.275 0.842 1 

 
TOU + CPP 

17 0.231 0.096 0.293 18 
18 0.138 0.189 0.578 5 
19 0.182 0.144 0.442 13 
20 0.090 0.236 0.724 2 



 
CAP 

21 0.323 0.004 0.012 31 
22 0.230 0.097 0.296 19 
23 0.220 0.106 0.326 16 
24 0.128 0.198 0.608 4 

 
EDRP 

25 - - - - 
26 0.274 0.053 0.161 27 
27 0.264 0.063 0.191 24 
28 0.172 0.155 0.474 10 

 
TOU + EDRP 

29 0.314 0.012 0.037 30 
30 0.222 0.105 0.321 17 
31 0.266 0.060 0.184 25 
32 0.138 0.189 0.578 11 

 
TOU + CAP 

33 0.293 0.034 0.103 29 
34 0.200 0.126 0.387 14 
35 0.245 0.081 0.249 21 
36 0.153 0.173 0.530 7 

 

In the following, the best program, i.e., program 16, is investigated more precisely. First, Table 7 shows the income and 

cost of each section of the objective function. It is observed that the SDISCO will gain more profit by encouraging EV 

owners to participate in the V2G mode.  

Table 7. Amount of the revenue and cost of the objective function ($) 

Income   
Selling energy to EV owners 949.253  
Selling energy to customers 6380.311 
Cost 
Purchasing power from the wholesale market 4052.503 
Energy purchased from EV owners for meeting the customers’ demand 463.076  
Battery depreciation 81.183  
Implementation of PBDR and IBDR programs - 
Profit 
Income –Cost 2732.802  
 

The amount of the customers’ demand with/without the implementation of the DR program is shown in Fig. 6. The 

figure shows that during the on-peak period, the amount of load is reduced, and this amount is transmitted to the off-

peak and mid-peak periods. Thus, during these periods, the customers’ demand increases slightly. As it can be seen, 

based on Eq. (36), any unexpected peak load is avoided. In fact, by implementing the CPP program, the reduction of 

power consumption of customers’ demand is about 756.7 kW. The initial customers’ demand was 32170.1 kW, which is 

reduced to 31413.4 kW. 



 

Fig. 6.  Customers’ demand with/without the implementation of the DR program  

Fig. 7 shows the amount of power purchased from the wholesale market and customers’ demand. According to Fig. 7, 

during the off-peak period, i.e., from 1:00 to 6:00, because of the absence of EVs and the presence of RERs, these 

resources provide a part of power needed for the SDISCO. From 7:00, with the arrival of EVs to the PL, the amount of 

power purchased from the wholesale market increases because of the charging of the EVs. However, during the first on-

peak period, i.e., from 11:00 to 14:00, the amount of power purchased significantly reduces, because during this period, 

the SDISCO uses the RER generation and power purchased from EV owners for meeting the customers’ demand. This 

reduction is lower at 13:00, because the energy price in this hour is lower than that in the rest of peak hours, and the 

SDISCO purchases power from the wholesale market. Once again, an increase in power is observed during the  

mid-peak period because of the charging of the EVs. This period is closer to the second on-peak period. As mentioned 

for the on-peak period, EVs are not charged, thus enabling them to reach their optimal SOE, i.e., 45 kWh, and the 

power purchased from the wholesale market dramatically increases. During the second on-peak period, i.e., from 19:00 

to 21:00, because EVs are not charged and RER generation, the power purchased from the wholesale market decreases. 

Afterwards, because of the departure of EVs from the PL, the power purchased from the wholesale network decreases. 

Because some EVs are parked until around 24:00, the smart charging/discharging program shifts the charge of some 

EVs to 22:00. Thus, at this hour, the power purchased from the wholesale network increases. Indeed, the amount of 

power purchased from the wholesale network is 30879.54 kW, of which 25722.09 kW is used for meeting the 

customers’ demand. Table 8 shows the amount of power provided by the SDISCO and RERs. 

