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Abstract 

Wind energy sources have created new challenges in power system scheduling to follow the network 

load. Gas fired units with high ramping could better deal with inherent uncertainties of wind power 

compared to other power generation sources. The natural gas system constraints affect the flexibility 

of natural gas-fired power plants in the electrical market. In this paper, three solutions have been 

proposed to cover the challenges of gas system constraints and the uncertainty of wind power: 1) using 

information-gap decision theory (IGDT) based robust approach to address the uncertainty caused by 

the intrinsic nature of wind power, 2) Integration of compressed air energy storage (CAES), and 

demand response (DR) in day-ahead scheduling and 3) considering flexible ramping products in order 

to ensure reliable operations, there must be enough ramp to eliminate the variability of wind power in 

real-time dispatch stage. This paper proposes an IGDT-based robust security constrained unit 

commitment (SCUC) model for coordinated electricity and natural gas systems with the integration of 

wind power and emerging flexible resources while taking the flexible ramping products into account. 
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Numerical tests demonstrate the effect of emerging flexible resources on a reduction of system 

operation cost and the uncertainty of predicted wind power. 

Keywords: Information-gap decision theory, combined power, and natural gas systems, demand 

response, compressed air energy storage, emerging flexible resources, flexible ramping products.  

Index:  

t  Index of time 

i  Index of power plant 

w  Index of wind power plant 

k  Index of CAES unit 

',b b  Index of buses 

j  Index of loads 

 L Index of transmission lines 

pl Index of pipelines 

,m n  Index of nodes in gas system 

Constants:  

N T  Sum of time periods 

N U  Sum of thermal units 

NW  Sum of wind power plants 

NGS  Sum of gas suppliers 

N G U  Sum of gas-fired units 

NGL  Sum of gas loads 

N B  Sum of buses 

max
,j tDR  Maximum adjustable load  
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max min,i iP P  Max/min generation capacity of power plant i  

,r tP  Forecasted wind power  

, , i i i    Fuel function coefficient of gas-fired units  

,i iRU RD  Ramp up/down power plant i  

,On Off
i iT T  Minimum up/down time of unit i  

LX  Reactance of line L  

max
LPF  Capacity of line L  

,j td  Expected hourly load  

,max ,max,D H
k kP P  Max generation/storing capacity of CAES system  

kHR  Heat rate of CAES 

plC  Constant of pipeline pl 

max min,m m   Max/min pressure 

max min,sp spU U  Max/min gas supply 

max min,l lL L  Max/min gas load 

max min,k kA A  Max/min power stored in CAES system  

/t tRFRU RFRD  System upward/downward flexible ramping reserve requirement  

, ,,FRU FRD
i t i tC C  Upward/downward flexible ramping reserve cost of thermal unit 

, ,
, ,,H FRU H FRD

k t k tC C  Upward/downward flexible ramping reserve cost of CAES unit in 
storage mode 

, ,
, ,,D FRU D FRD

k t k tC C  Upward/downward flexible ramping reserve cost of CAES unit in 
generation mode 
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Variables:  

T
iF  Cost function of thermal unit i 

D
kF  Cost function of CAES system 

, ,,i t i tSU SD  Start-up/Shut-down cost of thermal unit i 

i,tP  Dispatch of thermal unit i  

, ,,i t i tFRU FRD  
Upward/downward flexible ramping reserve provided by generation 
unit i 

i,tI  Binary on/off status indicator of power plant i 

, 1 , 1,on off
i t i tX X    Up/down time of unit i 

,L tPF  Power flow at line L 

,b t  Voltage angle of power buses 

, ,,H D
k t k tI I  Binary storage/generation status indicator of CAES system 

, ,,H D
k t k tP P  Storing/generation power of CAES  

, ,,D D
k t k tFRU FRD  Upward/downward flexible ramping reserve provided by CAES system 

in generation mode 

, ,,H H
k t k tFRU FRD  

Upward/downward flexible ramping reserve provided by CAES system 
in storage mode 

,k tA  Power stored in CAES system  

,
DR
j td  Electric load after implementation of DR program 

,j tdr  Shiftable load 

,pl tF  Natural gas flow of pipe pl at time t 

,l tL  Natural gas load at time t 
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,m t  Pressure of natural gas node at time t 

,sp tU  Gas supply at time t 

1.1. Motivation and problem description 

In the last decades, global concerns over climate change and fossil fuel decrement have led to a 

recent worldwide push towards electricity derived from renewable resources. According to the 

International Energy Agency's (IEA) prediction, annual wind energy production will rise to 2182 

TWh by 2030, which is seven times more comparing to the production up to 2009 [1]. By 

increasing penetration of renewable energy, the future electricity network will face various 

challenges originating from supply variability. Fast respond to such fluctuations requires the 

generation fleet flexibility with the object of having a balance between generation and 

consumption with minimum system operation cost. Higher power grid operational flexibility could 

be achieved by system operation improvement [2-4], using fast start resources [5], using emerging 

flexible resources [6, 7], and improving grid infrastructure. Practically, in order to improve system 

operation, designing new markets, using new models and algorithms in the process of unit 

commitment [8, 9] and modeling the uncertainty of renewable energy sources are the main 

concerns [10]. In this matter, an active market so-called "flexiramp" in California independent 

system operator (CAISO) has been developed to compensate a partial loss of traditional plants and 

cheer them to provide flexible ramping products [11]. Midcontinent independent system operator 

(MISO) is another market with ramp capability along with energy and contingency reserve markets 

to cover sudden net load variations in real-time dispatch stage [12]. 

