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Abstract 
 

This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent 
hydro chain. We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering 
hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to 
earlier studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water 
discharges at forbidden areas. Thus, an enhanced STHS is provided due to the more realistic modeling presented in 
this paper. Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded 
hydro systems with a negligible computational time requirement. 
© 2008 Elsevier Ltd. All rights reserved. 
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1. Introduction 
 

In this paper, the short-term hydro scheduling (STHS) problem of a head-dependent hydro chain is 

considered. Hydro plants with a small storage capacity are known as run-of-the-river. Typically, run-of-

the-river hydro plants are considered to operate under stationary conditions with constant head and at the 

maximum water level in the reservoirs, corresponding by design to the optimum efficiency operating 

point. However, it is often desirable to change this policy, thus incurring into head changes. The operating 

efficiency is sensitive to the head  head change effect [1]. 

Significant loss of efficiency can occur in operating hydro plants away from their most efficient 

operating point. Thus, hydroelectric power generation has to be considered as a function of water 

discharge and also of the head in order to avoid this loss of efficiency, that is, in order to take in account 

the head change effect.  
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In a run-of-the-river cascaded hydraulic configuration an upstream reservoir highly influences the 

operation of the next downstream reservoir. The latter reservoir also influences the upstream plant by its 

effect on the tail water elevation and effective head [2]. Actually, the cascaded hydraulic configuration 

coupled with the nonlinear head change effect, augments the problem dimension and the complexity, but 

they should be considered because they are important for the most advantageous management of the 

conversion of the potential energy available in the reservoirs into electric energy. 

In a competitive environment, such as the Norwegian case [3], the most advantageous management of 

the conversion of the potential energy available in the reservoirs into electric energy, without affecting 

future operation use, represents a major advantage for the hydroelectric utilities to face competition [4]. 

STHS models provide decision support for the operational task of bidding in the energy and system 

services markets [5].  

Hydro plants particularly run-of-the-river hydro plants are considered to provide an environmentally 

friendly energy option, while fossil-fuelled plants are considered to provide an environmentally 

aggressive energy option, but nevertheless still in nowadays a necessary option [6]. The Portuguese fossil 

fuels energy dependence is among the highest in the European Union. Portugal does not have endogenous 

thermal resources, which has a negative influence on Portuguese economy. Moreover, the Portuguese 

greenhouse emissions are already out of Kyoto target and must be reduced in the near future. Hence, 

promoting efficiency improvements in the exploitation of the Portuguese hydro resources reduces the 

reliance on fossil fuels and decreases greenhouse emissions. 

In the STHS optimization problem a time horizon of 1 to 7 days is considered, usually discretized in 

hourly periods. Hence, the STHS problem is treated as a deterministic one. Where the problem includes 

stochastic quantities such as inflows to reservoirs or energy prices, the corresponding forecasts are used. 

STHS is guided by specified hourly weighting factors, quantifying the energy price at each hour [7]. 

Dynamic programming (DP) is among the earliest methods applied to the STHS problem [8,9]. 

Although DP can handle the non-convex, nonlinear characteristics present in the hydro model, it suffers 

from the well-known curse of dimensionality, more difficult to avoid in short-term than in long-term 

optimization without losing the accuracy needed in the model [10]. For hydro systems with cascaded 

reservoirs, CPU-time and memory requirements expand exponentially with problem size making DP 

unsuitable. 
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Artificial intelligence techniques have also been applied to the STHS problem [11–14]. However, a 

significant computational effort is necessary to solve the problem for cascaded hydro systems and a time 

horizon of 168 intervals. Also, a fixed head is usually assumed in order to simplify the problem [11]. 

A natural approach to STHS is to model the system as a network flow model, because of the 

underlying network structure subjacent in hydro chains [15]. This network flow model is often simplified 

to a linear or piecewise linear one [16]. Linear programming (LP) is a well-known optimization method 

and standard software is available. Mixed-integer linear programming (MILP) is becoming frequently 

used for STHS [17–20], where integer variables allow modeling of discrete hydro unit-commitment 

constraints. 

