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Abstract 12 
 13 

The intermittent nature of wind generation will lead to greater demands for operational flexibility. Traditionally, reserves came 14 

from conventional power plants provide the majority of additional required flexibility leading to higher efficiency losses due to 15 

technical restrictions of such units. Recently, demand response programs and emerging utility-scale energy storages gained much 16 

attention as other flexible options. Under this perspective, this paper proposes a robust optimization scheduling framework to 17 

derive an optimal unit commitment decision in systems with high penetration of wind power incorporating demand response 18 

programs as well as bulk energy storages in co-optimized energy and reserve markets. In this regard, an improved demand 19 

response model is presented using the economic model of responsive loads based on customer’s behavior concept that gives 20 

choice right opportunity to customers in order to participate in their desired demand response strategy. Moreover, bulk energy 21 

storages are considered to be as active market participants. Computational results demonstrate how coordinated operation of 22 

different type of demand response programs and bulk energy storages can help accommodate wind power uncertainty from the 23 

economic and technical points of view.  24 
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1. Introduction 30 

In recent years, wind energy penetration has increased remarkably due to government policies and support schemes 31 

to drive more renewable energy into the power market and the prospect for deployment of wind energy continue to 32 
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grow in the future. This high share of variable wind generation may cause to flexibility gap in two ways. On one 33 

hand, the stochastic nature of wind generation increase supply side variability and hence increases the need for 34 

additional flexibility. On the other hand, wind generation displaces part of flexible conventional units according to 35 

their merit order in dispatch and consequently reduces the available flexible capacity of power grid [1]. In the light 36 

of the mentioned changes, not only the average operating efficiency decreased but also the system reliability put at 37 

risk [2]. Having these impacts in mind, there is an essential need for a greater operational flexibility through new 38 

emerging flexible technologies.  39 

The flexibility options are classified into five basic categories including supply side fleet, demand side options, 40 

energy storages, network utilization, and improvement of the system operation principles in [1]. Moreover, reference 41 

[3] presents the same categorization with the exception that market mechanisms is also considered as an independent 42 

option. However, the focus of the current paper is on the potential of Demand Side Management (DSM) and 43 

emerging bulk Energy Storages (ESs) as flexible technologies alongside conventional supply side power plants. 44 

Demand Response (DR) is known as a powerful measure that has potential to facilitate grid integration of wind 45 

power. In this regard, a comprehensive investigation on the role of DR for handling renewable energy resource 46 

intermittency is conducted in [4]. Moreover, a wide range of potential benefits of DR in power system operation, 47 

planning, and market efficiency in future smart power grid is presented in [5].  48 

DR can motivate consumers to increase their consumption when there is an extra amount of wind generation and 49 

also DR programs can encourage consumers to decrease their load when the wind power output is low. This 50 

rationale mechanism reshapes the load profile of the system and result in a flatter net load (load minus wind power) 51 

and potentially reduces the need for up and down ramping services. In this regard, Parvania and Fotuhi-Firuzabad 52 

[6] propose a load reduction DR program in order to achieve a smoother load profile and decrease the steep ramps of 53 

the net load caused by wind generation in a market-based environment. The drawback with this work is that the DR 54 

program used in this research only provides load reduction and the effects of load recovery is not studied. Yousefi et 55 

al. [7] has gone a step further by considering load reduction as well as load recovery using the self and cross price 56 

elasticity concept. However, the mentioned study used a deterministic approach while wind power has a stochastic 57 

nature.  58 

The impacts of different types of DR programs on the operation of conventional units in the presence of variable 59 

wind generation is explored in [8] using a stochastic programming approach.  However, the stochastic optimization 60 
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approach exhibits some practical drawbacks in the application to large-scale power systems [9]. This is due to the 61 

fact that some uncertain parameters are difficult to characterize using distribution functions. Furthermore, obtaining 62 

a reliable solution through stochastic programming approach requires a large number of scenario sets, leading to 63 

large scale optimization problem that may difficult to solve or computationally intractable [9]. Moreover, the current 64 

paper improves the previous DR model considering customer’s behavior as described in the next section. 65 

