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Abstract 
 
 In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment 
under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by 
power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, 
each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the 
uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. 
The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are 
duly drawn. 
© 2011 Elsevier Ltd. All rights reserved. 
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1. Introduction 
 

The use of renewable energies has been increasing in the last decade worldwide [1], particularly in 

European countries such as Denmark [2,3] and Ireland [4]. Large-scale renewable energy implementation 

plans must include strategies for integrating renewable sources in energy systems influenced by energy 

savings and efficiency measures [5]. Concerning renewable energies, hydro [6] and wind [7] energy are 

the main priorities in the Portuguese energy policy. 

The Portuguese energy sector underwent a significant restructuring during 2006, as a result of the 

implementation of European Union (EU) Directives on electricity and gas of the European Parliament and 

Council. The main objectives of this restructuring are: 

(i) to safely guarantee the supply of energy to Portugal, through the diversification of the primary 

resources used, namely by reinforcing the development of renewable energy sources, and through the 

promotion of efficiency; 
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(ii) to stimulate and favor competition in a way as to promote consumer protection, as well as the 

competitiveness and efficiency of the Portuguese companies operating in the energy sector and in the 

national production sector; 

(iii) to ensure the energy sector meets certain environmental standards, reducing the environmental 

impact at the local, national and global levels. 

A variety of primary sources and technologies are used in power plants, namely coal, gas, fuel, water 

and wind, among others. The total installed capacity in Portugal at end of year 2009 reached 16738 MW, 

of which 6690 MW (40%) corresponded to thermal power plants, 4578 MW (27%) corresponded to 

hydro power plants, and 3357 MW (20%) corresponded to wind power plants. The wind power capacity 

target is 5500 MW by 2012, and 8500 MW by 2020, augmenting considerably the role that wind energy 

plays in electricity generation. 

The electricity industry in Portugal can be divided into five major functions: generation, transmission, 

distribution, supply and demand, and market structure. Each of these functions must be operated 

independently, from a legal, organizational and decision-making standpoint, from the others [8]. 

Electricity generation is now fully open to competition, subject to obtaining the requisite licenses and 

approvals. Under a market framework, the development of optimal offering strategies is crucial for all 

producers to achieve maximum profit.  

Energy prices in the wholesale spot market are inherently volatile and unpredictable, while the retail 

prices may or may not depend on the wholesale prices, at least in the short term. The high volatility of 

energy prices reflects the dynamic behavior of the spot market. Moreover, the power supply generated 

from wind energy is highly intermittent. Indeed, the outcome of fluctuations in wind energy sources 

produces a situation in which excess energy is sometimes generated, while at other moments there is a 

lack of generated energy [9]. Consequently, decision-makers must hedge against the uncertainties on 

energy market prices and wind power production, while taking into account the several technical 

constraints associated to the operation of the wind farm. 

There are some approaches that allow dealing with the uncertainty in the energy market. For example, 

in the United States, there have been numerous studies that seek to develop financial instruments for the 

purpose of hedging against price uncertainty in the electricity spot market. Specifically, work has been 

done that uses cross-hedging in the natural gas forward market [10-13]. 
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To consider the uncertainties on energy market prices and wind power production, a stochastic 

programming approach is used in this paper, as in [14,15], dividing the set of decisions inherent to the 

problem into two distinct stages: first-stage decisions, taken before resolving the uncertainty, and second-

stage decisions, made after the uncertainty occurs.  

Stochastic programming presents a set of solutions that take into consideration the randomness in input 

parameters. The stochastic programming approach has been used for a wide spectrum of applications 

[16], with the advantage of finding a near optimal solution considering all possible scenarios. The 

stochastic solution may not be a global optimal solution to the individual scenarios, but it is a robust 

solution over all possible realizations of the uncertainties.  

The aforementioned uncertainties were handled in [17] through traditional time-series models. Instead, 

an artificial intelligence model is considered in this paper to generate price-wind power scenarios using a 

tree format. Each scenario represents the outcomes for a specific set of random-parameter values. This 

scenario tree can be adequately trimmed via scenario reduction techniques [18], so that the resulting 

optimization problem is tractable. Risk aversion is also incorporated in the proposed stochastic 

programming approach by limiting the volatility of the expected profit through the conditional value-at-

risk (CVaR) methodology [19-21].  