However, LP typically considers that power generation is linearly dependent on water discharge, thus 

ignoring the head change effect, leading to a solution schedule with less power generation.  Also, the 

discretization of the nonlinear dependence between power generation, water discharge and head, used in 

MILP to model head variations, augment the computational burden required to solve this problem. 

Furthermore, methods based on successive linearization in an iterative scheme depend on the expertise of 

the operator to properly calibrate the parameters. For instance, the selection of the best under-relaxation 

factor in [18] is empiric and case-dependent, rendering some ambiguity to these methods. 

A nonlinear model has advantages compared with a linear one. A nonlinear model expresses 

hydroelectric power generation characteristics more accurately and the head change effect can be taken 

into account, which represents one of the main difficulties associated with the STHS problem. 

In previous studies [1,4], the use of nonlinear programming (NLP) in some case studies leads to a 

result that exceeds by at least three percent what is obtained by LP, requiring a negligible extra 

computation time. However, the nonlinear model cannot avoid water discharges at forbidden areas, which 

may give schedules unacceptable from an operation point of view. These concerns lead to our novel 

mixed-integer nonlinear programming (MINLP) approach to solve the STHS problem. Indeed, MINLP is 

a state-of-the-art research in the subject of STHS. 

As a new contribution to previous studies, we model the on-off behavior of the hydro plants using 

integer variables, in order to avoid water discharges at forbidden areas. Thus, an enhanced STHS is 

provided due to the more realistic modeling presented in this paper. Our approach has been applied 

successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible 

computational time requirement. 
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This paper is structured as follows. Section 2 provides the notation used throughout the paper along 

with the mathematical formulation of the STHS problem. Section 3 presents the MINLP approach for 

solving the STHS problem. Section 4 presents the numerical simulation results for the MINLP approach 

applied on one of the Portuguese cascaded hydro systems. Section 5 outlines the conclusions.   

 

2. Problem formulation 
 

The notation used throughout the paper is described as follows. 

i  Index of reservoirs. 

k  Index of periods in the time horizon. 

I  Total number of reservoirs. 

K  Total number of periods in the time horizon. 

kil  Water level in reservoir i during the period k. 

max
il  Maximum water level in reservoir i. 

min
il  Minimum water level in reservoir i. 

kih  Head of plant i during the period k. 

max
ih  Maximum head of plant i. 

min
ih  Minimum head of plant i. 

kiv  Water storage of reservoir i at end of period k. 

max
iv  Maximum storage of reservoir i. 

min
iv  Minimum storage of reservoir i. 

kiq  Water discharge of plant i during the period k. 

max
iq  Maximum discharge of plant i. 

min
iq  Minimum discharge of plant i. 

kis  Water spillage by reservoir i during the period k. 
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kia  Inflow to reservoir i during the period k. 

kip  Power generation of plant i during the period k. 

kiu  Commitment decision of plant i during the period k. 

ki  Efficiency of plant i during the period k.  

max
i  Maximum efficiency of plant i. 

min
i  Minimum efficiency of plant i. 

k  Forecasted energy price during the period k. 

i   Future value of water stored in reservoir i. 

A  Constraint matrix. 

x  Vector of decision variables. 

maxb  Upper bound vectors on constraints. 

minb  Lower bound vectors on constraints. 

maxx  Upper bound vector on variables. 

minx  Lower bound vector on variables. 

 
The STHS problem can be stated as to find out the water discharges, kiq , the water storages, kiv , and 

the water spillages, kis , for each reservoir, ,Ii  at all scheduling time periods, ,Kk   over the time 

horizon considered, that optimize a performance criterion subject to the operational and physical 

constraints. The water storages at the end of the time horizon, Kiv , are valued for future operation use. 

Additionally, the commitment decision, kiu , is ascertained. 

In the STHS problem under consideration, the objective function is a measure of the benefit obtained 

by the conversion of potential energy of the water available in the reservoirs into electric energy, without 

affecting future operation use. 
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In mathematical programming the STHS problem can be formulated as to maximize 

 
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Subject to: 

 Water conservation equation for each reservoir. 

,,1,11, kikikikikikiki sqsqavv       ,Ii     Kk  (2)  

 Power generation equation. 

,),( kikikiki qPp      ,Ii     Kk   (3)  

 Head equation. 