In recent years, utility-scale ESs have experienced a very rapid growth and known as an effective alternative to 66 

manage renewable energy intermittency by facilitating implementation of corrective actions across the transmission 67 

networks. On this basis, different technologies of energy storage can be utilized including batteries, Super capacitors 68 

and hybrid energy storage [10]. In [11], three different electrochemical energy storage systems, i.e., batteries, super 69 

capacitors, and a dual buffer are compared, and subsequently a framework is presented to optimize the sizing of 70 

energy storage and energy management. Plug-in electric vehicles are also a flexible option that can be categorized 71 

into both demand side options and energy storages [12]. The mentioned energy storage options can mitigate the 72 

wind variability, since they can alleviate the variety between the electricity supply and demand in power systems 73 

with high penetration of wind power [13].  74 

The state of the art of the ES’s technologies for wind power integration support is discussed in [14] from different 75 

aspects. Also, different opportunities and challenges to large-scale adoption of utility-scale ESs that are best suited 76 

to reduce the variability associated with stochastic nature of renewable energy sources are addressed in [15]. The 77 

state of the art of three different types of ES’s technologies namely pump hydro storages, batteries, and fuel cells are 78 

reviewed extensively in [16] with application to manage the intermittency of renewable generations. In addition, 79 

operation principles and the ability of four kinds of ES’s systems to mitigate the uncertainty of wind power 80 

including Compressed Air Energy Storage (CAES), superconducting magnetic energy storage, flywheel energy 81 

storage system, and hydrogen energy storage system are explained in [17]. 82 

Das et al. [18] evaluate the performance and economics of CAES as an active market participant in energy and 83 

ancillary co-optimization markets. The paper also considers the cycling costs incurred by conventional power plants 84 

as a result of wind power variations. However, it seems that the main drawback with this work is related to 85 

deterministic modeling of the objective function where there is not any uncertain parameter in the proposed model.  86 

Pozo et al. [19] propose a stochastic real-time unit commitment to deal with the uncertainty of variable wind 87 

generation incorporating generic energy storage units. The paper categorizes the ES benefits in three ways 88 
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including: reducing the total operation cost, smoothing the power generation profile, and providing sufficient reserve 89 

to accommodate large amount of uncertain renewable resources. However, there are certain differences between 90 

[19] and the present work, since, in [19], the system load profile is considered to be inelastic, whereas in this paper 91 

not only the elastic characteristic of demand has been modeled using different DR strategies, but also robust 92 

coordination of bulk ESs and DR programs is investigated. Hence, the paper’s main contributions are listed as 93 

follow: 94 

 To propose a robust optimization approach that coordinates the optimal operation of bulk ESs and different 95 

DR strategies in order to allow system operators to response to wind power variability in a cost effective 96 

way. 97 

 To develop an intelligent DR model that gives choice right opportunity to customers in order to participate 98 

in different DR strategies based on customer’s behavior. 99 

 To assess the technical and economic performance of conventional power plants in energy and reserve 100 

markets under various scenarios as a consequence of motion toward a more flexible power grid. 101 

The reminder of the paper is organized as follows. Section 2 deals with the modeling of DR programs, bulk ESs, and 102 

uncertain wind power output formulation. A robust optimization model to determine the optimal coordinated 103 

scheduling of DR, ESs, and conventional units is presented in section 3. The main results are illustrated in section 4 104 

for the IEEE-RTS test system. Finally, section 5 concludes the paper.  105 

2. Model of DR programs, ESs, and uncertain wind generation 106 

In this section, an improved version of the economic model of responsive loads based on the price elasticity concept 107 

and customer’s behaviour is presented, firstly. Afterward, a typical bulk ES model and uncertain wind power output 108 

formulation are presented respectively in order to integrate into the proposed robust optimization formulation in the 109 

next section. 110 

2.1. Improved economic model of responsive loads 111 

In general, DR refers to change in typical consumption pattern of customers in response to change in electricity 112 

tariffs or a specified given incentives in order to achieve economic and reliability purposes. According to the given 113 

definition, DR programs are categorized in two main groups so-called, Time-Based Rate DR Programs (TBRDRPs) 114 

and Incentive-Based DR Programs (IBDRPs). As it has been demonstrated in [20] and due to the fact that 115 

customer’s reaction in response to TBRDRPs is not similar to his/her reaction in consequence of IBDRPs, the paper 116 



5 

 

proposes an improved intelligent DR model based on the developed concept in [20] that gives choice right 117 

opportunity to customers in order to participate in different DR strategies based on customer’s behavior.  118 

In fact, despite of the mentioned study in [20] that investigated the effects of customer’s behavior for IBDRPs and 119 

TBRDRPs separately, this paper evaluates the impacts of both IBDRPs and TBRDRPs simultaneously and 120 

consequently gives an opportunity to customers to response to their favorite DR program. Furthermore, it should be 121 

noted that authors in [20] just assess the applicability of Time of Use (TOU) program as a TBRDRP; whereas the 122 

current paper investigates the effects of the whole TBRDRPs including TOU, Real-Time Pricing (RTP), and Critical 123 