Electricity and natural gas systems as an integrated energy system with the following advantages; 

promoting 60% less carbon concerning coal units, higher efficiency, fast start-up and higher ramp 
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rate capability (modern gas-fueled plants having startup time of lower than 1 h) has been deployed 

rapidly in recent years [13]. In the electricity market, independent system operator (ISO) performs 

security constraint unit commitment (SCUC) to minimize the cost of operation. So, the 

interdependency of power and natural gas systems faces ISO with new challenges. For example, 

pressure reduction at the nodes of the gas system (because of increasing gas consumption by 

residential and commercial loads) reduces the consuming fuel and power generation of the gas-

fueled units, as a result, the system reliability will be decreased, and the operation cost is increased. 

In February 2012, because of not considering the interdependency of electricity and natural gas 

networks, the south portion of Germany power network was close to breaking down [13].  

In recent years, increasing the penetration of the renewable energy resources interests researchers 

to use emerging technologies like energy storage systems (ESSs) and demand response (DR) 

programs and Electric Vehicles (EVs). Among the ESSs, compressed air energy storages (CAES) 

gain more interest recently due to the availability and lower investment cost comparing to the 

pumped energy storage units [14]. Aside from the pumped energy storage unit, CAES is suitable 

for large-scale power system and high energy storage application among the other energy storage 

technologies. Also, due to the high ramp rate capability of CAES, it plays an important role in the 

ancillary services market [15]. DR programs with load shifting property, reduce electricity 

consumption at peak load hours and increase it at low load hours. As a result, these programs 

reduce the electricity price, peak load shaving, the impact of wind power uncertainty, and the 

system operation cost [16]. Referring to the high potential of emerging flexible resources, 

coordinated scheduling of these resources compensates the challenges of renewable energy 

uncertainty and effectively responds to the interdependency issues of power and natural gas in day-

ahead network-constrained scheduling.  
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The objective of this paper is to study the impact of emerging flexible resources by presenting an 

information gap decision theory (IGDT) based robust scheduling of combined power and natural 

gas systems considering flexible ramping products. The IGDT based robust method is a non-

probabilistic optimization-based method that looks for a robust approach to model the wind power 

generation uncertainty. In this method, the probabilistic distribution function (PDF) of the 

uncertainty does not need to be specified. 

1.2. Literature review and contribution  

In recent years, various studies have been done on the interdependency of coupled power- natural 

gas system. In [17, 18] the effect of natural gas system constraints on a deterministic unit 

commitment problem has been evaluated without considering RESs. Authors in [19-21] have used 

Benders decomposition, the augmented LR, and alternating direction method of multipliers 

(ADMM) optimization algorithms to relax the electricity and natural gas coupling constraints in 

day-ahead scheduling of coordinated electricity and natural gas network. In [22] has been solved 

a stochastic SCUC problem for integrated power and gas systems to manage the variability of wind 

power generation. In [23], the impact of uncertainties in natural gas delivery and the variability of 

natural gas price on natural gas-fired unit generation scheduling has been investigated by solving 

a two-stage stochastic UC problem. In [24], the impact of applying power to gas (P2G) technology 

to the coordinated power and natural gas networks in Great Britain without considering the 

complete specifications of these two networks has evaluated. Robust scheduling of coordinated 

electricity and natural gas networks with the inclusion of natural gas storage system has been 

proposed in [25]. Ref [26] has focused on the robust scheduling of coordinate electricity and 

natural gas networks with the integration of wind energy and P2G technology. In [27], an 

integrated market clearing for power and gas networks under the uncertainties of electric demand 
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and wind power has been solved using two-stage stochastic programming. A problem of two-stage 

robust co-optimization scheduling has been investigated in [28] for coupled power and gas systems 

considering the uncertainties of power and gas network. 

Some literature corresponds to the impact of emerging flexible resources in power systems 

operation. In [29] the impact of compressed air energy storage (CAES) unit on system operation 

cost has been shown by solving the conditional value at risk (CVaR)-based stochastic look-ahead 

problem with the integration of wind power. The effect of CAES system on system operation cost, 

wind power uncertainty, and static voltage stability (SVS) improvement has been discussed in [30] 

by solving the stochastic based SCUC problem. Ref [31] corresponds to the impact of DR on 

reducing the interdependency of power and natural gas systems and system operation cost in 

coordinated power and natural gas systems. A stochastic approach to conduct the day-ahead 

scheduling of the integration of WES and cryogenic energy storage with the demand response 

program has been provided in [32]. A bi-level optimization problem has been solved for 

coordinated operation of electricity and natural gas networks to maximize the profit of utility 

companies considering DR based virtual power plants in [33]. Incorporation of emerging flexible 

resources such as CAES unit DR programs and plug-in electric vehicle parking lots (PEV-PLs) 

has been proposed in [34] to reduce the daily operation cost as well as environmental pollution by 

solving a multi-objective stochastic UC. Ref. [35] corresponding to the impact of emerging flexible 

resources including ESS, DR, and PEV- PLs on operation cost reduction and load power 

curtailment in a two-stage stochastic network-constrained market clearing problem. The author in 

