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Abstract  

This paper presents a two-level optimization problem for optimal day-ahead scheduling of an active 

distribution system that utilizes renewable energy sources, distributed generation units, electric 

vehicles, and energy storage units and sells its surplus electricity to the upward electricity market. 

The active distribution system transacts electricity with multiple downward energy hubs that are 

equipped with combined cooling, heating, and power facilities. Each energy hub operator optimizes 

its day-ahead scheduling problem and submits its bid/offer to the upward distribution system 

operator. Afterwards, the distribution system operator explores the energy hub’s bids/offers and 

optimizes the scheduling of its system energy resources for the day-ahead market. Further, he/she 

utilizes a demand response program alternative such as time-of-use and direct load control 

programs for downward energy hubs. In order to demonstrate the preference of the proposed 

method, the standard IEEE 33-bus test system is used to model the distribution system, and multiple 

energy hubs are used to model the energy hubs system. The proposed method increases the energy 

hubs electricity selling benefit about 185% with respect to the base case value; meanwhile, it 

reduces the distribution system operational costs about 82.2% with respect to the corresponding 

base case value. 

 

Keywords: Combined Cooling, Heating, and Power (CCHP), Mixed Integer Linear Programming 

(MILP), Active distribution system, Demand response program, Energy hub. 
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NOMENCLATURE 

Abbreviation  

AC  Alternative Current. 

ACH Absorption Chiller. 

ADS Active Distribution System. 

CCH Compression Chiller. 

CES Cooling Energy Storage. 

CHP Combined Heating and Power. 

CCHP Combined Cool and Heat and Power. 

CO2 Carbon dioxide. 

DA Day-Ahead. 

DER Distributed Energy Resource. 

DLC Direct Load Control. 

DSO Distribution System Operator. 

DG Distributed Generation. 

DLC Direct Load Control. 

DRP Demand Response Program. 

DSO Distribution System Operator. 

EHO Energy Hub Operator. 

ESS Electrical Storage System. 

EH Energy Hub. 

ESS Energy Storage System. 

MILP  Mix Integer Linear Programming. 

MILP Mixed Integer Linear Programming. 

MINLP Mixed Integer Non-Linear Programming. 

MUs Monetary Units. 

MMUs Million MUs. 

ODAS Optimal Day-Ahead Scheduling. 

PGU Power Generation Unit. 

PHEV Plug-in Hybrid Electric Vehicle. 

PVA Solar Photovoltaic Array. 

PU Per-unit 

RES Renewable Energy Resources. 

RL Responsive Load. 

SWT Small Wind Turbine. 

TES Thermal Energy Storage. 

TOU Time of Use. 

Index Sets 

t Time index. 

Parameters 
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Sell
EHB  Energy sold benefit of EH (MUs) 
DRP
EHB  DRP Benefit of EH (MUs) 
DG
ADSC  Total operational and emission costs of ADS DG (MUs). 
ESS
ADSC  Total operational costs of ADS ESS commitment (MUs). 
PHEV
ADSC  Total operational costs of ADS PHEVs commitment (MUs). 
Purchase
ADSC  Energy purchased costs of ADS (MUs). 
DRP
ADSC  DRP costs of ADS (MUs). 
PVA
ADSC  Operational costs of ADS PVA (MUs). 
SWT
ADSC  Operational costs of ADS SWT (MUs). 

opC  Operational cost of ADS facilities (MUs/MWh). 
CHP
EHC  Total operational and emission costs of EH CHP (MUs). 
Boiler
EHC  Operational costs of EH boiler (MUs). 
ACH
EHC  Operational costs of EH ACH (MUs). 
CCH
EHC  Operational costs of EH CCH (MUs). 
ESS
EHC  Operational costs of EH ESS (MUs). 
CES
EHC  Operational costs of EH CES (MUs). 
PHEV
EHC  Operational costs of EH PHEV (MUs). 
TES
EHC  Operational costs of EH TES (MUs). 
Purchase
EHC  Energy purchased costs of EH (MUs). 

Cap  Capacity of ADS energy storage facilities (kW). 
ACH

EHCOP  Coefficient of performance of EH absorption chiller. 
CCH
EHCOP  Coefficient of performance of EH compression chiller. 

I  Solar irradiation of ADS PVA (kW/m). 

NEMS Total number of upward electricity market scenarios. 

NEHS Total number of EH operation scenarios. 

NPSWTGS Total number of SWT generation scenarios. 

NPVAGS Total number of PVA generation scenarios. 

NDRPS Total number of DRP scenarios. 

NPHEVS Total number of PHEV contribution scenarios. 

Y  Admittance. 

0t  
Outside air temperature (C). 

  Active or reactive power price of upward wholesale market (MU/kWh) , 
  Binary decision variable of ADS facilities commitment (equals to 1 if device is 

  Duration of device operation. 
  Active or reactive power price sold to the downward energy hubs (MU/kWh) , 

Charge
PHEV  Charge limitation ratio. 
Discharge
PHEV  Discharge limitation ratio. 
Elect
Purchased  EH electricity purchasing price that is purchased from ADS (MUs/kWh). 
Elect
DLC  Energy cost of DLC program (MUs/kWh). 

Elect
Sell  EH electricity selling price that is sold to ADS (MUs/kWh). 

g  Maximum discharge coefficient of ADS energy storage. 

, , 'th th th
CHP CHP CHPba c  Coefficient of heat-power feasible region for EH CHP unit. 
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  ADS photovoltaic array conversion efficiency. 
Wind
cv  

ADS small wind turbine cut-in wind velocity. 
Wind
fv  

ADS small wind turbine cut-off wind speed. 

t  Time interval. 

Variables 

A  Binary variable of ADS energy storage discharge; equals 1 if energy storage is 
discharged. 

          B  Binary variable of ADS energy storage charge; equals 1 if energy storage is 

ENPHEV State of charge of PHEV 

PCH  Power charge of ADS or EH energy storage or PHEV (kW). 

PDCH  Power discharge of ADS or EH energy storage or PHEV (kW). 