The proposed approach enables wind energy trading in a market environment under uncertainty, 

maximizing the expected profit of a wind power producer assuming a given risk level. In case of 

excessive or moderate offers, other producers must reduce or increase production to fill the so-called 

deviation, causing economic losses. These economic losses are reflected in imbalance penalties in the 

balancing market. Hence, the proposed approach allows dealing in the same optimization model with:  

(i) Offers submitted to the day-ahead market; 

(ii) Wind power production; 

(iii) Profit maximization at a given risk level; 

(iv) Imbalance penalties; 

(v) Operational costs minimization.  

The paper is structured as follows. Section 2 presents the mathematical formulation of the decision-

making problem faced by a wind power producer in a market environment under uncertainty. Section 3 

describes the proposed stochastic programming approach. Section 4 presents a case study, based on a 

wind farm in Portugal. Section 5 provides error analysis and, finally, Section 6 provides conclusions.  



 4

Nomenclature 

sS,  Set and index of scenarios 

hH ,  Set and index of hours in the time horizon 

iI ,    Set and index of wind generators 

  Value-at-risk 

  Per unit confidence level 

sB  Profit in scenario s  

s  Auxiliary variable used to compute the conditional value-at-risk 

  Weighting parameter to achieve an appropriate tradeoff between profit and risk 

s  Occurrence probability of scenario s 

sh  Forecasted energy market price in scenario s in period h 


shr  Ratio between positive imbalance price and day-ahead market price in scenario s in 

period h 


shr  Ratio between negative imbalance price and day-ahead market price in scenario s in 

period h 

hib  Operational cost associated to wind turbine i at period h 

hig  Power output of the wind turbine i in period h 

hsp  Power output of the wind farm in scenario s in period h 

hx  Offer by the wind power producer in the day-ahead market for period h 

shdev  Deviation for wind production in scenario s in period h 

shdevP  Penalty for deviation of the wind farm in scenario s in period h 

shW  Forecasted wind power production in scenario s in period h 

maxP  Maximum power of the wind farm 

shL  Revenue in scenario s in period h 

c  Vector of the objective function coefficients 

x  Vector of decision variables in the first stage 



 5

A  Matrix of coefficients for the first-stage constraints 

minb  Lower bound vector for the first-stage constraints 

maxb  Upper bound vector for the first-stage constraints 

minx  Lower bound vector on variables 

maxx  Upper bound vector on variables 

min
h  Lower bound vector for the second-stage constraints 

max
h  Upper bound vector for the second-stage constraints 

q  Vector of coefficients for the linear term for the second-stage variables 

T  Technology matrix 

W  Recourse matrix 

y  Second-stage variables that represent decisions to be made after part of the uncertainty 

is revealed 

 
 
2. Problem formulation 
 
2.1 Risk measure (CVaR) 
 

CVaR represents an appropriate approach to address the integrated risk management problem of a 

wind power producer. Previous approaches [22-24] did not consider risk-aversion. 

CVaR is the expected profit not exceeding a measure   called Value-at-risk (VaR): 

)|(CVaR  BBE                                                                                                                                     (1) 

VaR is a measure computed as the maximum profit value such that the probability of the profit being 

lower than or equal to this value is lower than or equal to 1  : 

   1|maxVaR xBpx                                                                                                                 (2) 

VaR has the additional difficulty, for stochastic problems, that it requires the use of binary variables 

for its modeling. Instead, CVaR computation does not require the use of binary variables and it can be 

modeled by the simple use of linear constraints. 
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The concept of CVaR is illustrated in Fig. 1. The value of   is commonly set between 0.90 and 

0.99 [25]. In this paper,    is considered equal to 0.95. 

"See Fig. 1 at the end of the manuscript". 

The CVaR at   confidence level, CVaR , is defined as the expected profit of the %100)1(   

scenarios showing lowest profit. Mathematically, CVaR can be defined as: 

s

S

s
sηρα

ζ 



11

1max                                                                                                                             (3) 

subject to: 

0 ssB                                                                                                                               (4) 

0s                                                                                                                                                       (5) 

In (4), sB  is the profit in scenario s , s  is a variable whose value is equal to zero if scenario s  has a 

profit greater than  .  For the remaining scenarios,  s  is equal to the difference of    and the 

corresponding profit. In other words, s  provides the excess of   over the profit in scenario s  if this 

excess is positive. The constraints (4) and (5) are used to incorporate the risk metric CVaR. 