Peak Pricing (CPP). In this study, TBRDRPs are interpreted as mandatory programs which are usually implemented 124 

obligatory by system operators while IBDRPs are named as voluntary programs that are motivated customers using 125 

an incentive payment.  126 

In order to avoid restatement of general model of economic loads based on price elasticity of demand, the 127 

consumer’s consumption after DR implementation has been derive directly from the model developed by Aalami et 128 

al. [21] as it can be seen in Eq. (1). It is noteworthy that the model is based on the customer’s benefit function and 129 

the formulation procedure is explained step by step in [21]. 130 
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  Eq. (1) represents the customer’s modified consumption as a consequence of TBRDRPs as well as IBDRPs as a 131 

linear function. It is notable that in the above equation, tA   is a positive value in peak periods and zero in other 132 

periods. This model is extended by Teimourzadeh Baboli et al. [20] as it can be seen in Eq. (2) considering human 133 

behavioral aspects. 134 
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In Eq. (2), A is a weighting coefficient that represents the customer’s tendency to participate in one of the IBDRPs 135 

or TBRDRPs. In other word, the more value for the coefficient indicates that customers make more response to 136 

IBDRPs in compare with TBRDRPs. Although such a model considers customer’s behavior in response to 137 

incentives, but the fact that has not been addressed is that customer’s response to IBDRPs affect the customers 138 

participation in other TBRDRPs and vice versa. Therefore, the model is improved as given in Eq. (3) which 139 

considers the movements of customer’s interest from participation in obligatory TBRDRPs to voluntarily IBDRPs. 140 
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2.2. Typical bulk ES model 141 

It is well known that bulk ES technologies can bring significant benefits such as arbitrage, load following, spinning 142 

reserve, stability improvements, and enhancing dispatchability of renewable resources from the system operator’s 143 

point of view according to their operation moods [22]. Reviewing the previous works reveals that the most widely 144 

used bulk ES technology is pump hydro storage. However, the recent studies are concentrated on emerging bulk ESs 145 

such as CAESs and advanced batteries. In order to find an appropriate sense about bulk ES technologies, rating 146 

power of various ESs are compared as it can be seen in Table 1 [14]. 147 

"See Table 1 at the end of the manuscript". 148 

It is noteworthy that the global energy storage database of U.S. Department of Energy has given comprehensive 149 

information about the realization of different operational and under construction ES sites in real world, in details 150 

[23]. 151 

This paper models a generic bulk ES as an active market player that can not only independently offer in day-ahead 152 

energy market, but also provide up/down spinning reserve and even more non-spinning reserve through both its 153 

charging and discharging operations. On this basis, a generic bulk ES is modeled by Eqs. (4)-(12).  154 

,max0 ChES dsr ChES ChES
jt jt j jtP P P I    (4) 

,max0 DeES usr DeES DeES
jt jt j jtP P P I    (5) 

,max0 DeES usr nsr DeES
jt jt jt jP P P P     (6) 

1DeES ChES
jt jtI I   (7) 

0 ESU usr
jt jtsr P   (8) 

0 ESD dsr
jt jtsr P 

 
(9) 

     1
ES ES ChES dsr DeES usr nsr
jt Ch jt jt DeCh jt jt jtj tE E P P P P P      

 
(10) 

,min ,maxES ES ES
j jt jE E E 

 
(11) 

,max
,

ES ES
j initial j jE E

 
(12) 
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The limits on the capacity of ES while getting charged and discharged are considered in Eqs. (4) and (5), 155 

respectively. Note that Eqs. (4) and (5) have two terms including day-ahead energy and up/down spinning reserve 156 

capacity markets and also Eq. (6) deals with the non-spinning reserve capacity provided by bulk ES. Moreover, Eq. 157 

(7) prevents simultaneous charge and discharge operation of ES at a same hour. Eqs. (8) and (9) restrict the actual 158 

deployed real-time reserves for corrective actions in the worst case according to the scheduled reserve capacity in 159 

day-ahead market. The amount of stored energy within reservoir of bulk ES j at hour t as a function of energy stored 160 

until hour t-1, participation in energy and up/down spinning reserve markets is represented by Eq. (10). The 161 

maximum and minimum levels of storages in hour t are also considered through Eq. (11). Finally, Eq. (12) shows 162 

the initial stored energy level of bulk ES as a function of its maximum reservoir capacity. 163 

2.3. Uncertain wind power output formulation 164 

Higher penetration of variable renewable energy resources such as wind power have posed new challenges on 165 

system operator’s performance and motivated them to look for an effective approach that produces robust unit 166 

commitment and ensures the system reliability in real-time operation. Recently, robust optimization has gained a 167 

significant attention due to its computationally efficient and preserving simplicity of the model.  168 