P  Active power (kW). 
DG
ADSP  DG active power of ADS (kW). 
EH
ADSP  Active power transaction of EH with ADS (kW). 
Load
ADSP  Active load of ADS (kW). 
ESS
ADSP  ESS active power of ADS (kW). 
PHEV
ADSP  PHEV active power of ADS (kW). 
SWT
ADSP  SWT active power of ADS (kW). 
PVA
ADSP  PVA active power of ADS (kW). 
DRP
ADSP  DRP active power of ADS (kW). 
Load

EHP  Active load of EH (kW). 
PVA

EHP  PVA active power of EH (kW). 
ESS

EHP  ESS active power of EH (kW). 
SWT

EHP  SWT active power of EH (kW). 
CHP
EHP  CHP active power of EH (kW). 
ACH

EHP  ACH active power of EH (kW). 
CCH
EHP  CCH active power of EH (kW). 
DRP

EHP  DRP active power of EH (kW). 
PHEV
EHP  PHEV active power of EH (kW). 

_
active
DA upwardP  ADS active power purchased from upward wholesale market (kW)  

_
active

DA downwardP  ADS active power sold to downward EHs and custom loads (kW) 
LossP  Active power loss (kW). 

PVAP  
Electric power generated by ADS PVA (kW). 

ESSP  Electric power delivered by electricity storage (kW). 
Load

CriticalP  
Critical electrical load (kW). 

Load
ControllableP  

Controllable electrical load (kW). 

                        TOUP        Change in load based on TOU program (kW). 
Load
DeferrableP  Deferrable electrical load (kW). 

DLCP      
Electric power withdrawal changed for DLC program (kW). 

SWTP  Electric power generated by ADS SWT (kW). 

Q  Reactive power (kVAR). 

ܳ஺஽ௌ஽ீ  DG reactive power of ADS (kW). 
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ܳ஺஽ௌாு  Reactive power transaction of EH with ADS (kW). 

ܳ஺஽ௌ஽ோ௉  DRP reactive power of ADS (kW). 

_
reactive
DA upwardQ  ADS reactive power purchased from upward wholesale market (kVAR) 

_
reactive
DA downwardQ  ADS reactive power sold to downward EHs and custom loads (kVAR) 
EHQ  Reactive power of EH (kW). 
Load
EHQ  Load reactive power of EH (kW). 
ACH
EHQ  ACH reactive power of EH (kW). 
CCH
EHQ  CCH reactive power of EH (kW). 
DRP
EHQ  DRP reactive power of EH (kW). 
LossQ  Reactive power loss (kW). 

'Load
EHQ  Thermal load of EH (kWth). 

'BEHQ  Boiler thermal power output of EH (kWth). 
'ACH
EHQ  ACH thermal power output of EH (kWth). 
'CHP
EHQ  CHP thermal power output of EH (kWth). 
'Loss
EHQ  Thermal loss of EH (kWth). 

Load
EHR  EH cooling load (kWc). 
CCH
EHR  Cooling power generated by EH compression chiller (kWc). 
ACH
EHR  Cooling power generated by EH absorption chiller (kWc). 
Loss
EHR  Loss of cooling power in EH (kWc). 
CES
EHR  Cooling power delivered by EH cooling storage (kWc). 

V  Voltage of ADS bus (kV). 

  Voltage angle of ADS bus (rad). 

  Angle difference of two ADS voltage buses (rad). 

 

1. Introduction 

Recently, Energy Hubs (EHs) concept have been widely used in power systems planning and 

operations literature based on the fact that the Distributed Energy Resources (DERs)-based systems 

are mainly EHs [1].  

An EH can be introduced as a system, which includes DERs such as Combined Heat and Power 

(CHP), Solar Photovoltaic Array (PVA), Small Wind Turbine (SWT), Electrical Storage System 

(ESS), Thermal Energy Storage system (TES) and Responsive Load (RL) [2]. Thus, an energy hub 

can play an important role in energy production, storage and conversion [3]. 
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However, due to the stochastic nature of the Renewable Energy Resources (RESs), the large-scale 

integration of these facilities into power systems has a large impact on the operational and planning 

paradigms of the electric distribution system [4].  

Further, as shown in Fig. 1 an Active electric Distribution System (ADS) can transact electrical 

energy with the downward EHs and custom loads. The Optimal Day-Ahead Scheduling (ODAS) of 

ADS consists of determining the optimal coordination of the ADSs’ DERs considering of the 

stochastic behavior of the wholesale market prices, ADS intermittent electricity generation, 

downward EHs power generation/consumption scenarios, Plug-in Hybrid Electric Vehicle (PHEV), 

Demand Response (DRP) contributions, and cost-benefit analysis [5].  

 
Fig. 1. Schematic diagram of ADS with its downward energy hubs. 
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Over recent years, different aspects of ODAS have been studied and the literature can be 

categorized into the following groups.  

The first category developed models for device specification, static and dynamic methods of 

capacity expansion, long-term/short-term energy management and performance evaluation. The 

second category proposes solution techniques that determine the global optimum of the first 

category problems. The third category introduces new conceptual ideas in the ODAS paradigms.  

Based on the above categorization and for the third category of ODAS paradigms, an integrated 

framework that considers the optimal bidding of EHs, DRP procedures and optimizes the day-ahead 

scheduling of ADS is less frequent in the literature.  

Paudyal et al. [2] proposed a load management framework for energy hub management systems. 

The model considered the interactions of distribution companies for automated and optimal 

scheduling of their processes. Further, their developed model considered the detailed model of 

processes, process interdependencies, storage units, distribution system components, and various 

other operating requirements set by distribution system and industrial process operators. The case 

study was performed for industrial facilities in Southern Ontario, Canada; including an Ontario 

clean water agency water pumping facility and their results showed that the method reduced the 

total costs up to 38.1%.  

Ma et al. [4] proposed a coordinated operation and optimal dispatch strategies for multiple energy 

systems. Based on a generic model of an energy hub, a framework for minimization of daily 

operation cost was introduced. The model used mixed-integer linear programming optimization 

procedure and results indicated that the method was effective over the scheduling horizon and 

reduced the operational costs up to 22.89% with respect to the base case costs. 