Table 8. Amount of power provided by the SDISCO and RERs for meeting the customers demand (kW) 
SDISCO to load 25722.09  
Wind unit to load 2454.25  
PV unit to load 593.47  
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Fig. 7. Power purchased from the wholesale market and customers’ demand 
 

Figs. 8 and 9 show the smart charge/discharge scheduling of 100 EVs in PLs. The total amount of energy for charging 

the EVs is 5547.13 kWh, where the highest power is 1 MW at 18:00. In fact, at this time, because it is close to the 

second on-peak period, and after this time, there are indeed very few EVs in the PL, and there is no time for recharging 

the EVs; thus, all EVs are charged. Table 9 shows the amount of power provided by the SDISCO and RERs. The 

amount of energy transferred from the PL back to the SDISCO is about 2706.07 kWh; therefore, the highest power of 

this transfer is 751.48 kW at 12:00. As already stated, because the energy price of the wholesale market at 13:00 is 

lower than the discharging price of EVs, the SDISCO tries to use the wholesale network and RER generation at this 

hour for meeting the customers’ demand. Because the number of EVs in the range 20:00-24:00 is low and there is no 

enough time for charging the EVs, the amount of power injected to the SDISCO is zero during this period.  
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Fig. 8. The total amount of power for charging the EVs 

 

Fig. 9. Power transferred from the PLs back to the SDISCO 

Table 9. Amount of power provided by the SDISCO and RERs for charging the EVs (kW) 
SDISCO for charging the EVs 4672.31  
Wind generation unit for charging the EVs 550.47  
PV unit for charging the EVs 324.35  

Typically, the SOE curve of a typical EV with an initial SOE of 29.9 kWh, arrival time of 7:00, and departure time of 

20:00 is shown in Fig. 10. It is noted that the minimum and maximum charge levels of all EVs are 7.5 and 45 kWh, 

respectively.  
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As seen, after an EV enters the PL, the charging starts. The EV is then discharged during the first on-peak period. At the 

mid-peak period, the EV is charged to reach the desired SOE, i.e., 45 kWh. After the second on-peak period, the EV 

leaves the PL; thus, the smart charging/discharging program is completed at 18:00. 

The network loss is also shown in Fig. 11. The total loss of the SDISCO is 617.86 kW. Loss decreases during the on-

peak period and increases during the mid-peak and off-peak periods because of the discharging and charging of the 

EVs, respectively. Table 10 shows the contribution of each source to the loss incurred. 

 
Fig. 10. SOE curve of a typical EV 

 

Fig. 11. Network loss 

Table 10. Amount of power provided by the SDISCO and RERs for the loss incurred (kW) 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SO
E

 (k
W

h)

Time (h)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Po
w

er
 (k

W
)

Time (h)



SDISCO for the loss incurred 485.137  
Wind generation for the loss incurred 63.429  
PV unit for the loss incurred 10.845  
Discharging power of EVs for the loss incurred 58.449  
 

Fig. 12 illustrates the operational scheduling of RERs and SDISCO. From Fig. 12 and its comparison with the 

customers’ demand (i.e., Fig. 7), during the time of charging the EVs, the overall load of the SDISCO increases, and the 

amount of power purchased from the wholesale market is high. Furthermore, during the on-peak period, the power 

purchased from the wholesale market significantly reduces because of the power injection of EVs to the network for 

supplying customers’ demand. Moreover, the power generation of a wind unit has a larger contribution in supplying 

customers’ demand and charging the EVs than the PV generation.  