[36] has solved the SCUC problem with the inclusion of units ramp cost to discuss the impact of 

hourly DR on generation and ramp costs. Ref. [37] has addressed the effect of DR and ESS on the 

system operation using a two-stage stochastic SCUC with the integration of wind energy and 
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taking the account the units ramp cost. In [36] and [37] the authors have not considered the flexible 

ramping reserve market.  

Some literature corresponds to consider flexible ramping products (FRPs) in the electrical market. 

The existence of flexible ramping products (FRPs) in ISO-based markets has been discussed in 

[38] by solving both deterministic and stochastic real-time unit commitment (RTUC) while 

ignoring transmission line constraints. In [39], the benefits of adapting FRPs by EVs has been 

considered as the major concern for a deterministic model using dynamic programming. In [40], 

two-stage stochastic scheduling has been proposed for combined power, and natural gas systems 

with DR and FRPs have been included. This literature has assessed the effects of natural gas system 

constraints on the participant of gas-fired units in energy and flexible ramping markets. Also, it 

determines the impact of DR on the reduction of the unit’s production and flexible ramping reserve 

cost. The impact of coordinated emerging flexible resources (EES, DR, and PEV- PLs ) on the 

daily operation cost, wind power spillage, and involuntary load shedding in energy, spinning and 

flexible ramping reserve market clearing problem has been presented in [41]. This literature has 

focused only on the electricity network, and the constraints of the natural gas network have not 

been considering. 

In the reports mentioned above, uncertainties of the systems have been handled by stochastic and 

well-known robust optimization approaches. Information gap decision theory (IGDT) is a non-

probabilistic method which does not need any probability density function (PDF) or fuzzy logic 

membership. IGDT approach does not require scenario generation. So, the problem solution time 

is less than the stochastic approach. Therefore, simplification hypotheses of the stochastic 

approaches make them inadequate for solving largescale problems. IGDT is applicable for the 

realization of robust decision-making strategies. The IGDT has been proposed in [42] for bidding 
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strategies of generation companies, in [43] for UC, in [44] for the restoration of distribution 

networks. In [43], an IGDT based self-scheduling problem has been solved to maximize generation 

companies profit. In this literature, the electricity price has been considered an uncertain variable. 

Ref. [45] corresponds to an IGDT based SCUC problem with the integration of Li-ion battery 

storage unit considering the uncertainty of network load. Finally in [46], the IGDT based SCUC 

problem with the inclusion of ESS, DR program and transmission switching has been proposed. 

In this paper, the integration of wind power, CAES technology and price-based DR program in 

IGDT based robust SCUC model for coordinated power and natural gas systems considering 

flexible ramping products have been proposed which is shown in Fig. 1. It should be noted that 

four types of approaches are considered in the literature to address interdependency between the 

power and gas systems. 1) Including the gas system limits into power system optimization problem 

(i.e., security-constrained unit commitment), 2) incorporating dynamic gas consumptions of the 

electric power system into gas system optimization models, 3) sequential optimization of the 

electricity grid and the natural gas network and 4) integrated co-optimization of the power and gas 

systems [1]. This paper has focused on including the gas system limits into power system 

optimization problem (first strategy). Table 1 demonstrates comparison of the literature with the 

current work for optimal operation of integrated gas and power networks. 

The main features of the paper are as follows:  

 Appling IGDT as a non-probabilistic method with no need to PDF and fuzzy logic 

membership for modeling the uncertainty of wind power.  
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 Considering FRPs in IGDT based robust SCUC model for coordinated power and natural 

gas networks, so that the natural gas network limits affect the provision of FRPs by gas-

fired power plants. 

 Considering emerging flexible resources such as CAES, DR program to reduce the effect 

of natural gas network constraints, wind power uncertainty on the costs of energy and 

flexible ramp. 

 

Fig. 1.  The overall illustration of the presented framework 

Table. 1. Comparison of the literature with the current work 

Flexible 
ramping 
products 

Wind 
uncertainty 

Uncertainty 
modeling 

Electrical 
storage 
system 

DR 
program 

Coordinated 
electricity and 

natural gas networks 
Year References 

   Stochastic     2015 ]22 [ 
  Stochastic      2016 ]31 [  
      Stochastic      2016 ]40 [  
  Robust     2017 ]25 [  
   Robust     2018 ]24 [  

   Two-stage 
stochastic 

    2018 ]27 [  

   Two-stage 
robust     2018 ]28 [  

    IGDT        Proposed 
model 

 
2. Problem formulation 
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The SCUC problem for coordinated electricity and natural gas networks considering emerging 

flexible resources and flexible ramping products is modeled as a mixed-integer non-linear 

programming (MINLP) as given by Eq. (1). The objective function will minimize the system 

operation cost and has two parts. The first part is minimized the hourly generation cost and the 

flexible ramping cost for power plants considering system constraints. The second part 

corresponds to the power generation cost and flexible ramping cost of CAES system. 

