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Abstract 

 

A computational model for designing direct-load control (DLC) demand response (DR) contracts is 

presented in this paper. The critical and controllable loads are identified in each node of the distribution system (DS). 

Critical loads have to be supplied as demanded by users, while the controllable loads can be connected during a 

determined time interval. The time interval at which each controllable load can be supplied is determined by means of 

a contract or compromise established between the utility operator and the corresponding consumers of each node of 

the DS. This approach allows us to reduce the negative impact of the DLC program on consumers’ lifestyles. Using 

daily forecasting of wind speed and power, solar radiation and temperature, the optimal allocation of DR resources is 

determined by solving an optimization problem through a genetic algorithm where the energy content of conventional 

power generation and battery discharging energy are minimized. The proposed approach was illustrated by analyzing 

a system located in the Virgin Islands. Capabilities and characteristics of the proposed method in daily and annual 

terms are fully discussed, as well as the influence of forecasting errors. 
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List of symbols 

 

  Index for the hour of the day ( =1,…, =24) (h). 

  Index for the type of demand response contract ( =1,…, ). 

  Index for iterations of power flow analysis ( =1,…, ). 

 ,  Indexes for a general purpose counter. 

     
Index for the rows of matrix            

  when contract   is considered 

(    =1,…,    ). 

  Index for the nodes of distribution system ( =1,…, ). 

  Index for each individual of genetic algorithm ( =1,…, ). 

  Index for each scenario of wind generation ( =1,…, ). 

      Individual   of genetic algorithm. 

       Element of individual   and contract  . 

  Genetic-algorithm population. 

     Branch-current to bus-voltage matrix. 

     Bus-injection to branch-current matrix. 

  
  Parameter of objective function calculation. 

     Type of contract of the consumer connected to node  . 

  
  Rated capacity of battery storage system (kWh). 

   Total energy content on controllable power sources (kWh). 

      Total energy content on controllable power sources for scenario   
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(kWh). 

       Energy not supplied at time   (kWh). 

         Energy not supplied at time   and scenario   (kWh). 

    
  Fuel consumption of diesel generator at time   (liters). 

      
  Fuel consumption of diesel generator at time   and scenario   (liters). 

     Low heating value of diesel fuel (MJ/kg). 

        
  Current of branch   during iteration   at time  . 

          
  Current of branch   during iteration   at time   and scenario  . 

      
     

 Ampacity of branch   at time   (A). 

        
     

 Ampacity of branch   at time   and scenario   (A). 

       
  Vector of branch currents at iteration   and time   (A). 

         
  Vector of branch currents at iteration  , time   and scenario   (A). 

    Value of objective function (kWh). 

  
     

 Minimum power of diesel generator (kW). 

  
     

 Maximum power of diesel generator (kW). 

    
  Power production of diesel generator (kW). 

      
  Power production of diesel generator at time   and scenario   (kW). 

  
  Rated power of wind farm (kW). 

    
  Wind power at time   (kW). 

      
  Wind power at time   and scenario   (kW). 

  
  Rated power of converter (kW). 

    
  Power flow through the converter (kW). 

      
  Power flow through the converter at time   and scenario   (kW). 

  
  Rated power of battery cell stack (kW). 

    
  Battery power at time   (kW). 

      
  Battery power at time   and scenario   (kW). 

      
  Active power flow of distribution system at time   and branch   (kW). 

        
  

Active power flow of distribution system at time  , branch   and 

scenario   (kW). 

      
   

 Heat loss by radiation of branch   at time   (W/m). 

      
   

 Heat loss by convection of branch   at time   (W/m). 

      
   

 Heat gained by solar radiation of branch   at time   (W/m). 

           
  Matrix of possible load profiles for loads enrolled to contract  . 

      
  Matrix of critical load profile for node   at time   (kW). 

      
  Matrix of total load profile for node   at time   (kW). 

    
   Net load at time   (kW). 

    Error of power flow analysis. 

     
  Power required by controllable loads enrolled to contract   (kW). 

     Resistance of branch   (Ω). 

      
  Minimum value of state of charge.  

      
  Maximum value of state of charge. 

      
  Battery state of charge at time  . 



        
  Battery state of charge at time   and scenario  . 

       
  Change on state of charge during discharge at time  . 

         
  Change on state of charge during discharge at time   and scenario  . 

    
    Earliest operation time of controllable loads for contract   (h). 

    
    Latest operation time of controllable loads for contract   (h). 

     Starting operation time of controllable loads for contract   (h). 

      Time required by controllable loads enrolled to contract   (h). 

      
  Value of weighting matrix for ampacity violation. 

        
  Weighting matrix for ampacity violation at time  , branch  , scenario  . 

      
  Value of weighting matrix for distribution-system voltage violation. 

        
  Weighting matrix for voltage violation at time   and scenario  . 

    
    Value of weighting matrix for energy-not-supplied violation. 

      
    

Value of weighting matrix for energy-not-supplied violation at time   

and scenario  . 

    
  Battery voltage at time   (V). 

      
  Battery voltage at time   and scenario   (V). 

    
  Minimum voltage of the battery (V). 

    
  Maximum voltage of the battery (V). 

  
     

 Minimum operating voltage of distribution system. 

        
  Voltage of node   during iteration   at time  . 

          
  Voltage of node   during iteration   at time   and scenario  . 

         
  Vector of system voltage at iteration   and time  . 

           
  Vector of system voltage at iteration  , time   and scenario  . 

        
     
  Vector of voltage reduction during iteration   at time  . 

        
       
  Vector of voltage reduction during iteration   at time   and scenario  . 

   Density of diesel fuel (kg/m
3
). 

      Probability of occurrence of scenario  . 