Lin et al. [5] presented a two-stage multi-objective scheduling method that considered an electric 

distribution network, natural gas network, and the energy centers. Five indices were considered to 

characterize the operation cost, total emission, power loss, the sum of voltage deviation of the 

network, and the sum of pressure deviation of the natural gas network. The analytic hierarchy 
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process method was used and numerical studies showed that effectiveness of the algorithm. Their 

method proposed that the optimal solution had 268.7041 $ and 52.1608 kW for operational cost and 

loss, respectively; based on the fact that the base case solution proposed 210.1872 $ and 85.6906 

kW for operational cost and loss, respectively. 

Dolatabadi et al. [6] presented a stochastic optimization model for solving the energy hub-

scheduling problem. The stochastic method was used to model the uncertainties of wind power and 

load forecasting. The conditional value-at-risk method was used to mitigate the risk of the expected 

cost of uncertainties. Their proposed method reduced the operational cost up to 1.37% with respect 

to the base case value. 

Sabari et al. [7] proposed an improved model of an energy hub in the micro energy grid. The model 

integrated Combined Power, Cooling and Heating (CCHP) system in the introduced framework, 

and the amount of operation cost and CO2 emission was investigated. Two cases were analyzed and 

the comparison of results showed that the demand response programs reduced operation costs 

3.97% and CO2 emission 2.26%. 

Wang et al. [8] developed the model of intelligent park micro-grid consisting of DERs and DRP to 

study the optimal scheduling of microgrid. The optimization problem was solved by the genetic 

algorithm and a microgrid project in China was used to carry out optimization simulation. Results 

showed that the optimization algorithm reduced the operation costs between 1.38% ~ 1.68% after 

demand response procedures. 

Davatgaran et al. [9] proposed a recursive two-level optimization structure to model the interactions 

between the Distribution System Operator (DSO) and energy hubs. Stochastic optimization was 

used to handle the uncertainty of intermittent energies. The strategy was implemented in a 6-bus 

and 18-bus test systems and the results showed that peak loads of energy hub and distribution grid 

are reduced by 29% and 14% in the 6-bus test system, respectively.  
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Salehi Maleh et al. [10] introduced an algorithm for scheduling of CCHP-based energy hubs and 

DRPs. The energy loss and depreciation cost of energy storages were modeled. The results showed 

that the demand curve flattened with lower operating costs and the operational costs of the 

distribution system and EH reduced by 10% and 14%, respectively. 

Shams et al. [11] proposed a two-stage stochastic optimization problem to determine the scheduled 

energy and reserve capacity. The uncertainties of wind and solar photovoltaic generation and 

electrical and thermal demands were modeled by scenarios. Further, the effectiveness of DRPs to 

reduce the operation costs were investigated and the system costs were reduced up to 15% by the 

proposed method. 

Gerami Moghaddam et al. [12] introduced a mixed-integer nonlinear programming model to 

maximize the profit of the energy hub for short term scheduling. The results showed that average 

electrical and thermal efficiencies for the cold day were 59.3% and 15.4%, respectively. Further, 

these values for the hot day were 47.1% and 28.9%, respectively. 

Najafi et al. [13] proposed an energy management framework for intermittent power generation in 

energy hubs to minimize the total cost using stochastic programming and conditional value at risk 

method. The results showed that the minimum cost was obtained by the best decisions involving the 

electricity market and purchasing natural gas. The optimal solution reduced the system cost up to 

5.94%. 

Ramirez-Elizondo et al. [14] proposed a two-level control strategy framework for 24 hour and real-

time optimization intervals. Electricity and gas were considered as input, electricity, and heat as the 

output and a multi-carrier unit commitment framework was presented.  

Roustai et al. [15] introduced a model to minimize energy bill and emissions that considered 

conditional value at risk method to control the operational risk. Results showed that the daily energy 

cost was reduced by 43.03% by using the proposed method. 
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Fang et al. [16] proposed an integrated performance criterion that simultaneously optimized the 

primary energy consumption, the operational cost, and carbon dioxide emissions. Results showed 

that the proposed strategy was better than that with the traditional strategy. The operational costs 

reduced 24.17% with respect to the base case value. 

Rastegar et al. [17] introduced an energy hub framework to determine a modeling procedure for 

multi-carrier energy systems. The algorithm considered different operational constraints of 

responsive residential loads. The method was applied to home to study the different aspects of the 

problem and the method reduced the payment cost up to 4%. 

Orehounig et al. [18] proposed a method to integrate decentralized energy systems. The method 

optimized the energy consumption of these systems and reduced the peak energy demand. Results 

showed that 46% lower emissions than for a scenario with DER systems. 

La Scala et al. [19] introduced optimal energy flow management in multicarrier energy networks for 

interconnected energy hubs that were solved by a goal attainment based methodology. Simulation 

results showed that the algorithm voltage deviations, regulating costs, power quality indexes were 

adequately considered. The operational cost reduced about 6.8%. 

Evins et al. [20] proposed a mixed-integer linear programming problem to balance energy demand 

and supply between multiple energy. The problem minimized operational costs and emissions and 

considered the minimum time of systems operation. Results showed a 22% CO2 emissions 

reduction.  

Sheikhi et al. [21] developed DRP models to modify electricity and natural gas consumption on the 

customer side. Their model maximized the natural gas and electricity utility companies' profit and 

minimized the customers' consumption cost. The results showed that the electricity and gas 

consumption cost were reduced; meanwhile, at the supplier side, the peak load demand in the 

electricity and natural gas load profiles were reduced. 
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Parisio et al. [22] used a robust optimization algorithm to minimize cost functions of energy hubs. 

An energy hub structure designed in Waterloo, Canada was considered for the case study and the 

results showed that the robust schedules of input power flows that were significantly less sensitive 

to uncertain converter efficiencies than the nominal schedules. The operational cost increased up to 

11.4% for the worst-case scenario operation paradigm.  

