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Abstract  

This paper provides a six-level integrated optimization framework for a distribution system that transacts energy with 
upward electricity market and downward active microgrids in day-ahead and real-time horizons. The proposed 
method uses a risk-averse formulation and the distribution system utilizes multiple combined heating and power 
units, distributed generation, plug-in electric vehicles parking lots, and electric and thermal storage units. Demand 
response program alternatives are also utilized by the distribution system. A three-stage uncertainty modeling is 
proposed to model six sources of uncertainties that are consist of energy resource power generations, loads and prices, 
active microgrids contributions and contingencies. Two case studies evaluate the proposed algorithm for the 123-bus 
test system that multiple 33-bus microgrid systems are transacting energy and ancillary services with the main grid. 
Further, different sensitivity analyses are performed to evaluate the effect of energy and ancillary services prices on 
the simulation results.  
 
Keywords: Distributed Energy Resource; Active Distribution System; Microgrid; Demand Response; Bidding 
Strategy. 

 
Nomenclature 

Abbreviation  

AC  Alternative Current. 

ADS Active Distribution System 

ADSO ADS Operator  

AMG Active Micro Grid. 

ARIMA Autoregressive Integrated Moving Average  

CB Capacitor Bank. 

CHP Combined Heating and Power. 

CVaR Conditional Value at Risk. 

DA Day-Ahead. 

DER Distributed Energy Resource. 

DG Distributed Generation. 



DLC Direct Load Control. 

DRP Demand Response Program. 

DSO Distribution System Operator  

ESS Electrical Storage System. 

EV Electric Vehicles  

LMP Locational marginal price  

MG MicroGrid. 

MILP  Mix Integer Linear Programming. 

MINLP Mixed Integer Non-Linear Programming. 

MMG Multi-MicroGrid. 

MUs Monetary Units. 

MMUs Million MUs. 

PGA Parallel Genetic Algorithm. 

PHEV Plug-in Hybrid Electric Vehicle. 

PL Parking Lot 

PVA Solar Photovoltaic Array. 

PU Per-unit. 

RL Responsive Load. 

RTP Real Time Pricing. 

RT Real Time. 

OBSADS Optimal Bidding Strategy of ADS. 

SW Switching device. 

SWT Small Wind Turbine. 

TES Thermal Energy Storage. 

TOU Time Of Use  

V2G Vehicle to Grid. 

Parameters 

A PVA area (m2) 

C H PC  Operational costs of CHP unit (MUs). 

 ESSC  Operational costs of electricity storage (MUs). 

TESC  Operational costs of thermal storage (MUs). 

D GC  Operational costs of DG (MUs). 

B oilerC  Operational costs of boiler (MUs). 

 PurchaseC  Cost of electricity purchased from upward utility (MUs). 

 DRPC  Cost of demand response program (Mus). 

 
Op

C  Operational cost (MUs/MWh). 

 
M

C  Maintenance cost (MUs/MWh). 



I Solar irradiation of ADS PVA (kW/m). 

 ADS photovoltaic array conversion efficiency. 

0t  
Outside air temperature (C). 

LMP  Locational marginal price (MU/MW). 

NAMGS Number of AMGs. 

NOIS Total number of ADS scenarios. 

NDAS Total number of DA energy, spinning reserve and reactive market scenarios. 

NOSS Total number loads and PHEV contributions and DER generation scenarios. 

NCSS Total number of contingency scenarios. 

LoadP  
Electric power of electrical load (kW). 

PVAP  
Electric power generated by photovoltaic array (kW). 

ESSP  Electric power delivered by electricity storage (kW). 

Load
CriticalP  

Critical electrical load (kW). 

Load
ControllableP  

Controllable electrical load (kW). 

SWTP  Electric power generated by SWT. 

DLCP      
Electric power withdrawal changed for DLC program (kW). 

Penalty  Penalty of active or reactive power mismatch that paid to upward market (MU) 

prob Probability of contingency. 

Charge
PHEV  Charge limitation ratio. 

Discharge
PHEV  Discharge limitation ratio. 

Elect
Purchased  AMG electricity purchasing price that is purchased from ADS (MUs/kWh). 

Elect
DLC  Price of DLC program implementation (MUs/kWh). 

Elect
TOU  Price of TOU program implementation (MUs/kWh). 

Elect
Sell  

AMG electricity selling price that is sold to ADS (MUs/kWh). 

T Total operation time of facility (Hour). 

Variables 

ENPHEV State of charge of PHEV. 

W Weight factor. 

α Confidence level. 

  Weighting parameter for risk-aversion attitude. 

 Probability of contingency. 

  Binary decision variable of device operation (equals to 1 if device operates). 

  Duration of device operation. 

,   Auxiliary variable used to compute the CVaR. 

active  Active power price sold to the upward market (MUs/kW). 

SR  Spinning reserve price sold to the upward market (MUs/kW). 



reactive  Reactive power price sold to the upward market (MUs/kVAr). 

_
active

DA upwardP  Active power sold to the upward DA market (kW). 

_DA upwardSR  Spinning reserve sold to the upward DA market (kW). 

_
reactive
DA upwardQ  Reactive power sold to the upward DA market (kVAr). 

_
active
DA downward  Active power price sold to the downward loads (MUs/kW). 

_
reactive
DA downward  Reactive power price sold to the downward loads (MUs/kVAr). 

_
active
DA downwardP  Active power sold to the downward loads (MUs/kW). 

_
reactive
DA downwardQ  Reactive power sold to the downward loads (MUs/kVAr). 

P  Active power (kW). 

Q  Reactive power (kVAr). 

'Load
AMGQ  Thermal load of AMG (kWth). 

'BAMGQ  Boiler thermal power output of AMG (kWth). 

'LossQ  Loss of thermal power (kWth). 

LossQ  Reactive power loss (kVAr). 

DRP
AMGQ  DRP reactive power of AMG (kVAr). 

Load
AMGQ  Load reactive power of AMG (kVAr). 

TOUP  Change in load based on TOU program (kW). 

ShedP  Shed load (kW). 

V  Voltage of ADS bus (kV). 

  Voltage angle of ADS bus (rad). 

Wind
cv  

Small wind turbine cut-in wind velocity. 

Wind
fv

 
Small wind turbine cut-off wind speed. 

 BoilerT  Aggregated duration of compression chiller operation. 

 ESST  Aggregated duration of ESS operation. 

 CHPT  
Aggregated duration of CHP operation. 

 TEST  Aggregated duration of TES operation. 

 
1. Introduction 

The Active Distribution Systems (ADSs) can transact electrical energy with the downward Active MicroGrids 
(AMGs) [1] and custom loads and/or its upward electricity market [2], as shown in Fig. 1. The ADS can participate 
in the upward wholesale market and optimize its bid in upward wholesale energy, spinning reserve and reactive 
power markets. In addition, some of the AMGs can purchase active and reactive power from the ADS; meanwhile, 
other AMGs can sell active power and reactive power to it [3].  
The ADS can use different Demand Response Programs (DRPs) alternatives to encourage AMGs to optimize and 
coordinate their bids. The AMGs contribution scenarios can be optimized and the optimal coordinated scheduling of 
ADS and AMGs can be determined. Thus, a non-equilibrium model can be extended and in the proposed model the 
Day-Ahead (DA) joint energy, spinning reserve and reactive power markets bidding strategy of ADS. Further, the 
updated system data can be utilized for joint energy and reactive power Real-Time (RT) markets and the optimization 
procedure can be performed [4].  