 

1. Introduction 

 

Depletion of natural resources and the impact of industrial activities on the 

ecosystem have given rise to societal measures to reduce the negative environmental 

consequences of human lifestyles and manufacturing processes. 

In the context of energy systems (ESs), deployment of demand response (DR) 

resources and the implementation of smart grids (SGs) have gained interest due to their 

ability to incentivize active consumer participation. However, successful 

implementation of DR programs strongly depends on individual market structure as 

well as knowledge and awareness from the end-users [1]. Even when the incorporation 

of DR resources can benefit the environment, the crucial factor for DR adoption is 

economic profitability [2]. 

In the literature, many approaches have been created to deal with the problem of 

DR-resource allocation, taking into consideration the uncertainty introduced by end-user 

behavior. Some of these techniques are briefly explained in subsection 1.1. 

 

1.1. Literature review 



 

Optimization techniques used for DR allocation can be broadly classified into 

classical and metaheuristic algorithms [3]. On one hand, employment of classical 

algorithms consists of implementing linear programming [4], nonlinear programming, 

mixed-integer linear programming [5-8] or mixed-integer nonlinear programming. On 

the other hand, implementation of metaheuristic techniques – such as particle swarm 

optimization, genetic algorithm (GA) [9], simulated annealing, and teaching learning-

based optimization – depends on the structure and coding of the problem under analysis. 

In a general sense, the technique to be used depends on the characteristics of a specific 

problem and its mathematical formulation. 

Recently, reinforcement and deep learning [10,11], Stackelberg game [12], 

distributed optimization [13], harmony search algorithm [14], multi-agent system [15] 

and stochastic programming [16-19], among others, have gained popularity in the last 

year, while electricity bills for residential and industrial consumers – as well as the 

stochastic nature of renewable power sources – remain among the most important 

barriers to implementing DR solutions. 

Once the full picture of DR-implementation and recent trends on DR-resource 

allocation has been briefly presented, the scope and novelty of this work are explained 

in subsection 1.2. 

 

1.2. Paper contribution and structure 

 

Consumer willingness to enroll in DR programs is the key factor, explained by 

many studies as a loss of comfort. Recently published reports on this topic have 

revealed that residential consumer interest in direct load control (DLC) programs has 

been constantly increasing, specifically when the extent of household-appliances control 

is clearly explained to the consumer and the nullify option is available [20,21]. 

Moreover, the utility company’s reputation or credibility also plays an important role in 

growing enrollment in DLC programs [22]. 

Based on the increasing popularity of these programs, this work presents a 

contract scheme to be signed by the end-users and utility operator. In the proposed 

scheme, a high amount of time frames for load management (load shifting) are available 

to consumers so that they can accept the time frame that best accommodates their 

interests. In other words, the proposed contractual scheme specifies the amount of load 

to be shifted through the day and the hours at which the corresponding load are 

supposed to be available. This information is accepted by the consumers so that 

potential negative impacts are well known in advance, allowing them to manage 

possible inconveniences. 

In this way, a tradeoff between the success of DLC-program implementation and 

the loss of consumer comfort can be achieved by means of clear conditions in the DLC-

program specification, which increases the possibility of implementing a DLC-program 

successfully. In order to consider the nonlinear behavior of battery energy storage 

systems (BESSs) and their interactions with controllable loads, the optimization 

approach adopted in this work is based on metaheuristic techniques. Each operative 

option (connection time of controllable loads) is represented as the row of a general 

matrix, which allows us to represent many circumstances in a flexible manner. Among 

the types of metaheuristic algorithms, the integer-coded GA has been chosen as 

optimization approach because the coding used is based on selecting the appropriate 

row from a controllable-load matrix. As GA evaluation requires intensive computational 



resources, an initialization algorithm has been incorporated in order to guide the 

evaluation towards an effective solution. 

The content of the manuscript is presented as follows: section 2 describes the 

structure of ES under study; section 3 explains the strategy employed to manage DLC-

program and ES; and section 4 discusses the proposed approach through analysis of a 

case study in the Virgin Islands. Finally, conclusions and remarks are discussed on 

section 5. 

 

2. Model of energy system 

 

The ES structures considered in this paper are shown in Fig. 1, where 

conventional and renewable generation, BESS and distribution system (DS) are 

presented. This ES has smart capabilities, meaning that the power production of each 

element can be monitored and used by the energy management system (EMS) to 

determine the optimal usage of DR resources and power dispatch by other controllable 

devices. EMS takes information from ES in order to determine the optimal management 

of conventional generators, BESS and DLC programs. DR resources are assumed to be 

spread over the DS. 

 

 
Fig. 1: Scheme of the energy system. 

 

Regarding the model of the wind farm (WF), its power production is represented 

according to the general power curve developed in [23]. 

Regarding BESS and power converter, vanadium redox flow battery (VRFB) 

technology has been adopted due to growing interest on this technology. The VRFB 

model experimentally tested and published in [24-26] has been implemented; the rated 

power and energy of a single VRFB are 5 kW and 20 kWh, respectively. Using this 

information, a BESS of higher capacity can be built by connecting batteries in serial and 

parallel. The operation of a BESS is performed according to its charging (    
   ) and 

discharging (    
   ). The power converter has been modeled according to its 

efficiency curve as reported in [27]. 

Due to its applicability on islanded systems typically located in remote areas, the 

technology for conventional power production chosen in this work is diesel generation. 

Fuel consumption can be represented by means of a linear relationship with power 
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generation. In addition, power generation has to be limited to determined values (  
     

 

and   
     

) recommended by the manufacturer. 