Wang et al. [23] presented the energy flow analysis of the conventional separation production 

system and four decision variables were considered as objective functions. The capacity of Power 

Generation Unit (PGU), the capacity of the heat storage tank, the on–off coefficient of PGU and the 

ratio of electric cooling to cool load were optimized. The energetic, economic and environmental 

benefits were formulated as objective functions and were maximized. Particle swarm optimization 

algorithm was employed and a case study was performed to ascertain the feasibility and validity of 

the optimization method. Their method saved 12.2% energy and 11.2% cost and reduced 25.9% 

CO2 emission than the conventional system. 

Wu et al. [24] presented an MINLP algorithm for optimal operation of micro-CCHP systems. 

Energy- saving ratio and cost-saving ratio were used as the objectives and results showed that the 

optimal operation strategy changed with load conditions for energy-saving optimization. The results 

showed that the CCHP system was superior to the conventional system when the dimensionless 

energy price ratio was less than 0.45. 

Tan et al. [25] proposed a model of DRP for plug-in electric vehicles and renewable distributed 

generators. A distributed optimization algorithm based on the alternating direction method of 

multipliers was developed. Numerical examples showed that the demand curve was flattened after 

the optimization, even though there were uncertainties in the model, thus the method reduced the 

cost paid by the utility company and the energy costs were reduced about 25.41%. 

Brahman et al. [26] proposed an optimization algorithm for residential energy hub that considered 

electric vehicles, DRPs, and energy storage devices. A cost and emission minimization were 
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presented and results showed that the introduced method reduced the total cost of operation. The 

energy hub revenue of energy purchased to the network was increased up to 105% by the proposed 

method. 

The described researches do not consider the effect of DRPs on the EHs operational scheduling 

optimization. Further, the ODAS algorithm that simultaneously optimizes energy transactions 

between ADS, upward wholesale market and downward EHs and considers SWTs, PVAs, ESSs, 

DRPs, and PHEVs uncertainties, and EHs bid/offer scenarios is less frequent in the previous 

researches. Table 1 shows the comparison of the proposed ODAS model with the other researches. 

The present research introduces an ODAS algorithm that uses the MILP model.  

The main contributions of this paper can be summarized as:  

 The proposed two-level MILP algorithm considers power transactions between the 

downward EHs and ADSs’ loads based on the smart grid conceptual model. 

 The proposed stochastic algorithm models five sources of uncertainty: upward electricity 

market price, EHs bids/offers, ADS intermittent power generation, PHEV contribution, 

and DRP commitment. 

 The proposed framework simultaneously optimizes the DSO and EHO objective 

functions and considers the dynamic interaction of the ADS and EH systems. 

The paper is organized as follows: The formulation of the problem is introduced in Section II. In 

Section III, the solution algorithm is presented. In section IV, the case study is presented. Finally, 

the conclusions are included in Section V. 

 

2. Problem Modeling and Formulation 

As shown in Fig.2, the Distribution System Operator (DSO) utilizes Distributed Generations (DGs), 

PVAs, SWTs to supply its electrical loads and downward EHs [27]. The DSO can utilize ESSs and 

PHEVs to optimize its operational parameters and it can transact electricity with the upward 
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wholesale market; meanwhile, it can electricity with the downward EHs. Thus, the distribution 

system behaves as ADS. EHs can submit their bid/offer and the DSO can consider the EHs optimal 

operation scheduling in its optimization procedure.  

Table 1: Comparison of proposed ODAS with other researches. 
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 Loads                          

St
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ag
e 

Sy
ste

m
 ESS                          

HES                          

CES                          

AC model                          
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Fig. 2. The ADS energy resources and storages.  

 
 

Each energy hub can utilize CCHP, PVA, SWT, PHEV, TES, ESS and CES to supply its cooling, 

heating and electrical loads. Further, the EHO can participate in the ADS DRPs and maximizes its 

benefits. The ADS DRPs consist of Time of Use (TOU) programs and Direct Load Control (DLC). 

The EHO optimizes its day-ahead scheduling problem and submits its bids/offers to DSO.  Next, 

the DSO explores the EHO’s bids and it optimizes the scheduling of its energy resources in day-

ahead markets. Fig. 3 depicts the EH facilities and its interactions with the DSO. The ODAS 

algorithm must simultaneously optimize the ADS and EHs day-ahead scheduling and consider their 

operational interactions and coupling constraints. 

The model has five sources of uncertainty: upward electricity market price, EHs bids/offers, 

intermittent power generation, PHEV contribution, and DRP commitment that are modeled in the 

following subsections. 
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Fig. 3 The EH facilities and its interactions with the DSO. 

 

2.1. Distribution System Operator Optimization Problem Formulation 

An optimal ODAS must minimize the total operating costs of ADS. The objective function of the 

ODAS problem can be proposed as (1):       

 

)(  . .  . .

. . .

.

 

DG ESS PHEV
ADS ADS ADS

NPHEVS

NEMS NDRPS NPVA

DG ESS PHEV

Purchase DRP PVA
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C C prob

C C C

C Penalty revenue

C

prob prob prob

prob
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  
 

  
 
 
 
 
  
 

    

 







 



Z  

 

(1) 

The objective function can be decomposed into five groups: 1) the commitment costs of DGs, ESSs, 

and PHEVs; 2) the energy purchased from wholesale market costs; 3) the costs of DRPs; 4) the 

penalty of deviation in the wholesale market, and; 5) the revenue of ADS.  
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The ADS costs can be presented as: 

( )      X { ,   ,  }
Op

X

X

NOSS T

X
ADS pC rob C DG ESS PHEV                         (2) 

The ADS can sell its surplus electricity to the upward wholesale market. Further, the ADS transacts 

electricity with its downward EHs. Thus, the revenue of ADS can be written as: 

_ _

_ _ _ _

(

(

)

)

active active reactive reactive
DA upward DA upward

active active reactive reactive
DA downward DA downward DA do

NEM

wnward DA downward

S

NEHS
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P Q
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P Qb

 

 

    
 

  




   
 

 

 
 

(3) 

The revenue of ADS consists of four terms: 1) the revenue of energy that is sold to upward 

electricity market; 2) the revenue of reactive power that is sold to upward electricity market; 3) the 

revenue of energy that is sold to downward loads and EHs; 4) the revenue of reactive power that is 

sold to downward loads and EHs. 