In order to model uncertain wind power output, as shown in [24]-[25], it is assumed that the wind power output is 169 

within an interval * *,bt bt bt btW W W W     where the forecasted value of wind power at bus b in hour t is *
btW . Also, 170 

the lower and upper range of deviations from *
btW  is represented by btW   and btW  , respectively. It should be noted 171 

that the mentioned interval can be determined based on historical data or an interval forecast for the wind power 172 

output. However, without loss of generality, we can use quantiles for generated the interval considering the interval 173 

range is equal to the 0.95- and .05-quantiles of the random wind power output, respectively as in [24]-[25]. On this 174 

basis, the actual wind power output, btw  , can be any value in the given interval. In order to adjust the conservatism 175 

of the robust optimization problem, the paper employs the uncertainty budget parameter, b that is an integer 176 

parameter between 0 and T which restrict the number of hours in which the wind power output is far away from its 177 

forecasted value at bus b. Therefore, it is obvious that 0b   is related to the deterministic case. It is notable that 178 

the worst case actual wind power output scenario happens when wind power output gets its upper limit, lower limit, 179 

or forecasted value so that the total number of hours in which wind power output is not as its forecasted value should 180 

be equal or less than the uncertainty budget. As it is stated in [24], the robust optimal scheduling solution will be 181 
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feasible for any other wind power scenario with probability nearly higher than 95% when 8b  . On this basis, in 182 

this study the value of uncertainty budget is set to 8. Meanwhile, system operators can consider further values for 183 

b to guarantee the obtained solutions more and more. Accordingly, the wind power uncertainty set can be 184 

expressed as Eq. (13). 185 

 *

1
: : ,

T
B T

bt bt bt bt bt bt bt bt b
t

D w w W Z W Z W Z Z    
      



 
        
 

  (13) 

In the above equation btZ 
  and btZ 

  are binary variables that determined the realization of wind power output. For 186 

instance, if 1btZ 
  , the wind power output reaches its upper bound while if 1btZ 

  , the wind power output 187 

reaches its lower bound. Also, if both of them are 0, forecasted value is attained. The conservatism of the model is 188 

also considered through the uncertainty budget as given in the above equation. The robust optimization formulation 189 

that incorporates wind power uncertainty using the predefined uncertainty set is presented in the following section.   190 

3. Robust scheduling formulation 191 

3.1. Objective function 192 

The objective function is related to determination of the day-ahead energy and reserve dispatch in power systems 193 

under high penetration of wind power considering the cooperative scheduling of emerging bulk ESs and different 194 

type of DR strategies. Such an optimization problem is a two-stage decision making problem including day-ahead 195 

energy and reserve dispatch (here-and-now decisions) as well as the redispatch at the balancing stage (wait-and-see 196 

decisions) due to the realization of the wind power. The conceptual representation of the proposed robust scheduling 197 

problem can be sketched as show in Fig. (1). 198 

"See Fig. 1 at the end of the manuscript". 199 

The Independent System Operator (ISO) purpose is to minimize both of the day-ahead dispatch costs as well as 200 

worst case balancing costs, simultaneously. The day-ahead dispatch costs include: energy dispatch cost and spinning 201 

and non-spinning reserve capacity costs that are provided through conventional generation units and bulk ESs in 202 

market environment. Wind power producers are also offers their price-quantity packages to ISO according to their 203 

forecasted power generation with the exception that unlike other market players, ISO integrates the total amount of 204 

offered wind generation in the energy generation dispatch due to their merit order. As described former, mandatory 205 

TBRDRPs and voluntary IBDRPs are also considered as DR strategies that implement by ISO. Therefore, the cost as 206 

a result of incentive payment in peak hours to customers is incorporated to the day-ahead dispatch costs.    207 
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The worst case corrective actions are performed by adjusting up/down deployed reserve through conventional 208 

generation units and bulk ESs. Moreover, ISO has the possibility of curtailing a partial of the wind power generation 209 

or shedding customers load in emergency circumstances.  The objective function can be mathematically formulated 210 

as it can be seen in Eq. (14). 211 

 

 
1 1 1 1 1
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1 1

*
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ES Energy DeES ES U usr ES D dsr ES NSR nsr
jt jt jt jt jt jt jt jt

t j

NB
wind
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
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   
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   
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 
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
 
 
 
 



 (14) 