, , , , , , ,
1

1 , , , ,
, , , , , , , , ,

1

( )
min

( )

NU
T FRU FRD

i i t i t i t i t i t i t i tNT
i

NK
t D D D FRU D D FRD D H FRU H H FRD H

k k t k t k t k t k t k t k t k t k t
k

F P SU SD C FRU C FRD

F P C FRU C FRD C FRU C FRD







       
 
         





 (1) 

Where ,( )C
i i tF P  and ,( )D D

k k tF P  are defined as follows: 

In minimizing the objective function, several constraints are considered as follows: 

      2.1 Thermal unit constraints 

The upward and downwards flexible ramping reserves of an online thermal unit does not exceed 

the rated value over the entire scheduling time interval or ramp response time as shown in Eqs. (4) 

and (5). The upward and downward flexible ramping reserve is bounded by the unloaded power 

capacity of the thermal unit in Eqs. (6) and (7). A unit ramp rate limits in the consecutive interval 

are satisfied in Eqs. (8), (9), (10) and (11). Minimum up/down time for each unit is dictated by 

Eqs. (12) and (13). The start-up / shut-down cost of the units is defined by Eqs. (14) and (15). 

2
, , ,( ) ( )T gas

i i t i i i t i i tF P P P     
 (2) 

, ,( )D D gas D
k k t k k tF P HR P

 (3) 

,0 up
i t iFRU R  

 
(4) 
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, 1 , 1 ,( ) ( ) 0on on
i t i i t i tX T I I     (12) 

, 1 , , 1( ) ( ) 0off off
i t i i t i tX T I I     (13) 

, , , -1( )i t i i t i tSU SUC I I   (14) 

, , -1 ,( )i t i i t i tSD SUD I I   (15) 

2.2  CAES system constraints 

In the proposed optimization model, in the following modes for CAES are considered: generation, 

compression, and idling. To include all three modes in the model, Eq. (16) is considered.  

, , 1H D
k t k tI I   (16) 

Where ,
CH
k tI   and ,

D
k tI  are introduced as binary variables in the state of compression and generation. 

The amount of generated or stored power by CAES system considering upward and downward 

flexible ramping reserve is declared by Eqs. (17) to (20). The level of stored energy in the CAES 

,0 dn
i t iFRD R  

 
(5) 

max
, , ,i t i t i i tP FRU P I 

 (6) 

min
, , ,i t i t i i tP FRD P I 

 (7) 

min
, , -1 , , 1 , ,(1 ) up

i t i t i t i t i t i i t iP P FRU FRU Y R Y P       (8) 

min
, -1 , , , 1 , ,(1 ) dn

i t i t i t i t i t i i t iP P FRD FRD Z R Z P       (9) 

, , , , 1i t i t i t i tY Z I I     (10) 

, , 1 ,i t i tY Z i t     (11) 
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system in each hour is fulfilled by Eq. (21). Eqs. (22) and (23) define the upper and lower bound 

of the stored energy. 

, , , max ,
H H H H

k t k t k k tP FRD P I   (17) 

, , , min ,
CH CH CH CH

k t k t k k tP FRU P I   (18) 

, , , max ,
D D D D

k t k t k k tP FRU P I   (19) 

, , , min ,
D D D D

k t k t k k tP FRD P I   (20) 

,
, , -1 ,

D
k tH H

k t k t k k t D
h

P
A A P


    (21) 

max
, ,

H
k t k t kA FRD A   (22) 

min
, ,

D
k t k t kA FRU A   (23) 

Initial capacity of storage system is defined by Eq. (24), and Eq. (25) indicates that the initial (t = 

0) and final (t = 24) values of the stored power in CAES system are the same. 

, 0 ,k k inA A  (24) 

, 0 ,k k N TA A  (25) 

2.3 Demand response constraints 

DR programs are described as incentive-based DR and price-based DR. In incentive-based DR, 

the customers bid their electricity consumption reduction to the ISO, and if their bid is accepted 

after the implement of market clearing, the consumer has to do the contract and receive the cost of 

their power consumption reduction. Therefore, in this approach, the cost of DR is considered in 

the objective function of SCUC problem by ISO. On the other hand, based on the price-based DR 

programs, price-responsive loads are shifted from high price to low price in the required time 

interval. As a result, in this model, no cost is considered in SCUC problem by ISO. This paper has 
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focused on price-based DR that has been modeled as price responsive shiftable loads. Eq. (26) 

shows the network load after the implement of DR program, and Eq. (27) defines the amount of 

hourly shiftable load. The total shifted load for the whole time duration is zero as defined in Eq. 

(28). The hourly adjustable load has to be limited as Eq. (29). 

, , ,
DR
j t j t j td d dr   (26) 

, , ,j t j t j tdr DR d  (27) 

,
1

0
NT

j t
t

dr


  (28) 

max
, ,j t j tDR DR  (29) 

2.4 Electricity network Security Constraints 

System power balance constraint is determined as Eq. (30). Line power flow (from bus b to bus 

b') and transmission line capacity are given by Eqs. (31) and (32), respectively. Constraints related 

to system upward/downward flexible ramping reserve requirement are expressed as Eqs. (33) and 

(34). 