The DS is modeled using the impedance of each branch of the system [28]. The 

voltage and current of each node and branch of the DS are defined in (1) and (2), while 

the load demand is defined according to the active and reactive power consumption. 

 

         
  

 
 
 
 
 
 
        

 

 
        

 

 
        

 
 
 
 
 
 
 

                                           

 

       
  

 
 
 
 
 
 
        
 

 
        
 

 
        
 

 
 
 
 
 
 

                                             

 

Power flow through the DS is carried out using the forward-backward method [29], in 

which, the error defined in (3) is reduced. 

 

               
              

   

 

   

                                       

 

Once the voltage and current at each node and branch of DS have been 

determined, the ampacity violation can be verified by means of (4) [30], where the heat 

lost and gained by each feeder are estimated using daily forecasts of solar radiation, 

ambient temperature and wind speed. 

 

      
       

      
          

          
   

    
                                      

 

3. Management of DLC programs 

 

In order to describe the most important features of the proposed DLC program 

and consequently its management strategy, this section is devoted to explaining the 

characteristic of the proposed contractual scheme, as well as the algorithm for its 

management from a deterministic and probabilistic viewpoint. These three tasks are 

discussed in subsections 3.1, 3.2 and 3.3, respectively. 

 

3.1. DLC contract conditions 

 

Each customer classifies a load into two main categories: critical and 

controllable. A critical load has to be supplied at the moment required by the consumer, 

so this type cannot be directly controlled by the utility operator. Conversely, a 

controllable load can be managed by the utility operator through the DLC program 



following a rule previously agreed between the operator and the corresponding 

consumer connected to node   of DS. 

The concept used to model controllable loads is shown in Fig. 2 [31,32]. The 

function of the controllable load for a typical consumer connected to node   and 

enrolled in DLC-contract   is represented by means of an energy block with power 

     
  and duration time      . As indicated in Fig. 2, the consumer is willing to use the 

corresponding device between the hours     
    and     

   , starting at time     . The time 

intervals [    
   ,    

   ] and       are specified on the subscription contract ( ) signed 

between the consumer and the utility operator, while the power      
  is specified by the 

consumer  . 

The proposed approach optimizes the time at which controllable loads should 

start their operation (    ) in order to reduce the energy provided by controllable power 

sources (diesel generator and VRFB bank). Possible values of      need to be considered 

during the optimization tasks, generally represented through the displacement of the 

energy block shown at the top of Fig. 2, and computationally expressed by using an 

equivalent matrix shown at the bottom of Fig. 2. 

 

 
Fig. 2: Concept of possible demand curves table for contract  . 

 

Fig. 3 shows the algorithm to build the matrix of possible demand curves 

(           
 ) for determined contract  , which was previously shown at the bottom of Fig. 

2. 

 



 
Fig. 3: Algorithm to build the possible demand curves table for contract  . 

 

Fig. 4 describes the structure of the            
  matrix, which has three different 

indexes. For a determined contract ( ), the first index (             ) depends on 

the number of possible demand curves, which is between        and          
    

       . The second index (       ) represents the daytime, while the third index 

represent the type of DLC contract (       ). 

 

 
Fig. 4: Table of possible demand curves for all contracts. 

 

Fig. 5 specifies some of the information to be agreed upon between each 

consumer and the utility operator. Each row on the table shown in Fig. 5 is a possible 

value of duration time (     ), earliest operation time (    
   ) and the latest operation 

time (    
   ) offered by the utility company. In this regard, the consumer voluntarily 

selects a determined row ( ) according to preference and convenience. Similarly, the 

power to be controlled (     
 ) is voluntarily chosen by the consumer and reported to the 

utility company on the subscription contract. 

 

Start

and

End

yes no

yes

no

yes no



 
Fig. 5: Table of contract definition. 

 

Fig. 6 summarizes all the information to be used by the utility operator to control 

the DR program. The first column indicates the consumer (node   of DS), while the 

second column (    ) indicates the type of contract in which the consumer is enrolled 

(row   on Fig. 5). Finally, the third column indicates the controllable power (     
 ) 

agreed upon between the consumer and the utility company. 

 

 
Fig. 6: Table of controllable loads. 

 

Once the characteristics of the proposed DLC-contract structure have been 

defined, the methodology for allocating these resources should be specified. This task 

will be carried out under deterministic and probabilistic conditions in subsections 3.2 

and 3.3, respectively. 

 

3.2. Optimal allocation of DR resources under total certainty of wind generation 

 

Proper usage of DR resources available from users enrolled in the proposed 

DLC scheme is determined by solving the optimization problem shown in (5-18), where 

the first two expressions represent the variable to be optimized and the rest of the 

equations are the constraints related to the ES’s physical limitations. 

 Equation (5) represents the objective to be minimized (6); this is the total 

energy obtained from diesel generator and VRFB bank. The first term is the energy 

contained in diesel fuel, while the second term specifically represents the energy 

obtained from VRFB during the discharging process. 

These two terms are directly related to the operating cost of the system: diesel 

operating costs are directly related to the energy spent during the operation of the 

generator (first term in (5)), while the energy discharged from the BESS directly 

reduces its lifetime, which can be considered as an increment of the storage device’s 

operating cost (second term in (5)). 

Equation (7) specifies the balance at the substation level between power 

production from the diesel generator, WF, BESS and total load demand (including 



critical and controllable loads). Equations (8) and (9) are based on the model of 

controllable loads illustrated at the top of Fig. 2. These constraints guarantee the 

specifications of the contract type chosen by the corresponding user (subsection 3.1). 

Equations (10-14) are constraints related to the rated power and state of charge (SOC) 

limits of the VRFB bank, power converter and diesel generator. Constraints (15) and 

(16) guarantee the balance within the DS and are fully satisfied through the power flow 

solution (forward-backward method). Finally, constraints (17) and (18) are related to the 

ampacity and voltage limits. 