 
Fig. 12. Operational scheduling of the distribution system, i.e., wind and PV units, during the 24-h period 

 

For investigating the impact of the number of scenarios on the value of objective function and the solution time, these 

values are calculated with different scenarios. The initial number of scenario is 1000. Then, by using the Kantorovich 

distance approach, the number of scenarios is reduced to 8. In fact, the main problem is solved with 8 scenarios. As 

previously stated, with the increase in the number of scenarios, the number of variables in the model increases, the 

problem becomes more complicated, and the solution time increases. The results are shown in Fig 13. Fig 13 shows that 

there is a little difference between the amount of the objective function (about 1.8% reduction at the worst condition, 

i.e., 16 scenarios), while the problem solution time dramatically changes. These results prove the usefulness of scenario 

reduction for solving this problem.  

 

 

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Po
w

er
 (k

W
)

Time (h)

wind unit
PV unit
Distribution System



 

Fig 13. Impact of the number of scenarios on the objective function and solution time 

One of the most important characteristics of EVs is the initial SOE. Therefore, in Table 11, we show the results of 

changes in the mean value of initial SOE and its impact on the profit, network loss, and peak. A change in this value 

does not affect the peak, because the peak network occurs at 18:00, when all EVs are charged because of their 

participation in the first discharge schedule, i.e., 10:00-14:00. Furthermore, with a higher mean value of SOE, EVs 

require less energy for obtaining the desired SOE. Therefore, the SDISCO purchases less energy from the wholesale 

market, and consequently, the profit increases and the network loss decreases. 

Table 11. Sensitivity analysis of changing the mean value of initial SOE 

Mean Value of SOE Peak (kW) Loss (kW) Profit ($) 
35% 2380.07 621.39 2662.47 
40% 2380.07 620.42 2686.06 
45% 2380.07 619.24 2710.33 
50% 2380.07 617.86 2732.80 
55% 2380.07 616.65 2753.70 

To evaluate the EVs’ participation in the DR programs, we model two cases: 

 Case A: Implementation of DR programs for customers and EVs (i.e., EVs also participate in DR programs).  

 Case B: Implementation of DR programs only for customers. (i.e., EVs do not participate in DR programs). 

In case A, the price of selling energy to the customers and EVs is based on the DR programs. The price of purchase 

energy from the EVs is also equal to this price. However, in case B, only the selling energy to the customers is based on 

the energy price of DR programs. In this case, the prices of selling energy to EVs and purchasing energy from EVs are 

flat rate. The SDISCO’s profit, network loss, and peak are calculated in cases A and B, with EVs by smart 

charging/discharging with wind and PV units.  

Table 12 shows that there is only a change in the peak value in the RTP program. In case A, the price of purchasing 

energy from EVs is higher than that from the wholesale market. Hence, the SDISCO prefers that EVs do not participate 

in the smart discharging schedule.  
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For this reason, the SDISCO purchases less energy from the wholesale market for charging the EVs; therefore, the peak 

decreases. However, in case B, the price of purchasing energy from EVs is much lower than that from the wholesale 

market. Therefore, the SDISCO prefers that EVs participate in the smart charging/discharging schedule. Hence, the 

SDISCO purchases more energy from the wholesale market; thus, the peak increases.  

Table 12. Comparison of peak in cases A and B 
Case A Case B 

Load EV Peak (kW) Load EV Peak (kW) 
Flat Flat 2360.76 Flat Flat 2360.76 

TOU TOU 2383.69 TOU Flat 2383.68 
CPP CPP 2380.07 CPP Flat 2380.27 
RTP RTP 2171.92 RTP Flat 2380.64 

TOU+ CPP TOU+ CPP 2388.56 TOU+ CPP Flat 2388.56 
EDRP EDRP 2394.50 EDRP Flat 2394.50 
CAP CAP 2405.75 CAP Flat 2405.75 

TOU+ EDRP TOU+ EDRP 2417.44 TOU+ EDRP Flat 2417.43 
TOU+ CAP TOU+ CAP 2428.69 TOU+ CAP Flat 2428.69 

Table 13 shows that there is a change in the profit value in the PBDR and PBDR+IBDR programs. As mentioned 

above, in case B, the price of purchasing energy from EVs is much lower than that from the wholesale market; thus, the 

SDISCO prefers that EVs participate in the smart charging/discharging schedule. Subsequently, the SDISCO gains 

more profit, because it sells more energy to EVs and purchases less energy from the wholesale market during the on-

peak period due to the V2G capability. Furthermore, in the PBDR program, because the price is unchanged, the 

SDISCO’s profit is not changed. 