, , , , , ,
1 1 1 1 1 1

b b b b b bNU NW NK NK NJ NL
D H DR

i t w t k t k t j t L t
i w k k j l

P P P P d PF
     

           (30) 

', ,
,

b t b t
L t

L

PF
x

 
  (31) 

max max
,L L t LPF PF PF    (32) 

, , ,
1 1 1

NU NK NK
D H

i t k t k t t
i k k

FRU FRU FRU RFRU
  

      (33) 
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, , ,
1 1 1

NU NK NK
D H

i t k t k t t
i k k

FRD FRD FRD RFRD
  

      (34) 

2.5 Natural Gas Network Constraints  

The natural gas transportation system transports the natural gas from supplies to the large user. 

The natural gas flow through a pipeline is dictated as a quadratic function of the pressure at the 

two end nodes: 

2 2
, , , , , ,sgn( , ) -pl t m t n t m n m t n tF C     (35) 

, ,
, ,

, ,

1
sgn( , )

-1
m t n t

m t n t
m t n t

 
 

 

  
 (36) 

where ,m nC is pipeline constant, which depends on temperature, diameter, length, friction, and 

natural gas compositions. Natural gas pressure at each node and natural gas delivery are limited 

according to Eqs.  (37) and (38). Natural gas load consumption at any node is stated as Eq. (39), 

and Eq. (40) preserves the natural gas flow balance at each node.  

min max
,m m t m     (37) 

min max
,sp sp t spU U U   (38) 

min max
,l l t lL L L   (39) 

, , ,
1 1 1

m m mNGS NGL NPL

sp t l t pl t
sp l pl

U L F
  

     (40) 

       2.6 Coupling constraints for electricity and natural gas networks 

Natural gas-fired power plants are the large consumers of natural gas fuel. The production capacity 

of these plants depends on natural gas transportation utilities. Eq. (41) defines the amount of 
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natural gas consumed by natural gas-fueled power plants. i, tFRUF  presents the amount of natural 

gas fuel assigned for the use of upward flexible ramping reserve of natural gas-fired plants at the 

real-time power dispatch. Eq . (42)  links CAES unit to the natural gas network. Daily consumption 

of natural gas by natural gas-fueled power plants and CAES considering upward flexible ramping 

reserve is dictated as (43) and (44). Where the higher heating value (HHV) is 1.026 MBtu/kcf. 

2
, , , , ,

, HHV
i i i t i i t i t i t i t

l t

P P SU SD FRUF
L i GU

      
   (41) 

, ,
, HHV

D D
k k t k t

l t

HR P FRUF
L


  (42) 

2
, , , , , max

1 HHV

NT
i i i t i i t i t i t i t

i
t

P P SU SD FRUF
FU

  



    
  )43 ( 

, , max

1 HHV

D DNT
k k t k t

K
t

HR P FRUF
FC




  )44 ( 

 

3. Implementing IGDT on SCUC problem 

In order to deal with wind power generation uncertainty, IGDT is utilized SCUC formulation. For 

computational approaches to the stochastic modeled optimization problem, the PDF of the wind 

power generation uncertainty should be specified while in the proposed IGDT method there is no 

need to specify the PDF and fuzzy logic membership which is necessary for the cases of high 

penetration of wind power generation uncertainty. On the other hand, IGDT based robust 

optimization problem like well-known robust optimization (RO)  problems causes an increase in 

the operation cost in comparison to stochastic optimization but the system will be robust against 

the uncertainties. In addition, in IGDT based robust model, we will generally face a bi-level 
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problem that cannot be solved by well-known optimization software and it is necessary to convert 

the introduced bi-level problem into a single optimization using Karush–Kuhn–Tucker (KKT) 

condition or innovative method in order to solve with common  optimization software. Additionally, 

unlike the well-known RO methods [42, 43] that the lower and upper level of the uncertainty band 

must be determined as input parameter, there is no requirement to specify the lower and upper level 

of uncertainty band in the IGDT method.  

In RO approach, robustness region of the uncertain parameter is constant before solving the 

problem. Actually, this is one of the issues of RO approach while this region is calculated in the 

process of solving the IGDT approach so that the solution is robust for a maximized interval of 

uncertainty. In other words, the uncertainty band in other methods is described as the input of the 

process of optimization, and the aim of the decision-maker is maximizing the objective function. 

Unlike the other approaches applied for modeling the uncertain parameter in optimization 

problems, which optimizes the objective function, the objective of the IGDT based robust method 

is maximizing the acceptable interval of uncertainty considering a predefined acceptable objective 

function (e.g., predefined acceptable operation cost), which is another benefit of IGDT approach 

[44]. This method maximizes the interval of wind power generation uncertainty by adjusting 

decision variables to achieve the robust optimum solution which guarantees an acceptable value for 

the objective function.  

 The mathematical model of the proposed IGDT based robust SCUC model is described as (45) 

which is a bi-level optimization problem. 