 
Fig. 1. Representation of ADS with its downward AMGs. 

 
The Optimal Bidding Strategy of ADS (OBSADS) problem consists of DA and RT scheduling of the system 
distributed energy resources considering of the downward AMGs bidding strategies, system contingencies and 
stochastic behavior of different sources of uncertainties [4].  
As shown in Table 1 and based on its categorization, different aspects of the optimal bidding strategy problem have 
been studied over the recent years and the literature can be categorized into the following groups.  
The first category presents the optimal scheduling of the downward MicroGrids (MGs) and/or Parking Lots (PLs) 
energy resources that transact electricity with the upward distribution system [5-25]. These researches only models 
and dispatches the MG/PLs facilities to minimize the operational costs and/or maximize the revenue of the facilities 
owner. The second category proposes optimal scheduling of ADS that considers the downwards MGs/PLs as ADS 
dispatchable energy resources. These papers do not model the ADS and MGs/PLs interactions [26-28].  The third 
category simultaneously models the optimal scheduling of energy resources of ADS and MGs/PLs and considers the 
interactions of the ADS and the downwards MGs [29-31].  
Based on the above categorization and for the first category of researches, Ref. [5] presents a cost minimization 
model of MGs to schedule dispatchable DERs that uses robust optimization algorithm and the research concludes 
that the integration of Combined Heat and Powers (CHPs) helps to decrease system spending. Ref. [6] presents a 
two-stage algorithm for the scheduling of Vehicle to Grids (V2Gs) and Responsive Loads (RLs) to minimize 
emissions and costs considering of DERs. In the first stage, the power generation costs are minimized; meanwhile, 
in the second stage, the costs of DERs’ power generation deviations are minimized.  
Ref. [7] introduces a two-stage daily scheduling strategy for DERs located in a distribution system with a substantial 
Solar Photovoltaic Array (PVA) penetration. At the first stage, a portion of the DERs capacity is dispatched for 
regulation, while the remaining capacity is considered for energy exchange and minimising the deviations from the 
forecast. Ref. [8] proposes a two-stage stochastic optimization model for the DA energy and secondary reserve 
markets. The objective function is proposed as cost minimization of transactions in DA and RT markets. The 
proposed bidding strategy reduces the costs by 40% compared to retailers’ bidding strategy.  
Ref. [9] presents an optimal stochastic metaheuristic scheduling algorithm for the networked microgrids considering 
uncertainties of DERs and time of use (TOU) and real-time pricing (RTP) programs. Ref. [10], explores the day-
ahead scheduling of CHP systems considering Thermal Energy Storage systems (TESs), DERs and boilers based on 
an Autoregressive Integrated Moving Average (ARIMA) algorithm for generating of the demand and electricity price 



scenarios. Ref. [11] presents a heuristic optimization model for optimal day-ahead operational planning that 
minimizes pollutant emission and operating cost and the approach also considers energy storage systems. Ref. [12], 
proposes a scheduling algorithm that uses information gap method to model the wholesale electricity market 
uncertainties. The critical profit  method  is  implemented  for  risk-averse units through the robust optimization 
algorithm to ensure that the future electricity prices fall into a maximized robustness region.  
Ref. [13] presents a bi-level algorithm to optimize interactions between distribution system operator and PL agent 
that the upper-level problem minimizes the cost of Distribution System Operator (DSO); meanwhile, the lower-level 
problem schedules the energy and reserve of the parking lot owner.  
Ref. [14] presents the optimal bidding strategy of a microgrid in the joint energy and ancillary service markets using 
hybrid stochastic/robust optimization. The proposed method increases the microgrid revenues by 24.75% with respect 
to the base case that microgrid only bids in the energy market.  
Ref. [15] introduces a two-stage stochastic algorithm to minimize the reserve cost that is used for compensating the 
intermittent DER power generation forecast errors. The model considers RLs and gas-fired Distributed Generations 
(DGs). Ref. [16], presents an algorithm for maximizing of CHP-based AMG considering Small Wind Turbine (SWT) 
power generation and wholesale market uncertainties.  
Ref. [17] a two-stage Mixed-Integer Linear Programming (MILP) stochastic optimization algorithm is proposed to 
minimize the operation cost. Ref. [18] proposes an algorithm for stochastic energy and reserve scheduling that uses 
DRPs in either energy or reserve schedule. The results show that the DRP can reduce operating costs. Ref. [19] 
presents a model for Electrical Storage System (ESS) that is used to optimize energy exchange and to balance out 
the uncertain electrical vehicles loads. The results show the viability of the proposed method of providing cost 
savings. Ref. [20] presents the optimal operation framework for the Multi MicroGrids (MMGs). A two-stage robust 
optimization is used to minimize the operating cost under the worst case of PVAs outputs. The results show that the 
algorithm reduces the operating cost; meanwhile, mitigates the energy interaction between the MMG and the upward 
grid. Ref. [21] presents a multi-objective scheduling algorithm for Electric Vehicles (EVs) that minimizes operational 
costs and emissions. The Benders decomposition technique is used to solve the optimization model and the proposed 
method is tested on a 33-bus system. Ref. [22] the optimal operation of a distribution system is evaluated considering 
DERs, DRPs and EVs. The proposed model is tested on the IEEE 15-bus distribution system.  
The first category of researches did not consider contingencies, ADS optimization procedure and decision variables, 
heating loads and topology optimization of MGs and ADS. 
The second category only considers the scheduling problem of ADS without the detailed model of the downwards 
MGs/PLs. Ref. [23] proposes an estimation method to minimize the operating costs and increasing reliability of the 
system that uses a meta-heuristic optimization algorithm. The algorithm considers DRPs associated with 
reconfiguration of system. Ref. [24] introduces the application of microgrids in mitigating the load variability. The 
algorithm utilizes the microgrid scheduling procedure to coordinate the net load of the upward distribution network 
considering the constraints of microgrids. 
Ref. [25] presents bi-level optimization algorithm for scheduling of ADS that in the first level the system resources 
are allocated to minimize system loss, meanwhile; in the second level, hourly energy and ancillary service generation 
of DERs are optimized. Ref. [26] introduces risk-based optimal scheduling of reconfigurable system that maximizes 
profit  the  distribution system operator. Ref. [27] proposes a two-level algorithm for scheduling of distribution 
networks with multi-microgrids. The upper-level problem considers the distribution system constraints and optimizes 
the transaction price; meanwhile, the lower-level problem minimizes the operation cost. The interaction of upper and 
lower problem is formulated as a Stackelberg game. Ref. [28] presents a stochastic optimization model to minimize 
the operational cost and reliability cost. The bat optimization algorithm is used to solve the problem and the 
uncertainties of SWTs, PVAs and the EVs are considered.  
The introduced second category of researches did not consider contingencies, MGs optimization procedure, RT 
market, security constraints, heating loads and topology optimization of MGs and ADS. 
The third category considers the ADS and MGs/PLs interactions and optimization procedures. Ref. [29] introduces 
a recursive two-level optimization framework to model the interactions between the distribution system and energy 
hubs. 