Table 13. Comparison of profit in cases A and B 
Case A Case B 

Load EV Profit ($) Load EV Profit ($) 
Flat Flat 1552.660      Flat Flat 1552.66 

TOU TOU 2150.319      TOU Flat 2665.024 
CPP CPP 2732.802      CPP Flat 2738.827 
RTP RTP 1043.391      RTP Flat 2218.943 

TOU+ CPP TOU+ CPP 2374.001      TOU+ CPP Flat 2888.705 
EDRP EDRP 1615.433      EDRP Flat 1615.433 
CAP CAP 2022.049      CAP Flat 2022.049 

TOU+ EDRP TOU+ EDRP 1589.808      TOU+ EDRP Flat 2104.473 
TOU+ CAP TOU+ CAP 1786.293      TOU+ CAP Flat 2292.755 

From the aforementioned data, and according to Table 14, significant changes in the amount of loss occur only in the 

RTP program. In the rest of the programs, the amount of change in loss is negligible. 

Table 14. Comparison of loss in cases A and B 
Case A Case B 

Load EV Loss (kW) Load EV Loss (kW) 
Flat Flat 630.32 Flat Flat 630.32 
TOU TOU 633.50 TOU Flat 634.64 
CPP CPP 620.38 CPP Flat 620.38 
RTP RTP 560.20 RTP Flat 645.22 

TOU+ CPP TOU+ CPP 631.20 TOU+ CPP Flat 632.35 
EDRP EDRP 613.34 EDRP Flat 613.34 
CAP CAP 607.94 CAP Flat 607.94 

TOU+ EDRP TOU+ EDRP 618.14 TOU+ EDRP Flat 619.56 
TOU+ CAP TOU+ CAP 611.45 TOU+ CAP Flat 613.32 

 

5.1. Sensitivity Analysis 



A sensitivity analysis is carried out to investigate the effects of different factors on the operational scheduling of the 

SDISCO in four cases.  

The sensitivity analysis includes the change in the number of EVs, the rated power of PV and wind units, and 

participating customers in DR programs. Table 15 shows the results of this analysis, and from the table, the following 

results are obtained: 

- In each case, with the increase in the number of EVs, the power purchased from the wholesale market 

increases. By comparing the first and second cases with the third and fourth cases, respectively, an increase in 

the participation of customers in DR programs reduces the power purchased. With the increase in in the rated 

power of RERs, the power purchased from the wholesale market significantly reduces. Therefore, the use of 

RERs is more appropriate than the implementation of DR programs. 

- By comparing the first and second cases, the amount of network loss increases with the increase in the number 

of EVs due to the high power consumption, which is purchased from the wholesale market. However, by 

comparing the third and fourth cases, the network loss decreases, because of the high rated power of PV and 

wind units. In fact, the SDISCO uses RERs and V2G mode, instead of the wholesale market, to supply the 

customers’ demand, especially during the on-peak period. As a result, the SDISCO purchases less power from 

the wholesale market. Fig. 14 shows that the SDISCO during the first on-peak period (except at 13:00) does 

not purchase power from the wholesale market. 

- With the increase in all factors, the profit of the SDISCO also increases. 

- Because in cases 1 and 2, the rated power of RERs is less than that in cases 3 and 4, charging and discharging 

the EVs in cases 1 and 2 is more than that in cases 3 and 4. Typically, according to Fig. 15, the first EV in case 

3 is charged 4 times and discharged 3 times, while this EV in case 1 is charged 5 times and discharged 4 times. 