( , )
( , ) : (1 )


 

          
  

c C r b
U

x max max of of


    (45) 
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Where Ψ defines a set of uncertain input parameters in the uncertainty set U. c and bof   are the 

acceptable level and the base level of the objective function, respectively. This acceptable level can 

be different for market operators in different countries and depends on various social welfare, 

economic, reliability and other issues that adjusts by parameter r . r  is the degree of robustness 

against the operation cost increment with respect to the base case value and x is a set of decision 

variables. Mathematical description of representing the required information about Ψ is described 

by  

( , ) :






        
  

U U    (49) 

Where 


  is the forecasted value of   and   denotes the maximum deviation of the uncertain 

parameter from its predicted value (unknown radius of uncertainty for decision making). In this 

approach, the uncertain parameter has an undesirable impact on the objective function. Therefore, 

the system operator takes into account a higher cost associated with the undesirable deviation of 

wind power in this approach, which is given by (50)-(54) as a bi-levels problem. 

max   (50) 

, , , , , , ,
1

1 , , , ,
, , , , , , , , ,

1

( )

( )

NU
T FRU FRD

i i t i t i t i t i t i t i tNT
i

CNK
t D D D FRU D D FRD D H FRU H H FRD H

k k t k t k t k t k t k t k t k t k t
k

F P SU SD C FRU C FRD
max

F P C FRU C FRD C FRU C FRD







       
   
 

        





 (51) 

(1 )c r bof    (52) 

^ ^

,, ,(1 ) (1 )   w ww tt tP P P   (53) 

s.t. (2) (44)  (54) 
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The proposed bi-level problem is hard to solve with common mathematical software and it is 

necessary to convert it into a single-level optimization problem. In this paper, the proposed bi-level 

IGDT-SCUC problem is converted to a single level problem using an innovative method. The 

forecast error of wind power in this approach is modeled in a way that increases the operation cost. 

Therefore, in this approach, only a reduction in wind power has an undesirable effect on the system 

operation cost. As a result, the bi-level problem given in (50)-(54) can be converted into a single- 

level problem as follows. 

 max   (55) 

, , , , , , ,
1

1 , , , ,
, , , , , , , , ,

1

( )

( )

NU
T FRU FRD

i i t i t i t i t i t i t i tNT
i

CNK
t D D D FRU D D FRD D H FRU H H FRD H

k k t k t k t k t k t k t k t k t k t
k

F P SU SD C FRU C FRD

F P C FRU C FRD C FRU C FRD







       
   
 

        





 (56) 

(1 )  c r bof  (57) 

^

, , , , ,,
1 1 1 1 1 1

(1 )
     

          
b b b b b bNU NW NK NK NJ NL

D H DR
wi t k t k t j t L tt

i w k k j l
P P P P d PF  (58) 

s.t. (2) - (29) and (31) - (44)  (59) 

It is worth to mention that in the base case, emerging flexible resources such as DR and CAES are 

not included in the model. The flowchart of the single-level IGDT-SCUC problem is shown in Fig. 

2. by details 
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Fig. 2. The proposed single-level IGDT based robust SCUC model 

4. Numerical studies 

The proposed IGDT-based robust SCUC problem for coordinated power and natural gas networks 

considering DR and CAES flexible resources is evaluated on a modified 6-bus power system with 

a six-node natural gas system and modified IEEE-RTS 24-bus system with a ten-node natural gas 

system. The proposed model is the MINLP problem which is solved using GAMS / DICOPT solver. 

4.1. Modified six-bus system 

The modified six-bus system depicted in Fig. 3 consists of three gas-fired units, three electric loads, 

seven transmission lines, one wind farm, and one CAES unit. The electrical power and transmission 

line data are given in [20]. The forecasted load profile and wind power are shown in Fig. 4. The 

six-node natural gas system consists of five pipelines, two gas producers, and six natural gas loads 

(three gas-fired plants one CAES system, and two residential gas loads). The natural gas system 

data are given in [20]. The cost of upward and downward flexible ramping products caused by 

thermal plants is assumed 20% of their respective first-order coefficients [40]. The cost of CAES 
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system is defined as the price of natural gas multiplied by its heat rate. In this research, it is assumed 

4.5 $/MW. The corresponding upward and downward flexible ramping reserve cost of CAES 

system is considered 20% of its operating cost. 

 

Fig. 3. Illustration of 6-bus electrical and 6-node natural gas systems with wind and CAES unit 
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Fig. 4. Forecasted electric load and wind power generation 

 

The following six cases are considered to evaluate the proposed model: 

Case 1: SCUC solution considering flexible ramping products. 

Case 2: Case 1 with considering natural gas constraints. 

Case 3: Case 2 with the integration of CAES system. 

Case 4: Case 2 with the inclusion of DR program. 

Case 5: Case 2 with the coordination of DR and CAES. 

Case 6: IGDT based robust SCUC for cases 2-5. 