 

                 
      

 

 

   

     
          

       
  

 

   

                 

 

                                                                       

 

     
        

      
      

                                         

 

         
                                                           

 

               
                                                    

 

   
      

    
                                                    

 

   
      

    
                                                    

 

      
        

        
                                        

 

    
      

      
                                               

 

  
          

    
                                                    

 

        
       
                     

                                      

 

           
              

       
                                            

 

        
        

                                                      

 

  
              

                                                  

 

The aforementioned solution to this problem consists of finding out the time 

(    ) at which the controllable load of each type of contract ( ) should be operated in 

order to minimize the energy (  ) obtained from the diesel fuel and VRFB bank. 

It is possible to observe that time      at the top of Fig. 2 is directly related to the 

rows of possible demand curves matrix (           
 ). This means that looking for the 

appropriate value of      at the top of Fig. 2 is equivalent to looking for the appropriate 

row on the matrix            
  at the bottom of Fig. 2. 



The optimization problem can be formulated as a search problem with integer 

variables, with these variables the corresponding row of the matrix            
  for each 

contract type        . Although controllable loads have been modeled using a 

constant power (Fig. 2), different power consumptions through time can be effectively 

represented because the optimization model only uses the corresponding row of the 

matrix. This characteristic allows us to consider realistic consumption profiles of 

household appliances and devices. 

In this research, the optimization problem has been solved by using an integer-

coded GA. The structure of a typical individual ( ) is illustrated in Fig. 7: each 

individual is modeled as a vector (     ), and each element of this vector (      ) is a row 

of the matrix            
 , so that                . 

 

 
Fig. 7: Structure of each individual. 

 

The objective function (   ) previously shown in (5) has been reformulated in 

(19-22) to incorporate the DS’s operating limits related to ampacity and voltage profile, 

as well as to avoid the energy not supplied (ENS). ENS is directly related to the power 

imbalance resulting from the system’s lack of capacity to fulfill the constraint (7). 

 

                  
        

  

 

   

 

   

      
   

 

   

                            

 

      
   

           
        

     

           
        

     
                                          

 

      
   

     
              

 

     
              

 
                                        

 

    
     

           

           
                                              

 

The value of objective function (19) increases when constraints (17) and (18) are 

violated, reducing the fitness value for the controllable-load allocation under evaluation 

(individual       of GA). 

The complexity of the DR-management problem has been demonstrated to be 

NP-hardness [33]. In the contract scheme proposed in this work, the number of possible 

combinations grows according to (23). The maximum number of possible combinations 

is obtained when     
      and        , resulting in   . Considering that our 

problem is being solved on a daily basis ( =24), the number of combinations 

potentially grows with the contract types following the function    . 

 



     

 

   

       
            

 

   

                                         

 

The population of the implemented GA can be written as a matrix according to 

(24), while each row is an individual that can be represented according to (25). Each 

element of the matrix   and the vector       are integers, since they represent a row of 

the matrix            
 . 

 

  

 
 
 
 
 
     

 
     

 
      

 
 
 
 

                                                                       

 

                                                                 

 

Fig. 8 describes how to build the daily profile for each node ( ) from the 

information found in the GA-population ( ). This algorithm uses the information 

provided in the table of controllable loads (Fig. 6) to find the contract ( ) in which the 

consumer ( ) is enrolled and, according to the individual (     ) under analysis, estimate 

the total load profile (      
           ) by adding the controllable (             

      

     ) and critical (      
           ) loads. 

 

 
Fig. 8: Algorithm to build the daily load profile. 

 

Once the total load at each node   and time         has been calculated 

through matrix       
 , power flow analysis is carried out, obtaining the active power 

Start

End

yes

no

no

yes



provided by the substation at branch     (      
 ). This power value is later used to 

control the VRFB bank and diesel generator. 

In this regard, the operation of the BESS depends on the value of net load (    
  ), 

which is defined in (26) as the subtraction of the active power demand (      
 ) from the 

power production of WF (    
 ). According to this energy policy, renewable generation 

has the highest priority, which guarantees the consumption of clean energy. 

 

    
         

      
                                                        

 

The VRFB bank is controlled by using a cycle charging strategy [34]. In this 

strategy, part of the excess energy produced by the diesel generator is stored in the 

BESS, improving its operating efficiency when the load demand is low. 

Fig. 9 describes how the cycle-charging strategy is implemented in this paper. 

Depending on the energy stored in the VRFB bank, it is first determined whether the 

power is enough to supply total demand. If this is possible, then the VRFB bank is 

discharged; if not, it is evaluated whether a diesel generator would be required or not. If 

upon discharging the VRFB bank the power to be supplied by the diesel generator is 

lower than its minimum (  
     

), an excess of energy would be produced; to avoid this 

condition, the VRFB bank is then charged. If this is not the case, discharging the VRFB 

bank is suggested. 

 

 
Fig. 9: Algorithm to control BESS. 

 

Start

End

yes

no

no

yes

Discharging

Discharging

Charging

Disconnection

Charging

Discharging

no

yes

no

yes

no

yes

noyes



If the power to be supplied by the generator is within the interval 

   
        

      , the generator is assumed to be connected and a linear relationship is 

used to estimate fuel consumption, which is necessary to calculate the objective to be 

minimized (5,6). On the other hand, if the power to be supplied by the generator is 

lower than the minimum (  
     

), the generator is assumed to be connected, storing the 

excess of energy in a VRFB bank. Finally, if the generator is not required, then it is 

assumed to be disconnected. 