),,( ,1 kikikiki llHh      ,Ii     Kk   (4)  

 Water storage constraints. 

,maxmin
ikii vvv      ,Ii     Kk  (5)  

 Water discharge constraints. 

,maxmin
ikikiiki quqqu      ,Ii     Kk  (6)  

 Water spillage constraints. 

,0kis     ,Ii     Kk  (7)  

Eq. (1) shows our objective function. The objective function is composed of two terms. The first term 

expresses the economic value of the future use of the water stored in the reservoirs at the last period, i . 

This term is considered if no final water storage requirement is specified as a constraint. The last term 

represents the profit with the hydro chain during the short-term time horizon, where k  is the forecasted 

energy price during the period k and kip  is the power generation of plant i during the period k. 

The optimal value of the objective function is determined subject to constraints of two kinds: equality 

constraints and inequality constraints or simple bounds on the variables. Eq. (2) corresponds to the water 

conservation equation for each reservoir, assuming that the time required for water to travel from a 

reservoir to a reservoir directly downstream is less than the one hour period, independently of water 

discharge, due to the small distance between consecutive reservoirs. In Eq. (2) kiv  is the water storage of 
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reservoir i at end of period k, kia  is the inflow to reservoir i during the period k, kiq  is the water 

discharge of plant i during the period k, and kis  is the water spillage by reservoir i during the period k. 

Time-delay is a difficult issue, depending on the distance between the reservoirs and on the water 

discharge, deserving particular attention and research. Time-delay can be accounted for by considering a 

different model structure for different flow levels in an iterative procedure, which is outside the scope of 

this paper. In Eq. (3) power generation, kip , is considered a function of water discharge and efficiency, 

ki , depending on the head, kih . Hence, the electrical output of a hydro plant depends on the water 

discharge, the head, and the efficiency. The operating points are restricted by minimal and maximal water 

discharges [21]. In Eq. (4) the head is considered a function of the water levels in the upstream reservoir, 

kil , and of the downstream reservoir, kil ,1 , depending on the water storages in the respectively 

reservoirs. Typically for a powerhouse with a reaction turbine, where the tail water elevation is not 

constant, the head is modeled as in Eq. (4), and for a powerhouse with an impulse turbine, where the tail 

water elevation remains constant, the head depends only on the water level in the upstream reservoir as in 

[18]. Hence, tailrace effects can be considered by including a correction in the data regarding reservoir 

water levels. In Eq. (5) water storage has lower and upper bounds. Here for each reservoir i, max
iv  is the 

maximum storage, and min
iv  is the minimum storage. In Eq. (6) water discharge has lower and upper 

bounds. Here for each reservoir i, max
iq  is the maximum discharge, and min

iq  is the minimum discharge. 

The maximum discharge may be considered a function of the head, as in [4]. As a new contribution to 

earlier studies, we consider the commitment decision of each hydro plant. Hence, the binary variable, 

kiu , is equal to 1 if plant i is on-line in hour k, otherwise is equal to 0. In Eq. (7) a null lower bound is 

considered for water spillage. Normally, water spillage by the reservoirs occurs when without it the water 

storage exceeds its upper bound, so spilling is necessary to avoid damage. The initial water storages, 0iv , 

and the inflows to reservoirs are assumed known. 
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3. MINLP approach for the STHS problem 
 

MINLP can be stated as to maximize 

)( xJ  (8)  

Subject to 

maxmin xxx   (9)  

maxmin bxAb   (10)  

integer,jx     Jj  (11)  

where )(J  is a nonlinear function of the vector x  of decision variables, minx  and maxx  are the lower 

and upper bound vectors on variables, A  is the constraint matrix, minb  and maxb  are the lower and 

upper bound vectors on constraints. Equality constraints are defined by setting the lower bound equal to 

the upper bound, i.e. maxmin bb  . The variables jx  are restricted to be integers. The lower and upper 

bounds for water discharge imply new inequality constraints that will be rewritten into Eq. (10). 

Our nonlinear objective function is achieved by means of two linearizations: the first of them, 

efficiency as a function of head, is acceptable; the second one, water level as a function of water storage, 

implies reservoirs with vertical walls, which however is a good approximation for the run-of-the-river 

reservoirs, due to its small storage capacity, as our data have shown for our case study. 