Ref. [30] proposes the home microgrids optimal operation and considers the microgrid interoperability with 
distribution system. A non-cooperative gaming formulation is utilized to model the optimal coordination of ADS and 
MGs strategies and DRP alternatives are modeled. Ref. [31] introduces the DRP aggregator bidding strategy and 
considers the distribution system operator decision variables using game theory. The robust optimization is utilized 
to model the price uncertainties. The introduced third category of researches did not consider contingencies, RT 
market, security constraints, heating loads and topology optimization of MGs and ADS. 
Based on the above categorization, an integrated framework that considers the optimal bidding of ADS in the DA 
and RT joint electricity markets and simultaneously models the ADS and AMGs interactions in normal and 
contingent conditions is less frequent in the literature.  
Table 1 provides the comparison between the proposed OBSADS model with other approaches.  
Accordingly, the novel contributions of this paper are:  

 A six-level Mixed-Integer Non-Linear Programming (MINLP) algorithm takes into account power 
transactions between downward AMGs and ADS, 

 A stochastic algorithm models six sources of uncertainty:  
i. The upward day-ahead market energy, spinning reserve and reactive power services prices,  

ii. The day-ahead heating and electrical loads, and AMGs loads,  
iii. Charge and discharge of PHEVs, 
iv. The DERs and AMGs electricity generation, 
v. The upward RT market energy, spinning reserve and reactive power services price, 

vi. The ADS electrical system contingencies. 
 A framework concurrently optimizes the ADS and AMGs objective functions and ponders the optimal 

coordination of ADS resources in the contingent condition. 
 

Table 1: Comparison of the proposed approach with other studies.  

 
 
 



2. Problem Modeling and Formulation 

As shown in Fig.2, the ADS Operator (ADSO) utilizes CHP systems to supply its heating and electrical loads and 
downward AMGs. ADS is equipped with the gas-fired DG and boilers, PVAs, SWTs, ESSs, and TESs, PHEV 
parking lots, and RLs. The ADSO can vend its electricity excess to the upward wholesale market; meanwhile, AMGs 
can sell their electricity to the ADS. The ADS transacts energy with its DERs and AMGs and upward electricity 
market; meanwhile, it purchases spinning reserve from AMGs, PHEV parking lots, ESSs and DGs. 
 

 
Fig. 2. ADSO energy resources and transactions.  

 
The OBSADS must maximize the ADSO and AMGs revenues and the reliability of provided services for the 
downward heating and electrical loads [28]. The OBSADS must optimize joint energy, spinning reserve and reactive 
power selling/purchasing based on the fact that this procedure may provide a higher profit for the ADS than selling 
energy alone as a commodity [32]. The described OBSADS problem has different sources of uncertainties.  

2.1. Uncertainty modeling 
The OBSADS problem is subject to the six sources of uncertainty: 1) the upward day-ahead market energy, spinning 
reserve and reactive power services prices; 2) The day-ahead heating and electrical loads, and AMGs loads, 3) Charge 
and discharge of PHEVs; 4) the DERs and AMGs electricity generation; 5) the upward RT market energy and reactive 
power services price; 6) and the ADS’s electrical system contingencies. 
As shown in Fig.3, a multi-level optimization algorithm is proposed that the ADSO must make optimal decisions 
throughout OBSADS horizon with incomplete information and it determines the optimal values of problem decision 
variables.  
In the day-ahead market, the ADSO uses an estimated data of the upward wholesale electricity market price, hourly 
electrical and heating loads, and hourly DERs power generation to determine optimal generation schedules of its 
energy generation units, electricity transactions with wholesale market and AMGs, estimated DRPs control variables 
and contingency-based load shedding alternatives. 
 



At the first stage of uncertainty modeling, the ADSO estimates the upward day-ahead market energy, spinning reserve 
and reactive power services prices. At the second stage of uncertainty modeling, the ADSO estimates the DERs and 
AMGs electricity generation, the hourly heating and electrical loads consist of charge and discharge of PHEVs. 
Further, the AMGs’ bid/offer scenarios are explored by the OBSADS that is explained in the following section. Then, 
the day-ahead optimal scheduling of ADS energy resources are determined and the accepted AMGs’ bid/offer are 
determined. Finally, at the third stage of uncertainty modeling, contingency scenarios are generated and the OBSADS 
determines the involuntary load shedding, corrective DRPs and accepted AMGs’ bid/offer values for each 
contingency scenario and the ADS system resources are re-dispatched. 
The accepted spinning reserve bids in the DA market must be controlled as fixed parameters in the RT markets and 
any deviation of spinning reserve parameters are penalized by the upward market operator. 
 

 
Fig. 3. The uncertainty modeling of the OBSADS problem.  

 
2.2. ADS DA Optimization Problem Formulation 
A six-level optimization algorithm is presented for the proposed model. The first level objective function of OBSADS 
is given in (1) for the DA joint energy, spinning reserve and reactive power markets. The NOIS parameter is the total 
number of ADS normal and contingency-based scenarios. 
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The objective function is divided into seven groups: 1) the revenue of ADS( ADSrevenue ); 2) the commitment costs 
of ADS’ DERs consist of CHP, ESS, TES, DG, and boiler 

)(  . .   .  . .CHP ESS TES DG Boiler Boiler
ADS ADS AD

CHP ESS TES DG
ADS ADS ADS ADS ADSS ADS ADSC C C C C        that the   variable is the binary decision variable 

of device operation; 3) the energy purchased from wholesale market costs ( Purchase
ADSC ); 4) the costs of AMGs’ DRPs  



( AMG
DRPC ); 5) the penalties of deviations in active and reactive markets ( active reactivePenalty Penalty  ); 6) the 

difference of Locational Marginal Price (LMP) of load and generation buses ( . . )L G
NL NG

LMP P LMP P  ; and 7) the 

CVaR is minimised that is defined at the α confidence level (ܴܸܽܥఈ) to control the risk 1( ( . )
1 NOIS

prob  



  .  

The LMP term is used to mitigate the energy price difference between zones of the distribution system for normal 
and contingent conditions. A risk-neutral attitude corresponds to  ߚ = 0, while a risk-averse attitude would 
correspond to ߚ > 0 [26]. 
The revenue of ADS can be written as (2): 
 

Eq. (2) is divided into five groups: 1) the revenue of active power sold to the DA upward market _( . )active active
DA upwardP

; 2) the revenue of spinning reserve sold to the DA upward market _( . )SR
DA upwardSR ; 3) the revenue of reactive 

power sold to the DA upward market _( . )reactive reactive
DA upwardQ ; 4) the revenue of active power sold to the downward 

customers in the DA market _ _( . )active active
DA downward DA downwardP ; and 5) the revenue of reactive power sold to the downward 

customers in the DA market _ _( . )reactive reactive
DA downward DA downwardQ . 