So far, the complete evaluation of a single individual (     ) of the GA population 

( ) has been described. Other processes, such as reproduction, crossing, and mutation, 

are well known in the technical literature; further details about the integer-coded GA 

implementation can be found in [35]. 

 

3.3. Optimal allocation of DR resources under uncertainty of wind generation 

 

The procedure described in subsection 3.2 strongly depends on the quality of 

available wind-power forecasting. In order to mitigate the effects of wind-power 

uncertainty, scenario generation and reduction processes have been adopted. 

For a determined number of scenarios (       ), the starting time for each 

contract type (              ) can be determined by solving the optimization problem 

of (27-40). Equation (27) represents the energy related to each controllable source for a 

determined scenario  . According to (28), the optimization problem consists of 

minimizing the expected value of the energy obtained from the diesel generator and 

battery bank. Each scenario has an associated occurrence probability equal to 1/  

(                   ). Constraints (29) and (31-40) represent the system’s 

hourly behavior, which depends on each scenario. 

The solution of the optimization problem consists of finding the starting time 

(              ) that minimizes the expected value of the energy obtained from each 

controllable power source. Under the uncertain conditions introduced by wind 

generation, it is necessary to allocate controllable loads in an optimal manner regardless 

of any wind-power scenario; this is why starting time (30,31) is the same for all 

situations under consideration. 

 

                    
        

 

 

   

     
            

         
  

 

   

                  

 

               

 

   

                                                     

 

       
          

        
        

                                 

 

         
                                                            

 

               
                                                     

 

   
        

    
                                                

 



   
        

    
                                                

 

      
          

        
                                       

 

    
        

      
                                           

 

  
            

    
                                           

 

        
         
                       

                                  

 

             
              

         
                                      

 

          
          

                                                   

 

  
                

                                              

 

The integer-coded GA described in subsection 3.2 can be used to solve the 

problem (27-40), considering the formulation of the objective function shown in (41-

44). In this formulation, the influence of each scenario on ampacity and ENS is taken 

into account. 

 

                              
          

  

 

   

 

   

        
   

 

   

  

 

   

               

 

        
   

             
          

     

             
          

     
                                       

 

        
   

     
                

 

     
                

 
                                     

 

      
     

             

             
                                            

 

In section 4, the proposed DLC-contract scheme and its optimal management are 

illustrated through a case study. 

 

4. Case study 

 

 The proposed scheme for the DLC program is illustrated through analysis of a 

hybrid energy system (HES) located in the Virgin Islands (latitude 17.73° and longitude 

-64.79°). Information related to environmental variables such as solar radiation, wind 

speed and ambient temperature was taken from the public database found in [36-38]. 

Data related to the DS structure is presented in Table 1, using a system with 20 nodes 

( =20). The rated voltage of the DS was assumed to be 12.47 kV, while its frequency 

was assumed as 60 Hz. The rated power of the substation was assumed as 350 kVA. A 



power flow analysis was performed using a tolerance of 0.001 (    0.001) with a 

maximum of 10 iterations ( ≤10). A power factor of 0.95 was assumed for all the loads 

at any time. Constraints (21,43) on the optimization problem were evaluated by 

considering   
     

=0.95 in per unit. 

 

Table 1: DS information. 

Network topology Distribution feeder information 

Sending 

node 

Receiving 

node ( ) 
kcmil Strands Length (km) 

Substation 1 300 19 1.57 

1 2 300 19 1.21 

2 3 300 19 1.79 

3 4 300 19 2.60 

4 5 300 19 1.49 

5 6 300 19 1.11 

6 7 300 19 1.17 

7 8 300 19 2.18 

8 9 300 19 1.39 

9 10 300 19 1.03 

1 11 26.24 7 2.66 

2 12 26.24 7 2.75 

3 13 26.24 7 1.35 

4 14 26.24 7 1.64 

5 15 26.24 7 2.04 

6 16 26.24 7 2.18 

7 17 26.24 7 1.31 

8 18 26.24 7 2.55 

9 19 26.24 7 1.68 

10 20 26.24 7 1.90 

 

The specific conditions of the DLC-contract scheme are shown in Table 2, 

where 10 different contract types ( =10) have been considered. 

 

Table 2: Contract definition for case study. 

            
        

    

1 2 9 16 

2 2 16 20 

3 1 14 20 

4 2 1 10 

5 1 12 24 

6 3 16 20 

7 3 7 11 

8 3 1 24 

9 2 7 11 

10 2 1 24 

 

The proposed optimization algorithm was implemented in a personal computer 

with i7-3630QM CPU at 2.4 GHz, 8 GB of memory and a 64-bit operating system. The 

computing language used was MATLAB©. 

 



4.1. Management of DLC programs under total certainty of wind generation 

 

In this subsection, wind generation is considered under perfect forecasting. For 

this condition, the contract in which each consumer is enrolled (    ), as well as the 

value of controllable power (     
 ) shown in Table 3. 

 

Table 3: Controllable loads for case study. 

            
  

1 1 11.19 

2 8 11.89 

3 3 11.07 

4 2 10.61 

5 4 10.05 

6 7 11.65 

7 5 11.23 

8 6 10.09 

9 9 11.01 

10 4 12.30 

11 1 12.01 

12 10 11.01 

13 8 11.72 

14 5 10.89 

15 2 11.47 

16 9 11.75 

17 6 11.05 

18 2 11.35 

19 3 12.60 

20 1 10.96 

 

Fig. 10 presents the daily profile of a critical load over the entire system. This 

profile has to be supplied by the utility company without considering any DR 

management strategy and was created using data taken from [39]. 

 



 
Fig. 10: Daily critical load profile. 