2.2 Objective function 
 

The risk-constrained profit-maximization decision-making problem faced by a wind power producer 

within the market framework is summarized as: 

  
 


S

s

H

h
shshshs dev P pλρ F

1 1

   
 

H

h

I

i
ihih  gb

1 1
 + 












 


s

S

s
sηρα

ζβ
11

1
                                      (6) 

The objective function (6) to be maximized includes the expected profit, the operational costs, and the 

CVaR multiplied by the weighting factor β . The factor β  models the tradeoff between the expected 

profit and the CVaR. The deviations are measured in absolute value, and can be generated by excess or 

deficit of energy: 

hshsh xpdev                                                                                                                              (7) 

The penalty for deviation corresponds to the product of the cost for the shifted power in absolute 

value: 
















 0    ,   

 0     ,   

sh

sh

shshsh

shshsh
sh

devdevr

devdevr
Pdev




                                                                                               (8) 
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The revenue is given by the product of the expected energy market price by the power output of the 

wind farm: 

shshsh pL                                                                                                                                              (9) 

The expected profit is calculated as the difference between the revenue of the wind farm, the penalty 

for deviation and the operational costs. 

Substituting (8) into (6) gives: 

  
 

 
S

s

H

h
shshshshshshshshs drdrpF

1 1
           

 

H

h

I

i
ihih  gb

1 1
+ 












 


s

S

s
s




11
1                    (10) 

2.3 Constraints 
 

For a total deviation   shshsh dddev   the optimal solution is guaranteed to be achieved with one of 

the variables  
shd  or 

shd   equal to zero, due to the fact that 1
shr  and 1

shr : 

0 
shshhsh ddxp                                                                                                                          (11) 

In order to make the offers to the market, it is required to satisfy the technical restrictions of the wind 

farm. So, the optimal value of the objective function is determined subject to inequality constraints or 

simple bounds on the variables. 

The constraints are indicated as follows: 

shsh Wd  0                                                                                                                                              (12) 

max0 Pd sh                                                                                                                                             (13) 

Constraints (12) and (13) impose caps on the positive and negative deviations, respectively. Wind 

power is limited superiorly by the value of the forecasted wind power production, shW , in scenario s in 

period h. 

In (14), the offers are limited by the maximum power installed in the wind farm  maxP . 

max0 Pxh                                                                                                                                          (14) 

Constraint (15) imposes that offers should be lower than or equal to the total power output of the wind 

turbines. 





I

i
ihh gx

1
                                                                                                                                               (15) 
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In (16), s  is a variable whose value is equal to zero if the scenario s   has a profit greater than   .  

For the rest of scenarios, s  is equal to the difference of    and the corresponding profit.  

  
 
















H

h

I

i
ihihshshshshshshshsh  gbd r   d r  p 

1 1
 0 s                                                      (16) 

0s                                                                                                                                                         (17) 

2.4 Linearization of the objective function 
 

The objective function, given in the previous subsection, is characterized by nonlinearities due to the 

existence of an absolute value. So, it is required to use a mathematical process that allows reformulating 

into a linear problem. In this subsection, the problem involving absolute value terms is transformed into a 

standard linear programming formulation. Initially, it is considered that: 

  Max T xxc F                                                                                                                                    (18) 

subject to: 

maxmin xxx                                                                                                                                          (19) 

nR  x                                                                                                                                                       (20) 

In (18), the function ).( F  is an objective function of decision variables, where c  is the vector of 

coefficients for the linear term. In (19), minx  and maxx are the lower and upper bound vectors on 

variables. The variable  x  is a set of decisions variables. 

Subsequently, absolute-valued variables are replaced with two strictly positive variables: 

  xxx  
                                                                                                                                            

(21) 

Notice that either x  is positive and x  is zero, or x
 
is zero and x

 
positive, implying that a 

positive deviation leads to 0x
 
and a negative deviation implies 0x . Both x

 
and x  cannot be 

positive at the same time. Hence, each variable is substituted by the difference of the same two positive 

variables, as: 

  xxx
                                                                                                                                               

(22) 

The equivalent linear programming problem is given by: 

)(Max  T   xxxcF                                                                                                                       (23) 
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subject to: 

maxmin xxx                                                                                                                                           (24) 

  xxx
                                                                                                                                               

(25) 

 0x  , 0x                                                                                                                                         (26) 

 
3. Proposed approach  

 
3.1 Uncertainty characterization 
 

Uncertainties of energy market prices and wind power production are handled by treating them as 

stochastic variables. To generate price and wind power scenarios, time-series-based models, such as 

ARIMA [17], or artificial intelligence models, such as neural networks [26], data mining and evolutionary 

computation [27], can be used. 