If the ADS power factor is less than 0.95, then ADS will be penalized an additional fee. The power factor penalty is 
modelled as Eq. (3): 
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The ݇ parameter is the penalty coefficient. The _
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DA upwardP  , _
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DA upwardQ and _
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DA upwardSR parameters are the ADS 

bidding quantity to the upward wholesale energy, reactive power and spinning reserve, respectively.  
The cost components of Eq. (1) are defined as the following equations: 

. .( )      { , } 
Op

X

M

X
X

NOSS T

XprobC C X CHP DGC                        
(5) 

 . .( )
Op

Boiler

M

Boiler
Boiler

NOSS T

Boilerpro C CC b       
(6) 

       )  {   ,  }. .(
Op M

Y

Y
NOSS

Y Y

T
prob C C Y ESS TESC               

(7) 

Eq. (5) presents the expected commitment costs of CHPs and DGS that consist of operational and environmental 
costs for the aggregated duration of CHPs and DGs operation ( .( )
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Eq. (6) considers the expected commitment costs of boilers that is decomposed into operational and environmental 
costs of boiler ( .( )
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Electric power balance constraint of ADS is given as (8): 

0

CHP DG AMG Loss Load
ADS ADS ADS ADS ADS

ESS PHEV SWT PVA DRP
ADS ADS ADS ADS ADS

P P P P P

P P P P P

  

  

    
    



  
              

(8) 

 

Eq. (8) terms are the CHPs and DGs active power generation ( CHP DG
ADS ADSP P  ), the AMGs active power 

withdrawal/injection from/to the ADS ( AMG
ADSP ), active power loss ( Loss

ADSP ),active power withdrawal of load (
Load
ADSP ), the ESSs active power withdrawal/injection from/to the ADS ( ESS

ADSP ), the PHEVs active power 

withdrawal/injection from/to the ADS ( PHEV
ADSP ), the SWTs and PVAs active power generation ( SWT PVA

ADS ADSP P 
), and the DRPs active power withdrawal/injection from/to the ADS ( DRP

ADSP ) for each interval of simulation. 

The heating power balance constraint can be written as (9): 
0CHP DG AMG Loss DRP

ADS ADS ADS ADS ADSQ Q Q Q Q                    (9) 

Eq. (9) terms are the CHPs and DGs reactive power generation ( CHP DG
ADS ADSQ Q  ), the AMGs reactive power 

withdrawal/injection from/to the ADS ( AMG
ADSQ ), reactive power loss ( Loss

ADSQ ), and the DRPs reactive power 

withdrawal/injection from/to the ADS ( DRP
ADSQ  ) for each interval of simulation. 

A. CHP, Boiler, TES and ESS constraints: 
The TES constraints are maximum capacity, charge and discharge constraints, and mass balance constraints and 
boiler constraints are available in [33].  
B. SWT and PVA constraints:  
The SWT equation is [30]: 
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The maximum electricity output of PVA is [33]: 

Eq. (11) terms are the PVA area ( PVAA ), energy conversion efficiency ( ), the solar irradiation ( I ), and the outside 

air temperature ( 0t ), respectively. 

C. DRP constraints:  
The ADS can contract with the ADS to perform DLC procedure by paying a predefined fee. Thus, the ADS 
controllable loads can be dispatched by the ADS in the DLC program. Hence, the DRP constraints are [33]: 

(12)       Load Load Load
Critical ControllableP P P   

(13)  ,      DLC DLC DLC DLC Load
Min Max Max ControllableP P P P P        

(14) DRP DLCP P   

 
 

0. . .(1 0.005.( 25))PVA PVAP A I t    
(11) 



Eq. (12) terms the ADS critical electrical load ( Load
CriticalP ) and controllable electrical load ( Load

ControllableP ), respectively. 
Eq. (13) presents the maximum and minimum limits of DLC control variables. Further, Eq. (13) considers that the 
maximum value of DLC control variable ( DLC

MaxP  ) is equal to the controllable electrical load. Eq. (14) denotes that 
the value of DRP power is equal to the DLC variable.  
 
D. Electric network constraints: 

A. Steady-state security constraints: 

(15) 2 2 Max( , ) ( , )nm nm nmP V Q V F    

(16) min max| |n n nV V V   

Eq. (15) terms are the active ( 2( , )nmP V  ) and reactive power ( 2( , )nmQ V  ) of distribution feeders. Max
nmF  is the 

maximum permissible flow limit of distribution feeder. Eq. (16) is the minimum and maximum value limits of the 
ADS bus voltage.  
2) Maximum apparent power for exchanging with the upstream network: 

(17) 2 2 max  ,  upstream
jt jt jP Q F j t     

Eq. (17) terms are the active ( 2
jtP ) and reactive power ( 2

jtQ ) of Point of Common Coupling (PCC). The max upstream
jF 

parameter is the maximum volt-ampere capacity of the PCC. 
The integrated constraints of the first level optimization problem can be represented as: 

(18) 1( , , ) 0x u z   

(19) 1( , , ) 0x u z   
2.3. AMGs DA Optimization Problem Formulation 
The AMG proposes the bid/offer of energy and reactive power to the ADSO:  

(20) 
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. 
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   
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  
 

M  

The Eq. (20) components are AMG’s DERs costs and DRP and the energy and ancillary services sold revenues.  
The objective function is divided into nine terms: 1) the cost of CHP ( CHP

AMGC ); 2) the cost of DG ( DG
AMGC ); 3) the cost 

of boiler ( Boiler
AMGC ); 4) the cost of ESS ( ESS

AMGC ); 5) the cost of PHEV ( PHEV
AMGC ); 6) the cost of TES ( TES

AMGC ); 7) the energy 

purchasing cost ( Purchase
AMGC ); 8) the benefit of energy and ancillary services sold to the ADS ( Sell

AMGB ); and 9) the benefit 

of DRP implemented by the ADS ( DRP
AMGB ). 

The revenue of AMG can be written as (21): 

_ _ _. . .Sell active active SR reactive reactive
AMG DA ADS DA ADS DA ADSB P SR Q  

 
   
 
    

(21) 

Eq. (21) terms are the AMGs active power sold to the ADS in the DA market ( _.active active
DA ADSP ), the AMGs spinning 

reserve sold to the ADS in the DA market ( _.SR
DA ADSSR ), and the AMGs reactive power sold to the ADS in the 

DA market ( _.reactive reactive
DA ADSQ ) for each interval of simulation. 

Electric power balance constraint of AMG is given by: 
=(                

)

Total Load PVA ESS SWT CHP DG
AMG AMG AMG AMG AMG AMG AMG

DRP PHEV Loss
AMG AMG AMG

P P P P P P P

P P P

     

  

     

 
               

(22) 

 



=( )Total Load DRP Loss DG
AMG AMG AMG AMG AMGQ Q Q Q Q       (23) 

Eq. (22) terms are the active power withdrawal of load ( Load
AMGP ), the DERs active power injection to the AMG 

(  )PVA ESS SWT CHP DG DRP PHEV
AMG AMG AMG AMG AMG AMG AMGP P P P P P P            , and active power loss ( Loss

AMGP ) for each 

interval of simulation. Further, Eq. (23) terms are the reactive power withdrawal of load ( Load
AMGQ ), the DRP reactive 

power injection to the AMG ( DRP
AMGQ ), reactive power loss ( Loss

AMGQ ), and reactive power injection to the AMG (

DG
AMGQ ) for each interval of simulation. 