If the ADS energy consumption is less than 0.95 of its day-ahead bidding volume, then ADS will 

be penalized an additional fee. The penalty is modelled as Eq. (4): 

(4) Reactive min.      if |Cos |   Cos    else  =0ADS ADSPenalty k Q     

(5) 
_
2 2

_ _

Cos  
active

DA upward
ADS active active

DA upward DA upward

P

P Q
 


 

Where, ݇ is the penalty coefficient; and ஽ܲ஺_௨௣௪௔௥ௗ
௔௖௧௜௩௘ ,  ܳ஽஺_௨௣௪௔௥ௗ

௥௘௔௖௧௜௩௘  are active and reactive power that 

are purchased from the upward wholesale market, respectively, ADS bidding quantity to the upward 

wholesale active and reactive power markets. 

A. ESS, CES, TES and PHEV constraints: 

The ADSs’ ESS, CES, TES and PHEV constraints can be categorized as:  

Maximum discharge and charge constraints [28]: 

(6)  ' ' ' '( )     0,1   ,   ' { ,  ,  },Y Y Y Y
ADS YPDC ESS CEH g Cap A A S TES PHEV       

(7)  ' ' ' '        '        0,1   , { ,  } , ,Y Y Y Y
ADS Y ESS CPCH Cap B B ES TES PHEV     
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Storages cannot discharge and charge at the same time: 

(8)  ' ' ' '( ) ( ) 1 , 0,  1  , ,'  ,  ,{ }Y Y Y Y YA t B t t A and B ESS TES CES PHEV     

B. SWT and PVA constraints:  

The SWT electricity generation equation can be written [28]: 

      (9) 

The maximum electricity output of PVA can be written as [28]: 

C. DRP constraints:  

The ADS loads consist of critical, deferrable and controllable loads. Thus, energy hub and other 

ADS deferrable loads can participate in the ADS load-shifting procedure for their deferrable loads 

based on TOU programs. Further, the DSO can contract with the energy hub and other ADS 

curtailable loads to perform DLC procedure by paying a predefined fee. Hence, the DRP constraints 

for each bus of the system can be written as [28]: 

(11)          Load Load Load Load
ADS ADS Critical ADS Deferrable ADS ControllableP P P P    

(12)                            TOU Load
ADS ADS DeferrableP P   

(13) 
1

0                         
Period

TOU
ADS

t
P       



   

(14)                     TOU TOU TOU
ADS Min ADS ADS MaxP P P      

(15)       ,      DLC DLC DLC DLC Load
ADS Min ADS ADS Max ADS Max ADS ControllableP P P P P        

(16) DRP DLC TOU
ADS ADS ADSP P P                 

PV
0P (1 0.005 ( 25))PVAS I t        (10)  
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The ∆ ஺ܲ஽ௌ
்ை௎ is the sum of the load shifting of energy hubs and other ADS deferrable loads. Further, 

the ∆ ஺ܲ஽ௌ
஽௅஼  is the sum of the direct load control of energy hubs and other ADS controllable loads. 

D. ADS Electric network constraints: 

The ADS electric network constraints consist of electric device loading constraints and load flow 

constraints.  

1) Supply-demand balancing constraints: 

The active and reactive power balance equations can be written as (17), (18), respectively. 

The ESS, PHEV, SWT and PVA reactive powers are assumed constant.  

(17) 
0

DG EH Loss Load
ADS ADS ADS ADS

ESS PHEV SWT PVA DRP
ADS ADS ADS ADS ADS

P P P P

P P P P P

 

  

   
    



  
 

(18) 0DG EH Loss DRP
ADS ADS ADS ADSQ Q Q Q        

2) Steady-state security constraints: 

The apparent power flow limit of ADS lines and voltage limit of buses can be written as: 

(19) 2 2( , ) ( , )nm nm nmP V Q V F    

(20) min max| |n n nV V V   

3) Maximum apparent power for exchanging  with the upstream network: 

The apparent power rating of the interconnection, the transformer capacity, or the contracted 

capacity for exchanging power between ADS and the upstream high voltage grid, is considered as 

below: 

(21) 2 2 max  ,  upstream
jt jt jP Q F j t     

 

2.2. Energy Hub Optimization Problem Formulation 

The second stage problem, each EHO maximizes its benefit; meanwhile, minimizes its operating 

costs based on the following formulation:  

(22)  
 

CHP Boiler ACH CCH

NEH
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EH EH EH EH EH
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
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The EHO utilizes its DERs to supply its cooling, heating and electrical loads; meanwhile, it 

participates in the DSO DRPs and bids/offers to the upward DSO. The EHO determines its bid/offer 

parameters from Eq. (22) and the DSO explores the optimality of EHs’ bids and offers and declares 

the accepted ones. 

Electric power balance constraint of energy hub can be written as (23): 

=(                   

)

EH Load PVA ESS SWT CHP ACH
EH EH EH EH EH EH

CCH DRP PHEV Loss
EH EH EH

P P P P P P P

P P P P

     

   

     

  
               

(23) 

 

=(  )EH Load ACH CCH DRP Loss
EH EH EH EHQ Q Q Q Q Q         (24) 

The heating and cooling power balance constraint at the simulation interval can be written as (25) 

and (26), respectively: 

' ' ' '  ' 0Load B ACH CHP Loss
EH EH EH EH EHQ Q Q Q Q                    (25) 

0Load CCH ACH Loss CES
EH EH EH EH EHR R R R R                                                     (26) 
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EH
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                                                                                             (27) 

 '    
ACH
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E

EH
E

H
H

RQ
COP

                                                                                (28) 

'      AC

ACH
CHPEH

EHH
EH

R Q
COP

                                                                         (29) 

A. CHP constraints: 

Nonlinear feasible operating region for CHP units:  

' 'th CHP th CHP th
CHP EH CHP EH CHPa P b Q c                                     (30) 

  
CHP CHP CHP
EH Min EH EH MaxP P P                                   (31) 
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  ' ' 'CHP CHP CHP
EH Min EH EH MaxQ Q Q                                   (32) 

B. Boiler constraints: 

Heat output limit for ADS and EH boilers:  

' ''B B B
Min MaxQ Q Q                                   (33) 

' '
  'B B B

EH Min EH EH MaxQ Q Q                                   (34) 

C. EH’s TES, CES and ESS constraints: 

The EH’s TES, CES and ESS constraints are maximum capacity and charge and discharge 

constraints.  