A hybrid intelligent approach, combining wavelet transform (WT), particle swarm optimization (PSO) 

and adaptive-network-based fuzzy inference system (ANFIS), is used in this paper to generate a large 

enough number of equiprobable scenarios, that adequately represent the probability distribution of energy 

market prices and wind power production over the day.  

The WT convert a price or wind power series into a set of constitutive series, forecasted using ANFIS. 

The PSO is used to improve the performance of ANFIS, tuning the membership functions required to 

achieve a lower error. The parameters of WT, PSO and ANFIS, and the step-by-step algorithm used to 

implement the proposed approach, are presented in [28]. 

The hybrid intelligent approach allows generating 1000 scenarios for the day-ahead market price, the 

wind power generation and the price for imbalance for each hour. The price scenarios are combined with 

wind power scenarios. The resulting set of scenarios is used to evaluate day-ahead bidding, market 

profits, and risk measures. 

The uncertainty is modeled through a scenario tree that is built as follows: 

1) Generate N  price scenarios for the day-ahead market; 

2) For each scenario of the market prices, generate WN  wind power realizations; 

3) For each wind power realization, simulate rN  imbalance price ratio scenarios. 

Hence, the total number of scenarios composing the tree is rW NNN S . 
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3.2 Scenario tree 
 

A scenario tree is a set of nodes and branches used in models of decision-making under uncertainty. 

The nodes represent the points where decisions are made, while the branches are different realizations of 

the stochastic variables. Each node has only one predecessor and can have several successors. The first 

node is called the root node. In the root node, the first-stage decisions are taken. The nodes in the last 

stage are called leaves. The number of leaves equals the number of scenarios [29,30].  

Fig. 2 shows the scenario tree that is used to represent the first- and second-stage decisions. 

"See Fig. 2 at the end of the manuscript". 

For the sake of problem tractability it may be convenient to reduce the size of the scenario tree. The 

scenario tree trimming consists in finding a new tree composed by a subset of scenarios belonging to the 

original tree that is close to the original tree according to a specific probability distance.  

A scenario-reduction technique provides an efficient way to select a representative subset of scenarios 

covering most scenario realizations, plausible and extreme.  

A fast-forward reduction algorithm is described in [18]. This algorithm is an iterative greedy process 

starting with an empty tree that in each iteration selects the scenario which minimizes the probability 

distance between the original and the reduced trees. 

3.3 Stochastic programming approach 
 

In this subsection the standard stochastic linear programming approach is presented, which describes in 

general the problem formulation of the wind power producer. This problem can be solved through linear 

programming due to a linear transformation in the objective function broadly described in subsection 2.4. 

Hence, the stochastic programming approach can be formulated as: 

] [max   Max TT


yqExc y                                                                                                                  (27) 

subject to: 

maxmin bAxb                                                                                                                                        (28) 

maxmin     hyWxTh                                                                                                                       (29) 

0x  ,  0 y                                                                                                                                          (30) 

In the first stage, the decision should be taken before the uncertainties represented by x  are known. In 

the second stage, where the information x  is already available, the decision is made about the vector y . 
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The first-stage decision of x  depends only on the information available until that time; this principle is 

called nonanticipativity constraint. The problem of two stages means that the decision x  is independent 

of the achievements of the second stage, and thus the vector x  is the same for all possible events that 

may occur in the second stage of the problem. 

3.4 Deterministic equivalent problem 
 

The stochastic model is usually a difficult computational problem, so it is common to choose the 

deterministic model solution using the average of random variables or solving a deterministic problem for 

each scenario. The problem shown in the previous subsection is equivalent to the so-called deterministic 

equivalent one that in the splitting variable representation is as follows: 





S

1s
s

T
ss

T
yx, ρ   Max

s
yqxc                                                                                                                        (31) 

subject to: 

maxmin bAxb                                                                                                                                        (32) 

maxmin    sssss hyWxTh   for   Ss ,1,                                                                                  (33) 

0x , 0 sy        for   Ss ,1,                                                                                                            (34) 

The matrix composed by (32) and (33), for large-scale linear problems, can be generally represented 

according with Fig. 3. 