In Eq. (3) the efficiency depends on the head. We consider it given by 

,0ikiiki h       ,Ii     Kk  (12)  

where the parameters i  and 0i  are given by 

),(/)( minmaxminmax
iiiii hh       Ii  (13)  

,maxmax
0 iiii h      Ii  (14) 

In Eq. (13) parameter i  of each plant i depends on the extreme values for efficiency and head, where 

max
i  is the maximum efficiency, min

i  is the minimum efficiency, max
ih  is the maximum head and 

min
ih  is the minimum head. 
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In Eq. (4) the water level depends on the water storage. We consider it given by 

,0ikiiki lvl       ,Ii     Kk  (15)  

where the parameters i  and 0il  are given by 

),(/)( minmaxminmax
iiiii vvll      Ii  (16)  

,maxmax
0 iiii vll      Ii  (17) 

In Eq. (16) parameter i  of each reservoir i depends on the extreme values for water level and 

storage, where max
il  is the maximum water level, min

il  is the minimum water level, max
iv  is the 

maximum water storage and min
iv  is the minimum water storage. 

Substituting Eq. (12) into Eq. (3) we have 

),( 0ikiikiki hqp       ,Ii     Kk  (18) 

Therefore, by substituting Eqs. (4) and (15) into Eq. (18), power generation becomes a nonlinear 

function of water discharge and water storage, given by 

),( 00,1,110 iiikiiiiikiiikiki lvlvqp        ,Ii     Kk  (19) 

The parameters given by the product of i  by i  are of crucial importance for the behavior of head-

dependent reservoirs in a hydro chain, setting optimal reservoirs storage trajectories in accordance to their 

relative position in the cascade. It should be noted that these parameters are not related to the solution 

procedure. Instead, they are determined only by physical data defining the hydro system [1]. 

A major advantage of our novel MINLP approach is to consider the head change effect in a single 

function of water discharge and water storage, Eq. (19), which can be used in a straightforward way, 

instead of deriving several curves for different heads. 

As a new contribution to previous studies, we model the on-off behavior of the hydro plants using 

integer variables. Thus, the commitment decision is considered in Eq. (6) in order to obtain more realistic 

and feasible results, allowing for multiple operating regions. 

MINLP is still a research topic among specialists in optimization. If a solution is found, there is no 

guarantee that it is the global optimal. Instead, a local optimal is usually obtained. This could represent a 

limitation of our approach. Therefore, we use a MILP approach to find a starting point for the MINLP 

approach. Afterwards, we check for an enhanced objective function value using the proposed MINLP 

approach. In our case study we always arrive at convergence to a superior solution. 
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4. Practical example 
 

The proposed MINLP approach, which considers not only the head change effect but also 

discontinuous operating regions, avoiding water discharges at forbidden areas, has been applied on one of 

the Portuguese cascaded hydro systems. A thorough comparison with other approaches is carried out, to 

clearly demonstrate the advantages of the proposed MINLP approach comparatively to a NLP approach 

and a MILP approach. 

Our novel approach has been developed and implemented in MATLAB and solved using the 

optimization solver package Xpress-MP. The numerical simulation has been performed on a 600-MHz-

based processor with 256 MB of RAM.  

The deregulation of the electricity markets brings uncertainty to energy prices. A good forecasting tool 

provides a risk hedging mechanism for generating companies against price volatility. In addition, a 

generating company can develop an appropriate bidding strategy to maximize its own profit with an 

accurate price forecast, which represents an advantage facing competition. Several forecasting procedures 

are available for predicting energy prices [22–24], but for the STHS problem the prices are considered as 

deterministic input data. 

Final water storage in reservoirs is constrained so the water storage in the reservoirs at the last period is 

fixed. The final water storage in reservoirs is considered equal to the value at the beginning of the time 

horizon. Consequently, the future values of water stored in reservoirs are not considered in this example. 

A representation when the first term in Eq. (1) is explicitly taken into account can be seen in [25,26]. The 

storage targets for the short-term time horizon, which are established by medium-term planning studies, 

may be represented either by a penalty on water storage or by a previously determined ‘future cost 

function’. 