Energy storage maximum discharge and charge constraints: 

(35)   '' '' '' ''( )     0,1   ,  ,  ,  } '' {Y Y Y Y
EHPDCH g Cap A A ESS TES CESY      

(36)   '' '' '' ''               0,1   ,   ,  ,  }'' {Y Y Y Y
EH YPCH Cap B B ESS TES CES      

D. ACH and CCH constraints: 

Feasible operating region for EH’s ACH and CCH units [29]:  

  ,X X X
EH Min EH EH MaxR R R X CCH ACH                                     (37) 

' ' '
  ,X X X

EH Min EH EH MaxQ Q Q X CCH ACH                                     (38) 

E. DRP constraints:  

The EH loads consist of critical, deferrable and controllable loads. Thus, the DRP constraints for 

each EH can be written as [28]: 

(39)          Load Load Load Load
EH EH Critical EH Deferrable EH ControllableP P P P    

(40)                            TOU Load
EH EH DeferrableP P   
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(41) 
1

0                         
Period

TOU
EH

t
P       


   

(42)                     TOU TOU TOU
EH Min EH EH MaxP P P      

(43)       ,      DLC DLC DLC DLC Load
EH Min EH EH Max EH Max EH ControllableP P P P P        

(44) DRP DLC TOU
EH EH EHP P P                 

The energy purchased costs and energy sold benefits can be written as (45) and (46), respectively: 

 0   .  . EH EH EH Elect EH Elect
Sell Sell

EH
Purchas Purchase edIf P Then B P els PCe                 (45) 

. .EH Elect Elect
DRP Purchased

TOU DLC
EH H LCE DB P P                 (46) 

F. PHEV model and constraints: 

The charge/discharge behaviour of each PHEV is determined by the behaviours of the vehicle 

owners that can be modelled as stochastic parameters. However, in a specific area with a large 

number of ADS-connected PHEVs and EH-connected PHEVs, the random behaviour of PHEVs 

can be modelled by probability distributions. In order to model the behaviour of PHEVs correctly, 

the following assumptions are considered [30]: 

1. All ADS-connected PHEVs and EH-connected PHEVs have the same batteries and can 

contribute to two smart charge/discharge modes. 

2. PHEVs are independent of each other.  

According to the above assumptions, historical data can be used to compute the probability density 

function [30]. 

The energy balance of PHEV battery and the PHEV’s battery energy limits can be formulated as 

(47) and (48), respectively: 

)47(  Charge PHEV
PHEV

PHEV
Discharge
PHEV

ENPHEV(t)= ENPHEV(t -1)+ (PCH

PDCH

t) Δt
1- Δt





 

 
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)48( min maxENPHEV ENPHEV ENPHEV  

)49( PHEV PHEV ,Max

PHEV PHEV ,Max

0 PCH PCH

0 PDCH PDCH








 

)50( max
DepartureENPHEV(t)= σ ENPHEV  t = t  

The charge and discharge rates of PHEV battery are formulated as Eq. (49). The desired PHEV 

state of charge at the leaving time is formulated as (50) and  is the expected coefficient. 

3. Solution Algorithm 

3.1. Distribution System Operator Optimization Problem Algorithm 

For the DSO optimization problem algorithm, the following assumptions are considered:  

1. The control variables of the ADS system are assumed as continuous variables. 

2. A linearized Alternating Current (AC) load flow is performed [31]. 

3.  Numerous scenarios for upward electricity market price, ADS intermittent power 

generation, PHEV contribution, and DRP commitment must be generated. The EHO 

operation scenarios are received from the energy hub optimization problem. However, from 

a computational burden, a scenario reduction procedure must be performed. The forward 

selection algorithm is implemented to reduce the generated scenarios [32]. 

4. It is assumed that the ADS submits its bids/offers to the upward electricity market and all of 

its submitted values will be accepted. 

For the DSO optimization problem algorithm, a CPLEX solver of GAMS is used.  

3.2. Energy Hub Optimization Problem Algorithm 

At the energy hub optimization problem, the following assumptions are considered: 

1. All of the control variables of EH systems are assumed as continuous variables. 

2. The AC load flow algorithm is utilized [31]. 
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3. The EHO generates scenarios for its intermittent power generation, PHEV commitment, and 

DSO’s TOU prices and DLC fees. The scenario reduction procedure is performed [32]. 

For the EH optimization problem algorithm, a CPLEX solver of GAMS is used.  

The proposed model of ODAS has a large state space that involves non-convex, non-linear discrete 

and continuous variables. A linearization technique is used to linear the non-linear equations and 

the presented method is modeled as a MILP model. An iterative two-level MILP optimization 

algorithm is proposed and Fig. 4 depicts the flowchart of the proposed optimization algorithm. The 

flowchart blocks are presented in the following paragraphs. 

At the first step, the initial value of energy hub bids/offers are generated and then the DSO 

optimization is performed. The output of the DSO optimization problem is delivered to the EH 

optimization problem. The initial values of energy hubs bids/offers are updated based on the EH 

optimization problem and the values of TOU prices and DLC fees are linearly changed and the 

procedure is repeated. The procedure will be stopped if no more improvement is achieved. 

4. Simulation Results  

The 33-bus test system is used to assess the proposed algorithm and it is considered as ADS. Three 

energy hubs are connected to the 33-bus system. The 33-bus test system data is presented at [33]. 

Fig. 5 shows the 33-bus system topology. The energy hub data are available at [4]. 