The heating power balance constraint is (24): 
' ' '  ' 0Load B CHP Loss
AMG AMG AMG AMGQ Q Q Q                  (24) 

Eq. (24) terms are the heating loads ( 'Load
AMGQ ), the boilers and CHP heating power injection to the AMG (

' 'B CHP
AMG AMGQ Q  ), and heating power loss ( 'Loss

AMGQ ) for each interval of simulation. 

A. DRP constraints:  
The AMG loads consist of critical, deferrable and controllable loads. 
 

(25) AMG AMG AMG       Load Load Load Load
AMG Critical Deferrable ControllableP P P P    

(26) AMG                           TOU Load
AMG DeferrableP P   

(27) 
1

0                         
Period

TOU
AMG

t
P       



   

(28) AMG AMG                   TOU TOU TOU
Min AMG MaxP P P      

(29)  AMG AMG AMG AMG  ,      DLC DLC DLC DLC Load
Min AMG Max Max ControllableP P P P P        

(30) DRP DLC TOU
AMG AMG AMGP P P                 

Eq. (25) terms the AMG critical electrical load ( AMG 
Load

CriticalP ), deferrable load AMG ( )Load
DeferrableP , and controllable 

electrical load ( AMG 
Load

ControllableP ), respectively. Eq. (26) denotes that the change of TOU power is equal to the deferrable 
load. Further, Eq. (27) considers that the sum of the TOU power changes is equal to zero. Thus, all of the deferrable 
load should be supplied in the operational horizon. 
Eq. (28) and Eq. (29) present the maximum and minimum limits of TOU and DLC electrical power variables, 
respectively. Further, Eq. (29) considers that the maximum value of DLC control variable (  

DLC
AMG MaxP  ) is equal to the 

AMG controllable electrical load. Finally, Eq. (30) denotes that the sum of the AMG demand response program 
active power equals to the sum of the changes of the active power of DLC and active power of TOU. 
 
The energy purchased costs and energy sold benefits are given by (31) and (32): 

 0   .  . AM G AM G AM G Elect AM G
Purcha

AM G Elect
Sell seSell PurchasedIf P Then B P else PC                  (31) 

. . AM G Elect E lectTO U D LC
AM G AM GD RP TO U D LCP PB                  (32) 

Eq. (31) denotes that if the AMG sells the electricity to the ADS, then the benefit of the AMG equals to
. AMG AMG Elect

Sell SellB P  . The AMGP variable is the active power sold to the ADS and the Elect
Sell parameter is the electricity 



selling price. If the AMG purchases the electricity from the ADS, then the purchasing cost of the AMG equals to 
. AMG Elect

r
AMG
Pur Pu cha ash se edcC P   and the Elect

Purchased parameter is the electricity purchasing price. Further, Eq. (32) denotes 
that the benefit of the DRP implementation for the AMG equals to the sum of the benefits of the TOU and DLC 
programs. The , Elect E lect

TO U D LC  parameters are the price of TOU and DLC implementation, respectively. 
 

B. PHEV model and constraints: 

The energy balance is given as (33) and (34), respectively [34]: 
)33(  Charge PHEV

PHEV

PHEV
Discharge
PHEV

ENPHEV(t)= ENPHEV(t -1)+ . (PCH

PDCH

t).Δt
1- . .Δt





 

)34( min maxENPHEV ENPHEV ENPHEV  

)35( PHEV PHEV ,Max

PHEV PHEV ,Max

0 PCH PCH

0 PDCH PDCH








 

)36( max
DepartureENPHEV(t)= σ.ENPHEV  t = t 

Eq. (31) denotes that the energy balance of PHEV battery for each interval of simulation that the Charge
PHEV and 

Discharge
PHEV parameters are the charge and discharge limitation ratio, respectively. The PHEVPCH and PHEVPDCH

variables are the PHEV’s power of charge and discharge, respectively. 
The limits of charge and discharge rates of PHEV battery are presented in Eq. (35). Eq. (36) denotes that the desired 
PHEV state of charge at the leaving time and the  parameter is the expected coefficient. 
 
2.4. ADS DA Contingency Constrained Topology Optimization Problem Formulation  
At the third level of the optimization problem, the ADS day-ahead contingency constrained topology optimization 
problem is considered. At this level, the third level of uncertainty modelling is used, the contingency scenarios are 
considered, and the corrective DRPs and involuntary load interruptions are determined. The objective function of the 
problem can be written as: 

 3 1 .  . shed
NCSS

P CDFMin    M M  
(37) 

                                                                                     
The constraints of this problem are presented as: 

(38) Max
shed shedP P  

 
Eq. (31) considers the maximum limit of shed load. 
 
2.5. ADS RT Optimization Problem Formulation 
The fourth level problem minimizes the operation costs of ADS resources in the RT market. At the real-time 
optimization problem, the look-ahead approach or predictive control model is used as described in [7]. The 
optimization algorithm is performed for every 15 minutes with updated forecasted data for active and reactive power 
markets as shown in Fig. 4.  



 

Fig. 4. The ADSO day-ahead and real-time OBSADS horizon.  
 

As described in the modeling section, the accepted spinning reserve bids in DA market must be controlled as fixed 
parameters in the RT markets and any deviation of spinning reserve parameters are penalized by the upward market 
operator. The objective of each real-time optimization is and can be represented as [7]:  
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  (40) 

 

Eq. (39) is divided into five groups: 1) the mismatch of commitment costs of ADS’ DERs consist of CHP, DG, ESS, 
TES, and boiler (   )CHP DG ESS TES

ADS ADS ADS A
Boi

DS ADS
lerC C C C C      ; 2) the mismatch cost of energy purchased from wholesale 

market ( )Purchase
ADSC ; 3) the mismatch costs of AMGs’ DRPs ( )AMG

DRPC ; 4) the mismatch of penalty of deviation in active 

and reactive markets ( )active reactivePenalty Penalty  ; 4) the mismatch of revenues ( )revenue ; and 5) the mismatch of 

weighted difference of the LMP of load and generation buses ( . . )L G
NL NG

LMP P LMP P      .  

Further, Eq. (40) is divided into five groups: 1) the revenue of active power mismatch sold to the RT upward market

_ _( .( ))active active active
RT RT upward DA upwardP P  ; 2) the revenue of spinning reserve mismatch sold to the RT upward market

_ _( .( ))SR
RT RT upward DA upwardSR SR  ; 3) the revenue of reactive power mismatch sold to the RT upward market



_ _( .( ))reactive reactive reactive
RT RT upward DA upwardQ Q  ; 4) the revenue of active power mismatch sold to the downward customers in 

RT market horizon _ _ _( .( ))active active active
RT downward RT downward DA downwardP P  ; and 5) the revenue of reactive power mismatch sold 

to the downward customers in RT market horizon _ _ _.( )reactive reactive reactive
RT downward RT downward DA downwardQ Q  . 