The hydro system considered in this paper is shown in Fig. 1. Only the first reservoir has inflow. This 

inflow is due to an upstream watershed belonging to a different company. 

"See Fig. 1 at the end of the manuscript". 

This example is divided into two cases to illustrate the proficiency of the proposed MINLP approach. 

The cases are defined by 

Case 1.  Time horizon of 24 hours; dry scenario of low inflows 

Case 2.  Time horizon of 168 hours; wet scenario of high inflows 



 11

Case 1. 

The inflow on the first reservoir is shown in Fig. 2. 

"See Fig. 2 at the end of the manuscript". 

The forecasted energy price considered over the 24-hours time horizon is shown in Fig. 3 ($ is a 

symbolic economic quantity). 

"See Fig. 3 at the end of the manuscript". 

Firstly, we compare the proposed MINLP approach with a NLP approach. The optimal reservoir 

storage trajectories are shown in Fig. 4. The optimal plant discharge trajectories are shown in Fig. 5. The 

solid line denotes the results obtained using the MINLP approach, while the dashed line denotes the 

results obtained using a NLP approach. 

"See Fig. 4 at the end of the manuscript". 

"See Fig. 5 at the end of the manuscript". 

Fig. 4 shows almost identical storage trajectories for both approaches. Nevertheless, some different 

behavior is possible to be observed for the first reservoir, at a neighborhood of 12h, and a more 

observable behavior is noticeable for the third reservoir, at a neighborhood of 15h. Fig. 5 clearly shows 

the advantage of the proposed MINLP approach over the NLP approach. Although both approaches 

consider the head change effect, the NLP approach cannot avoid water discharges at forbidden areas, 

clearly observable for the third reservoir at a neighborhood of 15h, and may give schedules unacceptable 

from an operation point of view. Hence, the results obtained using the MINLP approach are more realistic 

and feasible. 

Secondly, we compare the proposed MINLP approach with a MILP approach. The optimal reservoir 

storage trajectories are shown in Fig. 6. The optimal plant discharge trajectories are shown in Fig. 7. The 

solid line denotes again the results obtained using the MINLP approach, while the dash-dot line denotes 

the results obtained using a MILP approach. 

"See Fig. 6 at the end of the manuscript". 

"See Fig. 7 at the end of the manuscript". 

Figs. 6 and 7 clearly show the advantage of the proposed MINLP approach over the MILP approach. 

Although both approaches model the on-off behavior of the hydro plants using integer variables, the 

MILP approach ignores the head change effect, leading to a solution schedule with less power generation. 

Hence, the total profit for the cascaded hydro system is higher using the MINLP approach. 
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Case 2. 

The inflow on the first reservoir is shown in Fig. 8. 

"See Fig. 8 at the end of the manuscript". 

The forecasted energy price considered over the 168-hours time horizon is shown in Fig. 9 ($ is a 

symbolic economic quantity). 

"See Fig. 9 at the end of the manuscript". 

The same procedure used previously is carried out in case 2. Firstly, we compare the proposed MINLP 

approach with a NLP approach. The optimal reservoir storage trajectories are shown in Fig. 10. The 

optimal plant discharge trajectories are shown in Fig. 11. The solid line denotes the results obtained using 

the MINLP approach, while the dashed line denotes the results obtained using a NLP approach. 

"See Fig. 10 at the end of the manuscript". 

"See Fig. 11 at the end of the manuscript". 

Figs. 10 and 11 show almost identical storage and discharge trajectories for both approaches, since 

water discharges rarely occur at forbidden areas with the NLP approach, due to the consideration of a wet 

scenario. 

Secondly, we compare the proposed MINLP approach with a MILP approach. The optimal reservoir 

storage trajectories are shown in Fig. 12. The optimal plant discharge trajectories are shown in Fig. 13. 

The solid line denotes again the results obtained using the MINLP approach, while the dash-dot line 

denotes the results obtained using a MILP approach. 

"See Fig. 12 at the end of the manuscript". 

"See Fig. 13 at the end of the manuscript". 