Table. 2 presents the optimization input data for the 33-bus test system. Table. 3 presents the 

optimization input data for the EH systems. Fig.6 depicts the reduced wholesale market prices 

scenarios. Fig. 7 presents the EHs’ cooling, heating and electrical loads. The PHEV data are 

available at [30]. Fig.8 shows the PVA and SWT electricity generation for energy hub for one of the 

reduced scenarios.  
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Fig. 4. Flowchart of the proposed ODAS algorithm. 
 

 
Fig. 5.   The 33-bus ADS. 
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Table 2. The optimization input data for the 33-bus system. 

Value ADS system parameter 

5000 Number of solar irradiation scenarios 

5000 Number of SWT power generation scenarios 

150 Number of upward market price scenarios 

5000 Number of PHEV contribution scenarios 

3000 Number of DRP commitment scenarios 

20 Number of solar irradiation reduced scenarios 

20 Number of SWT power generation reduced scenarios 

3 Number of upward market price reduced scenarios 

20 Number of PHEV contribution reduced scenarios 

20 Number of DRP commitment reduced scenarios 

 

Table 3. The optimization input data for the EHs. 

Value EH system parameter 

5000 Number of solar irradiation scenarios 

5000 Number of SWT power generation scenarios 

15 Number of proposed DSO TOU price and DLC fee scenarios 

1000 Number of PHEV contribution scenarios 

5 Number of solar irradiation reduced scenarios 

5 Number of SWT power generation reduced scenarios 

3 Number of TOU price and DLC fee reduced scenarios 

4 Number of PHEV contribution reduced scenarios 

 

 
 

Fig. 6. Wholesale electricity market price in three scenarios. 
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Fig.7. Hourly cooling, heating, and electrical load of the energy hubs. 
 

 

 

Fig 8.  The PVA and SWT electricity generation for energy hub for one of the reduced scenarios. 

 

Two cases are considered to assess the proposed algorithm. The first case optimizes the ODAS 

without considering DRP alternatives. The second case considers DRP scenarios in the ODAS 

procedure. For both cases, a scenario generation and reduction procedure were performed. The 

scenario reduction method reduced the wholesale market prices, SWT electricity generation, PVA 

electricity generation, PHEV contribution and DRP commitment scenarios for the second case. The 

forward selection algorithm is used to reduce the generated scenarios [34]. 

The first case did not encounter DRP commitment scenarios. 

Case 1: Without considering demand response scenarios 
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For the first case, the 33-bus distribution system did not utilize demand response procedures. The 

energy hubs transacted energy with the 33-bus system and proposed their bids/offers to the 

distribution system.  

Fig. 9 presents the columns of bids/offers of energy hubs that EH L, EH M and EH H present the 

minimum, mean and maximum value of energy hubs bids/offers, respectively. Fig. 10 depicts the 

heat generation of energy hubs. The energy hubs’ combined heat and power units were committed 

at full load for and the boiler was tracking the heating load. Fig. 11 depicts the energy hubs thermal 

energy storage charge and discharge. The energy hubs’ thermal energy storages were heavily used 

for 08:00 AM to 24:00 PM based on the fact that the thermal energy storages improved the 

flexibility of energy hubs to handle the heating energy supply. Fig. 12 depicts the energy hubs 

cooling power generation and charge and discharge of cooling energy storages. Energy hubs mostly 

utilized compression chillers to supply their cooling loads and the absorption chillers and cooling 

storages were committed when the energy hubs cooling loads were exceeded the compression 

chillers cooling capacity. Fig. 13 depicts the energy hubs electricity generation and electrical energy 

storages charge and discharge. The combined heat and power units were committed for 08:00 AM 

to 24:00 AM and energy hubs imported electricity from distribution system for 24:00 AM to 07:00 

PM. 

 

 

Fig.9. The energy hubs bid/offer columns for the first case. 
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Fig. 10. The energy hubs combined heat and power units and boiler heat generation. 

 

Fig. 11. Energy hub charge and discharge of thermal energy storage. 

 

 

Fig. 12. The cooling power generation of cooling energy generation facilities, charge, and discharge of cooling energy 

storage of energy hubs. 
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Fig. 13. The energy hubs CHP electricity generation and electrical energy storage charge and discharge. 

 

Fig. 14 shows the EH2 commitment of six plug-in electric vehicles that were utilized by the second 

energy hub. The EH2 has 1500 electric vehicles and their commitment has a stochastic behaviour 

based on their initial state of charge and the availability of the electric vehicles. 

 

Fig. 14. The EH2 commitment of six plug-in electric vehicles that were utilized by the second energy hub. 

Fig. 15 depicts the electricity transactions of energy hubs with the 33-bus distribution system where 

a power withdrawal of energy hub has minus value.  

 

Fig. 15. The electricity transactions of energy hubs with the 33-bus system. 
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The EH1 and EH3 proposed electricity injection for 08:00 PM to 15:00 PM and 19:00 PM to 21:00 

PM. The energy hubs proposed electricity withdrawal for 01:00 AM to 07:00 AM and 23:00 PM to 

24:00 PM. Further, based on the distributed energy resources electricity generation and energy hubs 

bids/offers, the distribution system submits different values of electricity generation or consumption 

to the upward wholesale electricity market.  

Case 2: With considering demand response scenarios 

At the second case, the 33-bus distribution system implemented demand response procedures that 

consisted of time-of-use and direct load control procedures. As shown in Fig. 16, different demand 

response price scenarios are considered in the optimization procedure. Fig. 17 presents the demand 

response constraints for different scenarios.  

 

Fig. 16. The electricity price for different scenarios. 
 

 

Fig. 17. The maximum deferrable load of energy hubs. 
 

Based on the proposed flowchart, the distribution system examined different demand response price 

scenarios and it iteratively proceeded the optimization procedure. Finally, the optimal values of 
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demand response fees were determined and proposed the optimal pricing scenarios to energy hubs. 

Based on the defined procedure, the distribution system selected the second demand response 

pricing scenarios as the optimal demand response scenario. 