 

In the VRFB bank, the SOC (      
 ) was kept to be between 15% 

(      
 =0.15) and 90% (      

 =0.9), while battery voltage was kept between 42V 

(    
 =42 V) and 56.5 V (    

 =56.5 V). The battery bank was built by connecting 10 

batteries in serial and 10 in parallel, and the initial SOC was set to its minimum allowed 

value (      
 =0.15). 

The WF was assumed to be built by only one turbine of 150 kW. A diesel 

generator of 350 kW (  
     

=350 kW) was considered, its minimum output power 

assumed to be 25% of its rated capacity (  
     

=       
      ). The linear fuel 

consumption pattern was built by considering 7.9 gal of diesel consumption at ¼ of the 

load, 13.1 gal of diesel consumption at ½ the load, 18.7 gal of diesel consumption at ¾ 

load and 25.1 gal of diesel consumption at full load. Regarding the estimation of the 

objective function, fuel density was considered 820 kg/m
3
 (  =820 kg/m

3
), and the low 

heating value was considered as 43.2 MJ/kg (    =43.2 MJ/kg). 

The DLC-contract scheme performance has been evaluated for the first day of 

January as well as the entire year. 

Figs. 11, 12, and 13 show the wind speed, ambient temperature and solar 

radiation, respectively, for the first day of January. Wind speed is used to estimate wind 

power and it is used jointly with solar radiation and temperature on the ampacity 

evaluation of each DS feeder according to (4). 
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Fig. 11: Wind speed profile. 

 

 
Fig. 12: Ambient temperature. 
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Fig. 13: Solar radiation. 

 

The proposed GA explored in subsection 3.2 was implemented using 80 

individuals, 150 generations, crossover rate of 95%, and 5% of mutation rate. Fig. 14 

presents the evolution of GA for DR-resource allocation. 

 

 
Fig. 14: GA evolution (Deterministic optimization). 

 

On one hand, Fig. 15 shows how controllable loads should be used. Controllable 

loads are operated according to the conditions of the corresponding contract scheme in 

order to reduce the power delivered by the controllable power sources (Fig. 14). Most of 

the controllable loads are operated between  =4 and  =9, and between  =15 and  =19 

where wind speed is expected to be high (Fig. 11). 
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Fig. 15: Allocation of DLC resources (Deterministic optimization). 

 

On the other hand, Figs. 16 and 17 present the performance of HES. During the 

first hour ( =1), the conventional generator is committed to its minimum power in order 

to supply part of the load and charge the VRFB. At  =2, renewable generation and the 

VRFB discharging power provide enough to supply load demand, so that the 

conventional generator is disconnected. At  =3, load demand lightly increases, 

requiring the production of conventional generation. Thus, energy surplus is used to 

charge the battery bank. From  =4, load demand starts increasing; hence, power 

discharged from the VRFB is specifically required to supply energy demand between 

 =4 and  =5. From  =6 to  =13, the VRFB is continuously charged using the energy 

surplus from wind generation, as well as the excess generated by the conventional unit. 

From  =14 to  =15, the battery bank is discharged, while the conventional unit 

increases its power production to supply the peak load. From  =16 to  =20, the battery 

bank is continuously charged by using the excess power available from wind and 

conventional generation. Later, part of this energy is used to supply the energy demand 

between  =21 and  =23, while the conventional unit increases its power generation to 

cover the peak load. Finally, the battery bank is recharged at  =24, when load demand 

decreases. 
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Fig. 16: General performance of HES. 

 

Fig. 17 shows how SOC largely increases between  =6 and  =13, reaching 

72.82%, to be later discharged during the peak-load time. 

 

 
Fig. 17: SOC profile (Deterministic optimization). 

 

Figs. 18 and 19 show the behavior of the DS’s voltage and current profiles. As 

the rated voltage was assumed to be high (12.47 kV) and the load profile was relatively 

low, the expected voltage and current variations are very low. Categories established on 

the color bars are related to the load level, reporting voltage, current, nodes, time and 

load level. 
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Fig. 18: Voltage profile. 

 

 
Fig. 19: Current profile. 

 

Table 4 summarizes the most important results obtained during one day and one 

year of operation. Under base operation, enrollment in the proposed DLC program, as 

well as WF and BESS operations, are not considered. In this regard, load demand is 

satisfied only using diesel generation. 

 

Table 4: Allocation of DLC resources for deterministic-daily analysis. 

  
    
       

       

    
      

       

            (Optimized operation)               

(Base operation) One day One year 

1 9 16 13 11.0 h ± 10.3 % 13 

2 1 24 5 7.40 h ± 85.6 % 13 

3 14 20 17 18.0 h ± 7.10 % 14 
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4 16 20 17 17.7 h ± 5.30 % 16 

5 1 10 6 4.30 h ± 63.6 % 9 

6 7 11 8 8.00 h ± 10.7 % 9 

7 12 24 18 20.1 h ± 21.7 % 12 

8 16 20 16 17.3 h ± 3.80 % 16 

9 7 11 7 8.50 h ± 13.6 % 10 

10 1 10 6 4.30 h ± 63.6 % 9 

11 9 16 13 11.0 h ± 10.3 % 13 

12 1 24 23 10.1 h ± 71.4 % 20 

13 1 24 5 7.40 h ± 85.6 % 13 

14 12 24 18 20.1 h ± 21.7 % 12 

15 16 20 17 17.7 h ± 5.30 % 16 

16 7 11 7 8.50 h ± 13.6 % 10 

17 16 20 16 17.30 h ± 3.8 % 16 

18 16 20 17 17.70 h ± 5.3 % 16 

19 14 20 17 18.00 h ± 7.1 % 14 

20 9 16 13 11.0 h ± 10.3 % 13 

 

In general terms, this information allows the utility operator to observe how far 

from optimal the common behavior of consumers is. For example, consumers connected 

to nodes 2 ( =2), 5 ( =5), 6 ( =6) and 13 ( =13) should carry out their activities early 

in the morning in order to improve the whole HES performance. Moreover, a high 

variation for consumers connected to nodes 2 and 13 is observed because these 

consumers have a high degree of freedom to use their household appliances; this can be 

verified by observing the second and third columns for  =2 and  =13, respectively. 