2.6. AMG RT Market Optimization Problem Formulation 
The fifth level problem minimizes the mismatch of operation costs of AMG resources in the RT market. Same as the 
fourth level, the look-ahead approach is used as described in [7] and the objective function of the fifth-level problem 
can be represented as:  
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The Eq. (41) components are the AMG’s DERs mismatch of costs, DRP and energy sold to ADS mismatch of 
benefits, and the active and reactive power mismatch penalties. 

Where _ ( , , ) 0RT AMG x u z   and _ ( , , ) 0RT AMG x u z   are fourth level problem constraints. 

2.7. ADS RT Contingency Constrained Topology Optimization Problem Formulation  
At the sixth level problem, the ADS RT contingency constrained topology optimization problem is considered. At 
this level, the data is updated and corrective DRPs and involuntary load interruptions are determined. The objective 
function of the sixth level problem can be written as: 

 6 5 .  . shed
NOCS

P CDFMin    M M  
(42) 

 The sixth level objective function minimizes the fifth-level problem objective function and the involuntary load 
shedding. The constraints of this problem are presented as: 

 (43) Max
shed shedP P                

The proposed MINLP model of OBSADS is a non-convex, non-linear optimization problem. The optimization 
algorithm is given in Fig. 5. 

3. Optimization algorithm 

The optimization problem assumes: 

 The upward day-ahead market energy, spinning reserve and reactive power services prices are forecasted by 
Ref. [35] model for each scenario of the first stage of uncertainty modeling. 

 The hourly heating and electrical loads are forecasted by the ARIMA model for each scenario of the second 
stage of uncertainty modeling [33]. 

 Numerous scenarios for day-ahead market energy, spinning reserve, reactive power services prices, hourly 
heating and electrical loads are generated [36]. 

 A Monte Carlo simulation method is utilized for the third stage of uncertainty modeling. The domain of 
contingency scenarios is defined and then, it generates contingency scenarios randomly from the domain 
using a certain specified probability distribution [33].  

 All of the weighting factors are equal to 1. 
 The confidence level used to calculate ܴܸܽܥఈ is ߙ = 0.95. 

 



 

Fig. 5. Flowchart of the OBSADS algorithm. 
 

 The 1st, 3rd, 4th, and 6th level optimization problems are MINLP and are solved by the Parallel Genetic 
Algorithm (PGA) that all of the details of the algorithm is presented in [37]. 

 The DICOPT solver of GAMS is used for the 2nd and 5th level problems. 
 The Capacitor Bank (CB) steps and tie-switches control variables are assumed as discrete control variables. 
 The 1st – 3rd level problems use the hourly load curves. The 4th – 6th level problems use the ARIMA 

forecasting model with the 1-minute resolution.  
 An index is proposed as the Average Zonal LMP Deviation (AZLMPD) with the following formulation for 

the normal and the worst-case contingent condition of the ADS: 



 (44) 
24

1

Max Min

t

ZLMP ZLMPAZLMPD
AZLMP


                

Where, ZLMP Max and ZLMP Min are maximum and minimum zonal LMP, respectively. AZLMP is the hourly 
average of zonal LMP for the specified time horizon. 

 The corrective load shedding (CLS) uses the following algorithm: 

o At first, the AMG’s controllable loads ( )Load
ControllableP are turned off, 

o If the electric power balance constraint is not satisfied, then turn off the whole zonal load block and shedP

is the total shed load. 
The parallel genetic algorithm codes were developed in MATLAB and the simulation was carried out on a PC (Intel 
Core i7-870 processor, 4*2.93 GHz, 8 GB RAM). The parallel processing functions of MATLAB was utilized to 
speed up the computation time. The maximum CPU time required solving the entire problem was less than 372 
seconds. The computation times of the 2nd and 5th level problems were less than 53 seconds. 

The DICOPT solver of GAMS is used for the 2nd and 5th level problems. The DICOPT (DIscrete and Continuous 
OPTimizer) solver iteratively utilizes the CPLEX and CONOPT3 solvers for Non-Linear Programming (NLP) and 
Mixed Integer Programming (MIP) solutions, respectively.  

 
4. Simulation Results  

The 123-bus test system data is presented in [38] and its topology is shown in Fig. 6. The AMG was the 33-bus test 
system [39]. Fig. 7 depicts the estimated hourly electrical and heating loads of 123-bus system.  
Fig. 8 depicts the estimated value of energy and ancillary services prices for the day-ahead and real-time markets for 
one of the reduced scenarios. The simulation results of two cases are considered: without OBSADS procedure and 
with OBSADS procedure. 
 
4.1. Case 1: Without OBSADS procedure  
In this case, the 123-bus ADS only transacts energy and reactive power with the upward market. Further, the ADSO 
does not utilize DRP alternatives. The AMGs submits their active and reactive bids without consideration of the 
second level of OBSADS procedure and there is not any reconfiguration optimization after the ADS contingencies. 
Thus, any critical contingency imposes load-shedding procedure and customer interruption costs to the ADSO. The 
W and  parameters are equal to zero.  
Fig. 9 depicts the aggregated AMGs bid/offer values of active power, the 123- bus active load, the 123-bus system 
DERs active power generation and the bid/offer values of the active power of 123- bus system ADS, respectively. 
The AMGs propose electricity injection for 08:00 PM to 06:00 AM and electricity withdrawal for 07:00 AM to 07:00 
PM, respectively. The maximum and minimum value of the ADS active power take on a value 6398.85 (kW) and -
4873.31 (kW), respectively. 
Fig. 10 depicts the aggregated AMGs bid/offer values of reactive power, the 123- bus reactive load, the 123-bus 
system DERs reactive power generation and the bid/offer values of reactive power of 123- bus system ADS, 
respectively. The AMGs propose reactive power injection for 08:00 PM to 05:00 AM and electricity withdrawal for 
06:00 AM to 07:00 PM, respectively. The maximum and minimum value of the ADS reactive power take on a value 
5967.29 (kW) and -1021.45 (kW), respectively.  
Fig.11 shows the worst-case of the ADS PVAs and SWTs electricity generation. Fig. 12. (a) and (b) show the 
electricity and heating dispatch of the 123-bus system CHPs, respectively. The CHPs were at full load when they 
committed. 
Fig. 13. shows the boilers heating dispatch of the 123-bus system. The boilers track the heating load and compensate 
the mismatch of heating load and heating generation of CHPs. 
 



 
Fig.6. The modified 123-bus ADS test system. 

 

 
Fig.7. The hourly heating and electrical loads of the 123-bus test system. 
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Fig. 8. The estimated value of energy and ancillary services prices for the day-ahead and real-time markets for 

one of the reduced scenarios. 

 
Fig. 9. The aggregated AMGs bid/offer values of active power, the 123- bus active load, the 123-bus system DERs 

electricity generation and the bid/offer values of active power of 123- bus system ADS. 
 