Fig. 18 presents the energy hubs bid/offer columns for the optimal values of demand response 

prices and fees. Fig. 19 depicts the heat generation of energy hubs. The EH3’s combined heat and 

power unit was additionally committed for 01:00 AM to 02:00 AM and 07:00 AM with respect to 

the first case. However, the EH2’s combined heat and power unit was off for 08:00 AM and 09:00 

AM with respect to the first case. Fig. 20 depicts the energy hubs thermal energy storage charge and 

discharge. The energy hubs’ thermal energy storages were heavily used for 10:00 AM to 24:00 PM. 

Further, the thermal energy storage of EH3 was fully utilized for 01:00 AM to 02:00 AM and 07:00 

AM to 09:00 AM to store the surplus heating energy of EH3’s combined heat and power unit.  

 

Fig. 18. The energy hubs bid/offer columns for the optimal values of demand response prices. 

 

 

Fig. 19. The energy hubs combined heat and power units and boiler heat generation. 
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Fig. 20. Charge and discharge of thermal energy storage of energy hubs. 

 

Fig. 21 depicts the cooling power generation of energy hubs. Same as the first case, the energy hubs 

mostly utilized compression chillers and the absorption chillers and cooling energy storages were 

committed when the energy hubs cooling loads were exceeded the compression chillers cooling 

capacity. 

 

Fig. 21. The cooling power generation of cooling energy generation facilities and charge and discharge of CES of 

energy hubs. 

 

Fig. 22 depicts the energy hubs combined heat and power electricity generation unit and electrical 

energy storage charge and discharge. The combined heat and power units were committed for 10:00 

AM to 24:00 AM. However, the EH3 committed its combined heat and power units from 01:00 AM 

to 02:00 AM and 07:00 AM to 09:00 AM. Fig. 23 shows the EH2 commitment of six plug-in 

electric vehicles that were utilized by the second energy hub.  
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Fig. 22. The energy hubs electricity generation and electrical energy storage charge and discharge. 

 

 

Fig. 23. The EH2 commitment of six electric vehicles that were utilized by the second energy hub. 

Fig. 24 presents the energy hubs electricity transactions with the distribution system. It can be 

concluded that the total transacted energy between energy hubs and distribution system are 

42297.34 kWh and 56366.57 kWh for the first and second case, respectively. Thus, the demand 

response procedure has improved the energy hubs contribution in distribution system operational 

scheduling. Fig. 25 depicts the optimal scheduled electricity generation, the sum of energy hubs 

electricity generation/consumption and net distribution system electricity injection/withdrawal for 

the 1st scenario. Fig. 26 (a), (b), (c) depict the estimated energy hubs contribution costs, emission 

costs, distribution system operational costs and cost/benefit of the distribution system for electricity 

transaction with the upward market for the first, second and third scenario of the second case, 

respectively. 
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Fig. 24. The electricity transactions of energy hubs with the 33-bus distribution system. 
 
 

 

Fig. 25. The optimal scheduled distribution system electricity generation, sum of energy hubs electricity 

generation/consumption and net electricity injection/withdrawal for the first scenario. 

 
(a)  
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(b) 

 

 
(c) 

 

Fig. 26. The estimated energy hubs contribution costs, emission costs, operational costs and cost/benefit of distribution 

system for electricity transaction with upward market for the (a) first, (b) second and (c) third scenario of the second 

case. 

Fig. 27 shows the final costs and benefits of the distribution system and energy hubs for different 

cases and scenarios. As shown in Fig. 27, for the third scenario of the second case, the energy hubs 

electricity selling benefit is increased to 71894.1073 MU that is about 185% of its corresponding 

value of the first case. The distribution system costs are 51364.40588 MU that is the lowest value of 

the cases and scenarios and is about 82.2% of its corresponding value of the first case. 

Thus, the third scenario of the second case is the optimal day-ahead scheduling and Fig. 28 presents 

the estimated corresponding values of electricity generation, energy hubs accepted bid/offers 

(electricity consumption/generation), and net electricity sold to/purchased from the upward 

electricity market. According to Fig. 28, the ODAS reduces the operational costs of the distribution 
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system and increases the energy hubs benefits for the third scenario of the second case about 82.2% 

and 185% with respect to their corresponding first case parameters, respectively. It means that the 

distribution system can reduce its operational costs; meanwhile, the downward energy hubs 

maximize their benefits. A zero-carbon-emission micro energy internet concept that uses demand 

response procedures to coordinate the downward energy hubs bids/offers with the active 

distribution system is considered as future work [35]. 

 
Fig. 27. The final costs and benefits of distribution system and energy hubs for different cases and scenarios. 

 
Fig. 28. Estimated distribution system electricity generation, energy hubs accepted bid/offers (electricity 

consumption/generation), and net electricity sold to/bought from the upward electricity market. 

 

5. Conclusion 

This paper presented an operational scheduling framework for ADS having renewable energy 

sources, distributed generation units, electric vehicles, and energy storage units. The distribution 

system DRPs considered were TOU and DLC programs. Five different sources of uncertainties 

were modelled and a two-level optimization algorithm was presented. At the first stage, the ADS 
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minimized the operational cost of its system for different scenarios. At the second stage, the ADS 

estimates the EHs operational scheduling. Two cases were considered for the 33-bus test system. 

For one of the worst-case scenarios, the EHs electricity selling benefit was increased to 71894.1073 

MU, which was about 185% of its corresponding value of the first case. Further, the ADS costs 

were 51364.40588 MU that was the lowest value of cases and scenarios and was about 82.2% of its 

corresponding value of the first case. Thus, the TOU and DLC demand response procedures 

improved the energy hubs contribution in the ADS operational scheduling and the total transacted 

energy between energy hubs and distribution system were increased. The proposed ODAS 

algorithm reduces the ADS operational costs; meanwhile, it maximizes the downward EHs benefits. 

In conclusion, the adoption of the proposed ODAS allowed increasing the ADS and EHs benefits. 

The authors are investigating the use of other DRP methods for the ODAS procedure of zero-

carbon-emission micro energy internet as future work. 
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