Regarding the benefits of DLC management, the proposed approach offers a 

moderate fuel savings between 7.24% and 27.1%, depending on the month. 

The analysis of a single day required 20.02 minutes, while the computational 

time analyzing a single month is between 166.92 minutes and 553.62 minutes. 

 

4.2. Management of DLC programs under uncertainty of wind generation 

 

Appling the methodology described in [40], the 25 scenarios ( =25) shown in 

grey lines were synthetically created using the profile with black line. Initially, 3,500 

scenarios were randomly generated following the main profile (black line) with 90% 

autocorrelation, then reduced to only 25 scenarios by means of k-means++ clustering 

algorithm. Scenarios of high and low wind generation were simultaneously 

incorporated. 

 



 
Fig. 20: Scenarios of wind power generation. 

 

The proposed methodology can be applied to controllable loads with the 

characteristics shown in Fig. 2 (constant power consumption) and loads with any profile 

(variable power consumption). 

To illustrate this condition, Table 5 shows power required by controllable loads 

(     
 ) represented by a profile instead of a single value. Note that for each node, the 

average power profile shown in Table 5 is equal to the values previously shown in 

Table 3. 

 

Table 5: Controllable loads for case study. 

            
  

1 1 10.82 11.56 ----- 

2 8 12.81 11.97 10.90 

3 3 11.07 ----- ----- 

4 2 10.38 10.84 ----- 

5 4 9.60 10.50 ----- 

6 7 11.05 11.90 12.01 

7 5 11.23 ----- ----- 

8 6 9.65 9.56 11.06 

9 9 11.35 10.66 ----- 

10 4 13.25 11.36 ----- 

11 1 12.71 11.31 ----- 

12 10 11.40 10.63 ----- 

13 8 12.30 10.61 12.24 

14 5 10.89 ----- ----- 

15 2 11.37 11.58 ----- 

16 9 11.46 12.05 ----- 

17 6 11.26 10.00 11.88 

18 2 10.35 12.34 ----- 

19 3 12.60 ----- ----- 

20 1 10.49 11.43 ----- 
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Results previously discussed in subsection 4.1 allow us to identify a starting 

point for optimization analysis. Allocation of controllable loads at hours with abundant 

wind resources could be a reasonable approximation of the optimal solution. This 

reasoning can be used to estimate the profile of the consumer who fulfills these 

conditions in order to increase the efficiency of GA implementation. According to their 

corresponding contract and node, each controllable load can be used at the hour of 

maximum average wind power, taking into account the limits     
    and     

    established 

by the contract type. This procedure results in an individual (     ), which is 

incorporated into the initial population of GA implementation. Appendix A1 presents 

the algorithm to create this starting point. 

The proposed GA was implemented considering 10 individuals, 50 generations, 

a crossover rate of 95% and a 5% mutation rate. The computational complexity 

introduced by wind power scenarios has been compensated for by reducing the number 

of individuals and generations of GA. Fig. 21 shows the evolution of GA 

implementation, which required 19.5 minutes. 

 

 
Fig. 21: GA evolution (Probabilistic optimization). 

 

Table 6 presents the starting operation time of DLC devices per node of DS and 

the corresponding comparison with the base case. 

 

Table 6: Allocation of DLC resources for probabilistic-daily analysis. 

      
                  

             
            

(Optimized 

operation) 

              

(Base operation) 

1 9 16 12 13 

2 1 24 1 13 

3 14 20 20 14 

4 16 20 19 16 

5 1 10 4 9 

6 7 11 7 9 
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7 12 24 14 12 

8 16 20 18 16 

9 7 11 10 10 

10 1 10 4 9 

11 9 16 12 13 

12 1 24 1 20 

13 1 24 1 13 

14 12 24 14 12 

15 16 20 19 16 

16 7 11 10 10 

17 16 20 18 16 

18 16 20 19 16 

19 14 20 20 14 

20 9 16 12 13 

 

In addition, Fig. 22 shows the load profiles. Most controllable devices are 

operated in order to take advantage of the maximum available wind power. The 

expected fuel consumption is 856.26 liters, which represents a reduction (saving) of 

16.59%. The net load is expected between 37.56 kW and 250.9 kW; the battery SOC is 

expected to be between 0.35 and 0.84, while power production of the diesel generator is 

expected to be between 85.14 kW and 218.86 kW. 

 

 
Fig. 22: Allocation of DLC resources (Probabilistic optimization). 

 

4.3. Implementation with other heuristic techniques 

 

The model based on GA was compared with an integer-coded gravitational 

search algorithm (GSA). The basic ideas of the original GSA [41] were adopted to 

implement an integer-coded version, due to the particular structure of the problem 

studied in this paper. In the integer-coded version used here, the magnitude of attraction 

forces between the heavier and lighter objects on the hypothetical mass system is 

represented using random integers. Specific details can be found in appendix A2. 
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Using all of the information from the probabilistic case study in subsection 4.2, 

the management and control model presented in this paper was implemented using the 

integer-coded GSA. 

During the GSA’s implementation, high numbers of masses and iterations were 

selected to obtain a good solution to the problem, independent of the results from 

subsection 4.2 obtained by GA. In this regard, 150 masses and 200 iterations were used 

in the GSA’s implementation. 