"See Fig. 3 at the end of the manuscript". 

4. Case study  
 

The purpose of the paper is to develop a model that allows one to determine an efficient frontier of 

risk-return tradeoffs, which along with the tradeoffs that management is willing to accept between the 

two, provides management with a readily-implemented and easily understood procedure for making an 

optimal decision, in the sense of the decision that management prefers, given the opportunities available 

to it. 

The simulation study provides a numerical example that has actually been applied in a real-world 

Portuguese setting, based on a wind farm located in the Viana do Castelo region (Alto Minho - Corisco). 

The total installed wind power capacity is 66 MW, corresponding to 33 2.0-MW wind turbines. Our 

model has been developed and implemented in MATLAB and solved using the optimization solver 

package CPLEX. The numerical testing has been performed on a 2-GHz-based processor with 2 GB of 

RAM.  
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4.1 Input data 
 

The proposed approach takes into account the uncertainty in both wind power and energy market 

prices by using scenarios in a stochastic optimization problem. The profits of a wind power producer are 

evaluated according to a given risk level. Imbalance penalties are imposed to prevent gaming and to 

secure better system operation [31]. 

The time horizon chosen is one day divided into 24 hourly periods. This case study is composed of ten 

energy market prices scenarios, Fig. 4, and ten wind power scenarios, Fig. 5. 

"See Fig. 4 at the end of the manuscript".  

"See Fig. 5 at the end of the manuscript". 

Moreover, ten imbalance price ratio scenarios are taken into account. Thus, the total number of 

scenarios generated in the optimization problem is 1000S . The probability of each generated scenario 

will be S/1 .  

Table 1 summarizes the data of the scenarios. 

"See Table 1 at the end of the manuscript". 

4.2 Result analysis 
 

A thorough comparison of the optimal offering strategies in the market for different risk levels using 

the proposed approach is presented thereafter, highlighting the contributions modeled in this paper.  

The solution of the optimization model contains the optimal bids for the daily market. The optimal 

bids, shown in Fig. 6, are common to the 1000 scenarios, thus posing a robust solution against all of them, 

although not necessarily optimal in any one. This figure shows the ability of the wind power producer to 

trade in the day-ahead market taking into account the desired risk level. 

"See Fig. 6 at the end of the manuscript". 

Choosing one scenario of the problem, it can be verified in Fig. 7 that the wind farm adjusts its 

production to minimize deviations. Nevertheless, in almost every hour there are small differences 

between the offers and the power output of the wind farm. 

"See Fig. 7 at the end of the manuscript". 
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The deviations resulting from the difference between the offers and the wind power production are 

shown in Fig. 8. A positive deviation means that the wind power production was higher than the offer 

submitted to the day-ahead market, and vice-versa. 

"See Fig. 8 at the end of the manuscript". 

The expected profit versus profit standard deviation is presented in Fig. 9, considering seven values  

for  . A confidence level 95.0  is used to compute the CVaR in all instances. Fig. 9 provides the 

maximum achievable expected profit for each risk level or, alternatively, the minimum achievable risk 

level for each expected profit. This figure, known as efficient frontier, reveals that for a risk-neutral 

producer  0  the expected profit is 18719 € with a standard deviation of 1268 €. Instead, a risk-averse 

producer  1  expects to achieve a profit of 18478 € with a lower standard deviation of 965 €. 

"See Fig. 9 at the end of the manuscript". 

Considering that each of the scenarios is equally likely to occur, 1000 combinations of those settings 

are developed, which enables us to derive the efficient frontier in Fig. 9. The decision maker ought to 

have previously been asked to provide a risk-preference curve from which one can derive the tradeoffs 

that s/he is willing to accept between expected profit and its variance (or standard deviation) as a 

(debatable) proxy for risk, with the optimal decision then being that which is associated with the point of 

tangency of that curve with the frontier. The underlying risk-preference function can be approximated by 

a quadratic function. 