Figs. 12 and 13 clearly show the advantage of the proposed MINLP approach over the MILP approach, 

due the consideration of the head change effect. 

Table 1 summarizes an overall comparison between the results obtained by each approach. 

"See Table 1 at the end of the manuscript". 

On the one hand, the additional computational effort required by the proposed MINLP approach is 

negligible. The MINLP approach achieved fast convergence for all cases tested. On the other hand, an 

increase on the total profit is obtained using the proposed MINLP approach, comparatively to the MILP 

approach, about 4.5% on average. Although the profit may be slightly higher with the NLP approach, it 

should be noted that the results obtained using the MINLP approach are more realistic and feasible, since 
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water discharges at forbidden areas are avoided, i.e., the water discharges at forbidden areas are scheduled 

at slightly less profitable hours using our MINLP approach. The NLP approach may give schedules 

unacceptable from an operation point of view. Hence, the proficiency of the proposed MINLP approach 

has been clearly demonstrated. 

 
5. Conclusion 

 

A novel MINLP approach is proposed for the STHS problem, considering not only head-dependency 

but also discontinuous operating regions. A major advantage of our approach is to consider the head 

change effect in a single function of water discharge and water storage that can be used in a 

straightforward way, instead of deriving several curves for different heads. Also, as a new contribution to 

earlier studies, we consider the commitment decision of each hydro plant. A thorough comparison with 

other approaches is carried out in this paper, namely a comparison between NLP and MINLP approaches, 

and between MILP and MINLP approaches, clearly demonstrating the advantages of the proposed 

MINLP approach. Due to the more realistic modeling presented in this paper, a better STHS is provided, 

assuring simultaneously a negligible computation time. 
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Figure captions 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Hydro system with three cascaded reservoirs. 

 

 

 

 
Fig. 2. Inflow on the first reservoir for case 1. 
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Fig. 3. Forecasted energy price over the 24-hours time horizon. 

 

 

 

 

 

 

 
Fig. 4. Optimal reservoir storage trajectories for case 1. The solid line denotes the results obtained using the MINLP 

approach, while the dashed line denotes the results obtained using a NLP approach. 
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Fig. 5. Optimal plant discharge trajectories for case 1. The solid line denotes the results obtained using the MINLP 

approach, while the dashed line denotes the results obtained using a NLP approach. 

 

 

  

  
Fig. 6. Optimal reservoir storage trajectories for case 1. The solid line denotes again the results obtained using the 

MINLP approach, while the dash-dot line denotes the results obtained using a MILP approach. 
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Fig. 7. Optimal plant discharge trajectories for case 1. The solid line denotes again the results obtained using the 

MINLP approach, while the dash-dot line denotes the results obtained using a MILP approach. 

 

 

 

 

 
Fig. 8. Inflow on the first reservoir for case 2. 
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Fig. 9. Forecasted energy price over the 168-hours time horizon. 

 

 
 

 

 
 

 

 

 
Fig. 10. Optimal reservoir storage trajectories for case 2. The solid line denotes the results obtained using the MINLP 

approach, while the dashed line denotes the results obtained using a NLP approach. 
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Fig. 11. Optimal plant discharge trajectories for case 2. The solid line denotes the results obtained using the MINLP 

approach, while the dashed line denotes the results obtained using a NLP approach. 

 

 

 

 

Fig. 12. Optimal reservoir storage trajectories for case 2. The solid line denotes again the results obtained using the 

MINLP approach, while the dash-dot line denotes the results obtained using a MILP approach. 
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Fig. 13. Optimal plant discharge trajectories for case 2. The solid line denotes again the results obtained using the 

MINLP approach, while the dash-dot line denotes the results obtained using a MILP approach. 
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Tables 
 

Table 1 

Comparison of the proposed MINLP approach with NLP and MILP approaches 

 
 

Profit ($) % Increase CPU time (s) 

MILP – Case 1 465,436 - 1.33 

NLP – Case 1 487,025 4.64 1.34 

MINLP – Case 1 487,020 4.64 1.41 

MILP – Case 2 5,258,373 - 2.16 

NLP – Case 2 5,490,867 4.42 2.41 

MINLP – Case 2 5,490,607 4.42 3.79 
 

 

 