Fig. 23 shows the evolution of the GSA, which required 1,169.846 minutes of 

simulation. The expected fuel consumption was 849.05 liters, which is lower than that 

obtained from the GA implementation in subsection 4.2 (856.26 liters). According to 

these results, the solution obtained from the GSA improves upon that obtained from GA 

by 0.849%. 

 

 
Fig. 23: GSA evolution (Probabilistic optimization). 

 

Fig. 24 compares the GSA and GA with respect to DLC resource allocation. As 

can be observed, these two profiles have some similarities. 
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Fig. 24: DLC resources allocated by GSA (Probabilistic optimization). 

 

5. Conclusions and remarks 

 

 In this paper, a DLC-contract scheme to be established between consumers 

enrolled in this DR program and the utility company was developed and illustrated. The 

proposed contract scheme offers flexibility to consumers in the way controllable loads 

can be used, as they can choose the time frame and power to be controlled by the utility 

company. This flexibility is expressed by means of the time interval defined in the DR 

contract ([    
   ,    

   ]), as well as the value of the power to be controlled by the utility 

operator (     
 ). This reasoning aims to incentivize consumers to enroll in a DLC 

program. 

 The proposed scheme shows the advantages of adopting DLC programs from an 

energy-efficiency perspective, since available renewable generation is consumed and 

stored to be later used by loads devoted to critical tasks (critical loads). 

On one hand, the implementation of a management algorithm as an energy block 

(subsection 4.1) and a load profile (subsection 4.2) illustrates the capabilities of the 

proposed approach to represent realistic conditions. On the other hand, in implementing 

the proposed technique in the modern SG, each consumer ( ) connected to the DS could 

be understood as a load aggregator instead of a single consumer. In a general sense, the 

functionalities of the methodology developed in this work could be extended to other 

type of ESs. 

The computational burden could be intensive, as a monthly or seasonal analysis 

is required during DLC-contract designing. Incorporation of parallel computing 

techniques can be used to reduce the computational time. 
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Appendix A1. GA initialization 

 

This subsection describes how GA initialization can be carried out using wind 

power scenarios. The first step consists of calculating the average wind power profile 

(    
     

) according to (A1), 

 

    
     

  
 

 
      

 

 

   

                                               

 

Depending of the contract type ( ), the hour at which wind production reaches its 

maximum power (    
     

) within the time interval (    
        

   ) is calculated. This idea 

is expressed in A2, 

 

    
             

     
    

     
    

     
            

     
                         

 

Using these results (    
               ), the algorithm of Fig. A1 is applied 

for contract type        . From this procedure, the value of the row (    
 ) required 

for the initialization is obtained. 

 

 
Fig. A1: Algorithm to initialize GA. 

 

The initialization vector (     
 ) is created according to (A3) and (A4), 

 

      
      

                                                               

 



     
         

        
        

 
                                            

 

Finally, the vector      
  is added to the last position of the initial population (A5), 

which is used during the analysis of the first generation. 

 

  

 
 
 
 
 

     

 
     

 
           

 
 
 
 
 
 

                                                       

 

Appendix A2. Integer-coded GSA 

 

The GSA [42] was initially proposed to solve problems with continuous 

variables. However, the problem analyzed in this paper requires an optimization 

technique that can work with integers since it chooses the optimal row from a 

controllable load matrix, according to the DR contract in which the consumer is 

enrolled. 

During a determined iteration of the GSA, the mass for each possible solution 

(               ) is calculated using A6. 

 

      
       

           
   

                                          

 

Then, the minimum (  
   ) and maximum (  

   ) fitness as well as the object 

with the highest mass (     
   

) are identified according to A7, A8, and A9. 

 

  
                                                                 

 

  
                                                                

 

     
                    

                                                 

 

In this work, the movement of light masses toward heavy ones was represented using 

random integers. To carry out this task, the function (               ) is introduced 

as A10, in which the function        truncates the floating point number on its 

argument. 

 

             
        

   

  
      

   
                                     

 

This function defines how the position of the possible solution under evaluation (object) 

will be modified to put this object on the optimal path. 

Each object (               ) is represented by a vector according to Fig. 7, 

where each element (      ) represents the position of the object ( ) on each dimension 

(       ). The function (               ) results in an integer between 1 and   

according to the mass (     ) of the solution under evaluation. It represents the number 



of dimensions ( ) in which the position of individual   will be modified. Note that       

increases when the object has a mass close to the minimum one, which means that the 

object’s position is far from the optimal one, and it will be moved in many dimensions 

( ) on the optimal path. 

Conversely, when an object with a high mass is evaluated with A10, this 

function results in a value close to 0. This means that objects with a high mass (fitness) 

are located close to the optimal position, so their coordinates do not need to be changed. 

Once       has been calculated for all masses and the object on the optimal 

position (     
   

) has been identified, the algorithm shown in Fig. A2 is applied, where the 

function                results in an integer between the integers      and     . 

 

 
Fig. A2: Algorithm to implement the integer-coded GSA. 

 

According to Fig. A2, select a determined object ( ). If the function       is 

higher than 0 (if this object is not in the optimal position), then the object will be 

randomly moved in       dimensions. A dimension to be modified ( ) is chosen using a 

random integer generator between 1 and   (         in Fig. A2). 

The movement will be between the actual position (      ) of the object ( ) 

under evaluation and the actual position of the heaviest object (      
   

). The variables 

     and      are calculated to identify the points on the optimal path. Then, the 

object’s position for the next iteration, on the dimension  , is calculated using a 

random-integer-generation subroutine (                      in Fig. A2). 
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