Case 1: this case provides the SCUC solution considering flexible ramping products. Natural gas 

transmission system constraints are not considered. Hourly generation dispatch and 

upward/downward flexible ramping reserve provided by natural gas-fired plants are in Figs. 5 and 

6. The cheapest thermal unit G1 is on at all 24 hours while the most expensive unit G2 is turned on 

between hours 14-18 to satisfy the remaining load. As shown in Fig. 6, most of the time required 
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upward and downward flexible ramping reserves are produced by G1. Due to the ramp rate limit of 

unit G1 at consecutive hours, some part of downward flexible ramp reserve is available on unit G3. 

The total operation cost, in this case, is $70159.26 consisting of $67319.48 production cost and 

$2839.78 flexible ramping reserve cost. 

 
Fig. 5. Hourly generation dispatch of units 

 

 

Fig. 6. Flexible ramp reserve scheduling 
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Case 2: In this case, the SCUC problem with flexible ramping products is solve considering natural 

gas network constraints. Fig. 7 demonstrates the effect of natural gas delivery limits on hourly 

generation dispatch of units G1 and G2 based on residential gas load profile. As shown in this 

Figure, the hourly dispatch of unit G1 compared to the results of case 1 has been reduced at 

residential gas load pick hours. As a result, the hourly dispatch of unit G2 is increased from 57.36 

MWh in case 1 to 146.5 MWh. The impact of natural gas delivery limit on the upward flexible 

ramping reserve is shown in Fig. 8. Because of the limit of gas delivery to unit G1, the upward 

flexible ramping reserve provided by G1 is decreased compared to case 1. Consequently, the 

participation of unit G2 in the flexible ramp market is increased which causes some increase in 

operating cost. Meanwhile, providing downward flexible ramping reserve by G1 does not require 

more fuel. Therefore natural gas delivery limit does not affect on the downward flexible ramping 

reserve of G1. The operation cost in case 2 has been increased to $72732.95 which consist of 

$69110.81 generation cost and $3622.14 flexible ramping reserve cost. 

 
Fig. 7. Impact of natural gas delivery limit on hourly generation dispatch of units in case 2 
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Fig. 8. Impact of natural gas delivery limit on upward flexible ramping reserve in case 2 

 

Case 3: In this case, the impact of DR programs along with natural gas network constraints on 

system operation cost has been studied. DR is considered for all load buses with 10% load 

participation factor. Fig. 9 shows load profiles of the network after DR execution. In addition, 

hourly generation dispatch and upward flexible ramping reserve33 provided by the power plants 

have been demonstrated in Figs. 10 and 11. Performing DR has shifted the load from peak-load 

hours to low-load hours which increases power dispatch of unit G1 at low-load hours in compared 

to case 2 and reduces total hourly dispatch (34% w.r.t case 2) and upward flexible ramping reserve 

(54% w.t.r. case 2) by unit G2. Also, the operation cost has been reduced to $69602.86, which 

consist of $66336.54 generation cost and $3266.29 flexible ramping reserve cost. 
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Fig. 9. Load profile of the network after DR execution in case 3 

 

 
Fig. 10. Hourly generation dispatch of units in case 3 
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Fig. 11. Upward flexible ramping reserve provided by units in case 3 

 

Case 4: In this case, the impact of CAES system on system operation cost is studied considering 

natural gas network constraints. CAES system data is given in Table 2. Figs. 12 and 13 show hourly 

generation of the units (G1, G2, and G3) and different operation modes (generation/compressor) of 

CAES system, respectively. In compressor mode, CAES stores excess power at low load hours and 

later on it delivers the stored energy to the network at peak load hours and hereby reduces the power 

dispatch of the most expensive unit G2. Also, as shown in Fig. 14 participation of CAES in flexible 

ramping reserve market provides most part of the upward and downward flexible ramping reserve. 

Operation cost in case 4 is $69383.21 which consists of $67681.59 generation cost and $1701.62 

flexible ramping reserve cost. The operation cost for the case that CAES system participates only 

in the energy market is increased to $71719.09 which consists of $68338.48 generation cost and 

$3380.61 flexible ramping reserve cost. 
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Table 2. CAES system parameters 

max
kA  min

kA  d
k, maxP  d

k, minP  c
k, maxP  c

k, minP  

200 50 30 5 30 5 

 
Fig. 12. Hourly generation dispatch of units in case 4 

 
Fig. 13. Different operation modes of CAES system in case 4 
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Fig. 14. Flexible ramping reserve scheduling in case 4 

Case 5: In this case, emerging flexible resources such as DR program and CAES system are 

considered in system operation simultaneously. The impact of these resources on the hourly 

generation dispatch of the units is shown in Fig. 15. It is obvious that the most expensive unit G2 

does not participate in generation dispatch and participation of G3 is limited only to hours 16 and 

17, as a result, the operation cost of the system is reduced to $66136.38. Table 3 demonstrates the 

comparison of generation cost and flexible ramp reserve cost for cases 2 to 5, as can be seen when 

emerging flexible sources are considered simultaneously, the total operation cost has more 

reduced. 
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Fig. 15. Hourly generation dispatch of units in case 5 

Table. 3. Comparison of production cost and flexible ramping reserve cost for cases 2-5 in 6-bus system 

5  4  3  2  Case 
64438.70  67681.59  66336.57  69110.81  Production cost ($) 
1697.68  1701.62  3266.29  3622.14  Flexible ramp reserve cost ($)  

66136.38  69383.21 69602.86 72732.95 Operation cost ($) 

 

Case 6: In this case, the IGDT-based robust method has been used to model wind uncertainty. 