Table 2 establishes a numerical comparison of the increase in profit for several risk levels. The 

maximum profit represents an increase of 1.30% corresponding to risk level 0 . Nevertheless, the 

profit standard deviation is higher for 0 . Hence, the wind power producer may choose different 

behaviors towards risk. 

"See Table 2 at the end of the manuscript". 

Fig. 10 and Fig. 11 present the histograms of the profits for 0 and 5.0 , respectively. 

"See Fig. 10 at the end of the manuscript". 

"See Fig. 11 at the end of the manuscript". 
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Analyzing Fig. 10 and Fig. 11, it can be verified that the risk level corresponding to 0  implies a 

higher expected profit than for the risk level corresponding to 5.0 . Nevertheless, 0  is riskier than 

5.0  because financial loss can occur under some scenarios, thus a risk-averse producer would prefer 

5.0 . Our approach allows selecting the best solution according to the desired risk exposure level. 

 
5. Error analysis 

 

The volatility of the expected profit is analyzed by means of dispersion. Accordingly, the dispersion of 

profit for the 1000 scenarios is show in Fig. 12. Table 3 presents the confidence intervals of 95% 

regarding the expected profit. 

"See Fig. 12 at the end of the manuscript". 

"See Table 3 at the end of the manuscript". 

Although the expected profit is higher for 0 , the dispersion of profit is also more relevant 

compared with other risk levels. Instead, the lowest dispersion of profit is attainable for 1 . Hence, a 

risk-averse producer would expect a lower variability of the expected profit. 

 
6. Conclusions 

 

A stochastic programming approach is proposed in this paper, along with a hybrid intelligent approach 

to generate price-wind power scenarios, enabling wind energy trading in a market environment under 

uncertainty. The uncertainties are related to energy market prices and wind power production.  

Risk aversion is also incorporated by limiting the volatility of the expected profit through the CVaR 

methodology. A thorough comparison of the optimal offering strategies in the market for different risk 

levels is presented in this paper, illustrating the proficiency of the proposed approach on a realistic case 

study, while assuring an acceptable computation time. 
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Figure captions 

 

 

 

 
 

Fig. 1. VaR and CVaR illustration. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2.  Scenario tree. 
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Fig. 3. Layout of the constraints associated with two stages. 

 

 

 

 

 

 

 

 
 

Fig. 4. Energy market price scenarios considered in the case study. 
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Fig. 5. Wind power scenarios considered in the case study. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Optimal hourly bids for different risk levels. 
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Fig. 7. Optimal offers to be submitted to the day-ahead market, and wind power  

production, for a risk level corresponding to 1 . 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Deviations resulting from the difference between the offers and the wind power  
production for a risk level corresponding to 1 . 
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Fig. 9. Expected profit versus profit standard deviation. 
 

 

 

 

 
 
 
 

 
 

Fig. 10. Histogram of the profits for the risk level corresponding to β = 0.  
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Fig. 11. Histogram of the obtained profits for the risk level corresponding to β = 0.5.  
 

 

 

 

 

 

 
 

Fig. 12. Dispersion of profit for different risk levels. 
 

 

 



 23

Tables 

 

Table 1 
Scenarios considered, number and probability 
 
 

 Number of scenarios Probability 

Energy price scenarios 10 0.10 

Wind power scenarios 10 0.10 

Imbalance price ratio scenarios 10 0.10 

Total scenarios 1000 0.001 

 

 

Table 2 

Comparison of the increase in profit for several risk levels 
 
 

Risk level Profit standard deviation (€) Expected Profit (€) % Increase CPU Time (s) 

1.0 965 18478 - 1.62 

0.9 969 18482 0.02 1.09 

0.8 971 18486 0.04 1.05 

0.7 973 18493 0.08 1.03 

0.6 976 18511 0.18 1.01 

0.5 978 18519 0.22 0.98 

0.4 989 18546 0.37 0.96 

0.3 1001 18599 0.65 0.92 

0.2 1050 18675 1.07 0.88 

0.1 1108 18702 1.21 0.82 

0.0 1268 18719 1.30 0.76 

 

 

Table 3  

Confidence intervals 
 
 

Risk Level Confidence interval of 95% regarding the expected profit 

0 [ 18509 ; 19016 ] 

0.5 [ 18399 ; 18787 ] 

1 [ 18368; 18754 ] 
 