 
Fig. 10. The aggregated AMGs bid/offer values of reactive power, the 123- bus reactive load, the 123-bus system 

DERs reactive power generation and the bid/offer values of reactive power of 123- bus system ADS. 



 
Fig.11. The worst case of the ADS’s PVAs and SWTs electricity generation. 

 

 

 
(a) 

 
(b) 

Fig. 12. (a) The CHPs electricity dispatch of the 123-bus system. (b) The CHPs heating dispatch of the 123-bus 
system. 

 



 
Fig. 13. The boilers heating dispatch of the 123-bus system. 

 
Fig. 14. depicts the values of AMGs bids/offers and AMGs accepted bids/offers. The maximum and minimum value 
of the AMGs bid/offer are 4331.95 (kW) and -4909.35 (kW) that belong to the AMG5 for 01:00 AM and 09:00 AM 
– 06:00 PM, respectively. The maximum and minimum value of the accepted AMGs bid/offer are 1025.68 (kW) and 
-1178.35 (kW) that belong to the AMG2 (for 03:00 AM) and the AMG1 (for 08:00 AM – 06:00 PM), respectively. 
Fig. 15 depicts the expected benefit/cost of 123- bus system ADS for bid/offer values of DA energy and reactive 
markets. The total benefit of ADS takes on the value 70918.16 (MU/Day) for the first case study. 

 
4.2. Case 2: Considering OBSADS procedure 
In this case, the ADS utilizes the OBSADS procedure and it participates in the upward wholesale energy, spinning 
reserve and reactive power markets.  
Fig.16 shows two scenarios of time of use and DLC that are considered in the OBSADS procedure and the best 
scenario of DRP is selected in the following case study. 

 
Fig. 14. The values of AMGs bids/offers and AMGs accepted bids/offers. 
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Fig. 15. The expected benefit/cost of 123- bus system ADS for DA markets of energy and reactive power. 

 

 
 

Fig. 16. Two scenarios of TOU and DLC 

 
As shown in Fig. 16, the electricity sold price and DLC prices are equal for the second scenario of time of use and 
DLC; meanwhile, the electricity purchased price of this scenarios is about 95 percent of its electricity sold price. 
Fig. 17 depicts the aggregated AMGs bid/offer values of active power, the 123- bus active load, the 123-bus system 
DERs active power generation and the bid/offer values of the active power of 123- bus system ADS for =1, 
respectively. The AMGs proposes electricity injection for 03:00 PM to 08:00 AM and electricity withdrawal for 
09:00 AM to 02:00 PM, respectively. The maximum and minimum value of the ADS active power take on a value 
6961.56 (kW) and -2664.63 (kW), respectively. In this case, the ADS submitted value of active power is about 8.06% 
more than the first case. The second scenario of time of use and DLC is selected as the best of DRP alternatives by 
the OBSADS. Fig. 18 depicts the aggregated AMGs bid/offer values of reactive power, the 123- bus reactive load, 
the 123-bus system DERs reactive power generation and the bid/offer values of reactive power of 123- bus system 
ADS for =1, respectively. The maximum and minimum value of the ADS reactive power take on a value 4967.29 
(kVAr) and -2021.45 (kW), respectively. Fig. 19. (a) and (b) show the electricity and heating dispatch of the 123-bus 
system CHPs for =1, respectively. The CHPs were at full load when they committed. 
Fig. 20 shows the boilers heating dispatch of the 123-bus system for =1. The boilers track the heating load and 
compensate the mismatch of heating load and heating generation of CHPs. Fig. 21 depicts the values of AMGs 
bids/offers and AMGs accepted bids/offers. The maximum and minimum value of the AMGs bid/offer are 4743.31 
(kW) and -1378.43 (kW) that are belong to the AMG5 for 01:00 AM and 11:00 AM, respectively. The maximum 
and minimum value of the accepted AMGs bid/offer are 1723.97 (kW) and -621.65 (kW) that belong to the AMG5 
(for 08:00 AM) and the AMG1 (for 09:00 AM – 06:00 PM), respectively. 
Fig. 22 depicts the charge and discharge of PHEVs for OBSADS and without OBSADS cases. When the ADS 
participates in spinning reserve market and it considers the OBSADS, the PHEVs’ batteries are more discharged. 
Fig. 23 depicts the bid/offer values of (a) active power, (b) spinning reserve and, (c) reactive power of 123- bus 



system ADS for different values of , respectively. As shown in Fig. 23, as the value of  is increased, the absolute 
values of ADS bids/offers are decreased based on the fact that the ADSO chooses a risk-averse bidding strategy. 
Table 2 shows the optimal switching device status for the normal and some of the zonal worst-case contingent 
conditions of the 123-bus test system that are consist of the first five ranks of the worst-case zonal contingent 
conditions. The optimization procedure searches the state space of the problem and switches the switching devices; 
meanwhile, it optimizes the dispatchable DERs of the system.  
Fig. 24 shows the estimated hourly average zonal LMP values for (a) normal condition, (b) Fault: L60-62 (Zone 3), 
and (c) Fault: L13-18 (Zone 1) contingent conditions of the 123-bus test system for =1.  
As shown in Fig. 23. (a), the range of zonal LMP values is between 40.1 (MU/hr) – 58.2 (MU/hr). However, for the 
Fault: L60-62, the range of zonal LMP values are changed to 46.1 (MU/hr) – 78.2 (MU/hr). Finally, for the Fault: 
L13-18 as one of the worst contingencies, the range of zonal LMP values are 47.2 (MU/hr) – 81.2 (MU/hr).   
At the real-time optimization problem, the predictive control model is used and the 15 minutes updated data are used 
for the optimization algorithm [7]. 
 

 
Fig. 17. The aggregated AMGs bid/offer values of active power, the 123-bus active load, the 123-bus system DERs 

electricity generation and the bid/offer values of the active power of 123-bus system ADS for =1. 

 

 
Fig. 18. The aggregated AMGs bid/offer values of reactive power, the 123- bus reactive load, the 123-bus system 

DERs reactive power generation and the bid/offer values of reactive power of 123- bus system ADS for =1. 
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Fig. 19. (a) The CHPs electricity dispatch of the 123-bus system. (b) The CHPs heating dispatch of the 123-bus 
system for =1. 

 

 
Fig. 20. The boilers heating dispatch of the 123-bus system for =1. 



 
Fig. 21. The values of AMGs bids/offers and AMGs accepted bids/offers. 

 
 
 
 
 

 
Fig. 22. The charge and discharge of PHEVs for OBSADS and without OBSADS cases. 
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Fig. 23. The bid/offer values of (a) active power, (b) spinning reserve and, (c) reactive power of 123- bus system 
ADS for different values of . 

 

 

 

 

 

 

 

 



Table 2. The optimal switching device status for the normal and the zonal worst-case contingent conditions of the 
123-bus test system. 

 

 
Fig.24. the estimated hourly average zonal LMP values for (a) normal condition, (b) Fault:L60-62 (Zone 3), and (c) 

Fault: L13-18 (Zone 1) contingent conditions for =1. 