Different operation strategies are evaluated for step-wise incremental values of robustness parameter 

β which varies from 0 to 0.06 with step size 0.01. The base value of operation cost ( bof ) is considered 

the same as case 2 ($72732.95). Fig. 16 demonstrates the schematic variation of optimum robustness 

function (α) with respect to β with and without emerging flexible resources. It is clear that increasing 

β can cause increasing critical operation cost, and α with and without emerging flexible resources. 

To be specific for β=0.01 and β=0.04, optimum robustness function without emerging flexible 

resources is 0.05 and 0.2, respectively. Therefore β=0.04 results in more region of robustness. As 

well, the optimum robustness function with emerging flexible resources has high value compared to 

the case of not considering emerging flexible resources. This implied even more region of robustness 
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against wind power prediction error and less impact of power generation uncertainty on system 

operation cost.  

 
Fig. 16. Variation of optimum robustness function w.r.t βr 

 

4.2 Modified IEEE-RTS 24 bus system 

To evaluate the proposed model in a system with more realistic, we have considered modified IEEE 

Reliability 24-bus System that has 34 thermal units including 8 natural gas-fired units, 26 units of 

other types, 34 branches and 17 load buses. Two wind farms with a total capacity of 500 MW and 

two CAES units are located at buses 6 and 23. Network load profile, transmission line, and 26 

generation units data are available in [47]. Also, the total generation capacity of 26 non-gas fire 

plants has been decreased by 10%. The 8 natural gas-fired units are sitting on buses 4, 6, 8, 10, 12, 

15, 18 and 19. In addition, we have considered ten-node natural gas network consists of 10 pipelines, 

14 natural gas loads (8 natural gas-fueled plants, 2 CAES system, and 4 residential natural gas loads). 

Natural gas system data are given in [20]. Upward and downward flexible ramping reserve cost 

provided by thermal plants is assumed 20% of their respective first-order coefficients. Also, upward 
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and downward flexible ramping reserve cost provided by CAES system is considered 20 % of its 

operating cost. The impact of natural gas network constraints and emerging flexible resources on 

total operation cost has been shown in Table 4. It is obvious that the inclusion of natural gas network 

constraints has increased the operating cost because of a shortage in gas delivery to natural gas-

fueled plants and consequently increasing the generation dispatch of more expensive other type 

generation plants. Simultaneous integration of emerging flexible resources into the network has 

more reduced both daily operation cost and flexible reserve cost compared to the use of individual 

emerging flexible resource. For modeling the wind power uncertainty using IGDT-based robust 

method, different operation strategies have been considered based on the value of ߚ varies from 0 to 

0.04 with the step size of 0.01. The base case operation cost is assumed $695093.67. Schematic 

variation of optimum robustness function with respect to ߚ with and without emerging flexible 

resources is shown in Fig. 18. The results show that incrementing ߚ can lead to an optimum 

increasing the optimal robustness function ߙ with and without flexible resources. Also, as can be 

seen, when emerging flexible sources are considered simultaneously, expands the region of 

robustness for more wind power prediction error. As can be seen from results, the proposed model 

can be implemented in a realistic system and there is not any problem to solve the model. So, we 

can get the same results obtained from the 24-bus system in a more realistic system. 
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Fig. 17. Ten-node natural gas system 
 

Table 4.  Comparison of production cost & flexible ramping reserve cost for different cases in 24-bus system 

DR+CAES 
included  

CAES 
included  DR included  With natural 

gas constraints  

Without 
natural gas 
constraints  

Case studies 

641241.81  660447.97  645043.28  65506.356  654840.75  Production cost ($)  

24424.78  25379.34  28426.48  29587.31  28881.24  Flexible ramp reserve 
cost ($)  

665666.60  685827.31  673469.76  695093.67  683721.99  Total operation cost 
($)  
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Fig. 18. Variation of optimum robustness function w.r.t βr 

5. Conclusion 

In this paper was solved a robust SCUC problem for coordinated electricity and natural gas 

networks considering emerging flexible resources and flexible ramping products. Flexible 

ramping products were considered in order to ensure reliable power system operation there must 

be enough ramp capability to meet the variability of wind power in real-time dispatch stage. 

Also, the impact of natural gas network constraints on hourly generation dispatch, flexible ramp 

reserve provided by power plants, and power system operation cost was studied. Information 

gap decision theory (IGDT)-based robust approach was applied to manage wind power 

uncertainty with no need for PDF and fuzzy logic membership. This proposed method enables 

ISO to adjust the conservativeness of operation strategy by varying system operation cost. Also, 

the impact of emerging flexible resources such as CAES system and DR program on reducing 

the effect of natural gas constraints, wind power uncertainty, and total operating cost was studied 

and evaluated on two test systems. Simulation results showed that the integration of emerging 
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flexible resources in coordinated electricity and natural gas reduces the power system operation 

cost. 
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