This difference in charging/discharging with different charging/discharging rates causes a difference in the 

power charging/discharging values. In fact, by using RERs with a high rated capacity, the SDISCO tries to use 

these resources to supply the customers and EVs, to pay less cost for the V2G mode. 

Table 15. Sensitivity analysis  
No. of 

EV 
Power purchased from the 

wholesale market (kW) 
Loss 
(kW) 

Profit 
($) 

Charging power 
of EVs (kW) 

Discharging power 
of EVs (kW) 

Peak 
(kW) 

Solution 
time (s) 

Case 1: participating customers in DR programs: 20%, Rated power of PV and wind: 200 kW  
50 29367.70 530.70 2144.838 2795.59 1362.60 1853.57 5.891   

100 30879.54 617.86 2732.802 5547.13 2706.07 2380.07 7.453 
150 32593.75 740.33 3203.046 8313.99 4064.35 2795.70 8.687   

Case 2: participating customers in DR programs: 30%, Rated power of PV and wind: 200 kW  
50 28984.13 524.51 2192.727 2795.59 1362.60 1863.16 5.562   

100 30497.40 613.10 2780.012 5547.13 2706.07 2389.72 7.563   
150 32210.03 735.56 3248.136 8303.21 4055.12 2805.42 8.688   

Case 3: participating customers in DR programs: 20%, Rated power of PV and wind: 1 MW  
50 14132.73 1424.72 5018.267 2276.52 918.80 1251.04 5.657   

100 15165.67 1101.48 5390.460 4097.52 1466.65 1795.62 7.329   
150 17182.87 941.92 5462.596 5846.49 1954.62 1763.01 8.219   

Case 4: participating customers in DR programs: 30%, Rated power of PV and wind: 1 MW  
50 13855.33 1532.13 4994.070 2225.26 874.97 1260.55 5.656   

100 14836.76 1161.99 5350.936 4014.44 1395.61 1803.02 7.109   
150 16842.12 995.56 5419.423 5729.25 1854.38 1772.58 8.000   

 



Fig. 14. Power purchased from the wholesale market in case 4 with 150 EVs 

Fig. 15. Comparison of SOE in case 1 and case 3 with 200- and 1000-kW rated power of RERs 

6. Conclusions 

In this paper, a techno-economic model was developed for the operational scheduling of the SDISCO. The simultaneous 

consideration of RER and EV uncertainties was modeled, including several groups of PBDR and IDBR programs and 

system constraints such as nodal voltage, linear power flow, and EV charging/discharging schedule. The impacts of 

RES size and EV number on the performance of the SDISCO were investigated.  

The following results were obtained from the numerical studies. 
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1. PBDR programs were better than IBDR programs in terms of priority. Hence, on the eight top priority 

programs, seven programs belonged to PBDR programs. 

2. By using a suitable charging/discharging schedule of EVs, EVs’ charging was carried out during the off-peak 

or mid-peak periods. Moreover, EVs’ discharging occurred during the on-peak period. This discharging could 

not occur at 13:00, because at this time, the price of the EVs’ discharging power was higher than that of the 

wholesale market; therefore, the SDISCO preferred to provide power from the wholesale market. 

3. By the implementation of the smart charging/discharging schedule of EVs and CPP programs, the SDISCO 

achieved more profit than other programs. 

4. Scenario reduction was useful for solving the problem, because there is a slight deviation between the amounts 

of the objective function with different scenarios, while the problem solution time dramatically decreases.  

5. If the electricity price of charging/discharging the EVs were of flat rate, i.e., EVs did not participate in the DR 

programs and customers participated in the PBDR and PBDR+IBDR programs, the SDISCO gained more 

profit because of selling more energy to EVs and purchasing less power from the wholesale market during the 

on-peak period due to V2G capability.   

6. With a larger size of RERs and more number of EVs, the SDISCO had a higher performance (in terms of 

profit, network loss, and peak); therefore, even during the on-peak period, the SDISCO did not purchase 

electricity from the wholesale market. 
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