Fig.25 shows the values of AMGs bids/offers and AMGs accepted bids/offers for the RT market. The maximum and 
minimum value of the AMGs bid/offer are 397.791 (kW) and -388.86 (kW) that belong to the AMG1 for 08:00 PM 
and 01:00 PM, respectively. The maximum and minimum value of the accepted AMGs bid/offer are 127.465 (kW) 
and -315.522 (kW) that belong to the AMG3 for 07:00 AM and 03:00 PM, respectively. Fig. 26 shows the estimated 
15 minutes average zonal LMP values for (a) normal condition, (b) Fault: L60-62 (Zone 3), and (c) Fault: L13-18 
(Zone 1) contingent conditions of the 123-bus test system. The range of estimated values of zonal LMP is increased 
for contingent conditions. 

 
Fig.25. The values of AMGs bids/offers and AMGs accepted bids/offers for the RT market. 

 
Fig. 26. shows the estimated 15 minutes average zonal LMP values for (a) normal condition, (b) Fault: L60-62 

(Zone 3), and (c) Fault: L13-18 (Zone 1) contingent conditions of the 123-bus test system for =1. 



Fig. 27 depicts the bid/offer values of (a) active power, (b) spinning reserve and, (c) reactive power of 123- bus 
system ADS for different values of , respectively. As shown in Fig. 27, as the value of  is increased, the absolute 
values of ADS bids/offers are decreased based on the fact that the ADSO chooses a risk-averse bidding strategy. Fig. 
28 depicts the expected benefit/cost of 123- bus system ADS for bid/offer values of (a) DA markets of active power, 
spinning reserve and reactive power, (b) RT markets of active power and reactive power for different values of . 
The uncertainty of parameters in the RT market has changed the forecasted values of DA parameters. Thus, when 
the value of  increases, the expected benefit of ADS does not decrease in some hours based on the fact that the 
difference of the DA forecasted and RT values of parameters are higher than the acceptable mismatch of the DA 
forecasting algorithm.  
Table 3 presents the values of ADZLMP for the DA market of the first and second case studies and for their worst-
case contingency and normal states. As shown in Table 3, the OBSADS procedure decreased the average of ADZLMP 
about 26.44% and 15.81% for the normal and worst-case contingency, respectively. The maximum difference 
between ADZLMP of the first and second cases takes on a value 0.1653 that is for the worst-case contingent 
conditions of the third zone.  
Three Sensitivity Analysis (SA) was performed for analysing the impact of the change of energy and ancillary 
services prices on the ADS costs/benefits. Table 4 depicts the characteristics of the SA. The DA and RT energy and 
ancillary services prices have correlations and a single parameter sensitivity analysis cannot be performed.  
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Fig. 27. The bid/offer values of (a) active power, (b) reactive power of 123- bus system ADS for different values of 
 in the RT market. 
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Fig. 28. The expected benefit/cost of 123- bus system ADS for bid/offer values of (a) DA markets of active power, 
spinning reserve and reactive power, (b) RT markets of active power and reactive power (15 minutes interval) for 

different values of . 
 

Table 3. The values of ADZLMP for the DA market of the first and second case studies and for their worst-case 
contingency and normal states. 

Zone ADZLMP normal state (first case) ADZLMP worst-case zonal 
contingency (first case) 

ADZLMP normal state (second 
case) 

ADZLMP worst-case zonal 
contingency (second case) 

1 0.8326 0.9516 0.6124 0.8012 
2 0.7906 0.9607 0.6325 0.8226 
3 0.8512 0.9782 0.6921 0.8129 
4 0.8709 0.9421 0.7215 0.7915 
5 0.8147 0.9511 0.6363 0.7964 

Average 0.8326 0.9516 0.6124 0.8012 

Table 4. The characteristics of parameters change in the sensitivity analysis 
Case Percent of DA energy 

price increased/decreased 
Percent of day-ahead SR 
price increased/decreased 

Percent of DA reactive 
power price 
increased/decreased 

Percent of RT energy 
price increased/decreased 

Percent of RT reactive 
power price 
increased/decreased 

Base -- -- -- -- -- 
SA1 -3% -3% -3% -3% -3% 
SA2 +3% +3% +3% +3% +3% 
SA3 -5% -5% -5% -5% -5% 

 
Fig.29 (a) and (b) show the ADS revenue for DA energy and ancillary service markets for different SA conditions. 
The maximum decrease of DA energy, SR and reactive markets revenue values for the SA1 are 2.992%, 2.995% and 
2.998%, respectively that are corresponding to the =0.7,  =0.85, and =0.25. The maximum increase of DA energy, 
SR and reactive markets revenue values for the SA2 are 3.021%, 3.172% and 3.033%, respectively that are 
corresponding to the =1,  =0.15, and =0.55. Finally, the maximum decrease of DA energy, SR and reactive 
markets revenue values for the SA3 are 4.998%, 4.976% and 4.997%, respectively that are corresponding to the 
=0.55,  =0.25, and =0.4. 
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Fig.29. (a) The ADS revenue for DA energy, (b) The ADS revenue for DA ancillary service markets for different 
SA conditions. 

 
 
Fig. 30 depicts the aggregated daily ADS revenue for different values of  and sensitivity analysis conditions. The 
maximum percent of revenue changes of ADS is 324%, 318%, 331% and 313% for the base, SA1, SA2 and SA3 
conditions and =0, respectively. The minimum percent of revenue changes of ADS is 292%, 287%, 298% and 283% 
for the base, SA1, SA2 and SA3 conditions and =1, respectively. Thus, the proposed OBSADS increased the ADS 
revenue for both risk-neutral and risk-averse bidding strategy of ADSO. 
 
 

 
Fig. 30. The aggregated daily ADS revenue for different values of  and sensitivity analysis conditions 

 
 
 



5. Conclusion 

This paper addressed an integrated framework for optimal bidding strategy of ADS that its energy resources were 
combined heat and power units, small wind turbines, photovoltaic systems, gas-fired distributed generation and 
boilers, and plug-in electric vehicles. The proposed algorithm utilized an MINLP model to maximize distribution 
system and microgrids revenue. The proposed six-level algorithm optimized energy resource coordination of 
distribution system in the normal and contingent operational conditions. Two different cases were evaluated by 
different operational paradigms. The first case only considered the first and second level of optimization algorithm 
without any DRP implementation. The second case considered the six-level optimization procedure that utilized DRP 
alternatives for the optimal coordination of system resources in contingent conditions. Further, three sensitivity 
analyses were performed to assess the impact of energy and ancillary service prices changes on the distribution 
system revenue. The maximum percent of revenue changes of the distribution system was 324%, 318%, 331% and 
313% for the base, 1st, 2nd and 3rd sensitivity analysis cases and risk-neutral bidding strategy, respectively. Further, 
the minimum percent of revenue changes of revenue was 292%, 287%, 298% and 283% for the base, 1st, 2nd and 3rd 
sensitivity analysis cases and risk-averse bidding strategy, respectively. Thus, the proposed OBSADS increased the 
distribution system revenue for both risk-neutral and risk-averse bidding strategies. The adoption of the proposed 
OBSADS increases the distribution system and microgrids revenues and optimizes the system resource coordination 
for the contingency conditions. 
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