 212 

In the formulation above, D and B indicate the set of day-ahead and balancing stage decision variables, 213 

respectively. Notice that in the model above, we can introduce an auxiliary variable  representing the worst case 214 

recourse cost in a similar manner as [26], which is the optimal objective function value of the inner max-min 215 

problem in Eq. (14). As stated in [26], the objective function could then solve as a single minimization problem after 216 

enforcing the following constraints: 217 
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    
 
 
    
 

 

  
 (15) 

As a consequence the constraint above, the objective function is converted to a typical minimization problem as 218 

represented in Eq. (16). 219 
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The objective function should be minimized considering constraints given in Eqs. (3)-(13), Eq. (15) and the 220 

following constraints. It is notable that the remaining constraints can be separated explicitly into day-ahead and 221 

balancing stage constraints.  222 

3.1. Day-ahead dispatch constraints 223 
 DC power flow equation  224 

   * 0 ,
b b b

DeES ChES
it jt jt bt b t lt

i G j ES l L

P P P W LD d F b t
  

          (17) 

 0 0 0 ,lt bt b t lF X l t     
 

(18) 

 Transmission line flow limits  225 

max 0 max ,l lt lF F F l t    
 

(19) 

 Generation units start-up cost constraint 226 

( 1)( ) ,it i it i tSUC SC U U i t   
 

(20) 

 Power generation constraints 227 

1
,

NM
e

it itm
m

P P i t


  
 

(21) 

max0 , ,e
itm imP P i t m    

 
(22) 

min max ,i it it i itP U P P U i t   
 

(23) 

max ,usr nsr
it it it iP P P P i t    

 
(24) 

max ,usr
it it i itP P P U i t   

 
(25) 

min ,dsr
it it i itP P P U i t   

 
(26) 

 Up- and down-spinning and non-spinning reserve limits 228 

0 ,usr nsr
it it iP P RU i t    

 
(27) 

0 ,dsr
it iP RD i t   

 
(28) 

 0 1 ,nsr
it it iP U RU i t    

 
(29) 

 Minimum up and down time constraints 229 
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   , 1
2

1 ,
it MUT

it i it i t i
t t

U MUT U U MUT i t


 
 

     
 

(30) 

 , 1
2

,
it MDT

it i i t it i
t t

U MDT U U MDT i t


 
 

    
 

(31) 

 230 

 Ramp up and ramp down rate limits 231 

 min
, 1 , 11 ,it i t i it i i tP P RU U P U i t      

 
(32) 

 min
, 1 , 1 1 ,i t it i i t i itP P RD U P U i t      

 
(33) 

3.2. Balancing stage constraints 232 
 DC power flow equation in worst case 233 

     * 0 , ,
b b b

GU GD ESU ESD
it it jt jt bt bt bt bt lt lt

i G j ES l L

sr sr sr sr LS w W WS F F b t        
  

              (34) 

  , ,lt bt b t lF X l t       
 

(35) 

 Transmission line flow limits in worst case 234 

max max , ,l lt lF F F l t     
 

(36) 

 Deployed up- and down-spinning reserve limits 235 

0 , ,GU usr
it itsr P i t    

 
(37) 

0 , ,GD dsr
it itsr P i t    

 
(38) 

 Involuntary load shedding limit 236 

0 , ,bt b tLS LD d b t    
 

(39) 

 Wind spillage limit 237 

0 , ,bt btWS w b t     
 

(40) 

4. Numerical studies 238 

4.1. Input data characterization and assumption 239 

The modified IEEE 24-bus RTS is used to evaluate potential benefits of the proposed coordinated dispatch model 240 

including bulk ESs and DR programs in co-optimized energy and reserve markets. In this respect, it is assumed that 241 
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the six hydro units, which were on bus 22, are excluded. Also, two 500 MW wind farms (nearly 25% of total install 242 

generation capacity) and two 20MW bulk ES units are integrated in buses 21 and 22, respectively. The required data 243 

of the mentioned test system including generation units and network parameters are taken from [27]. The hourly 244 

load corresponds to a weekend day in winter as given in [27] while the peak of the day is assumed 2670 MW. The 245 

generation units offer energy is based on four linear segments between their minimum and maximum generation 246 

limits as stated in [19]. Moreover, it is presumed that generation units offer capacity cost for up spinning, down 247 

spinning, and non-spinning reserves are at the rates of 40%, 40%, and 20% of their highest incremental cost of 248 

producing energy, respectively. Moreover, the cost of deployed reserves at the redispatch stage is considered to be at 249 

the rate of highest incremental cost of producing energy as well. The spinning reserve market lead time is assumed 250 

to be 10 minutes. In order to have a realistic generation pattern for wind power, average of one-year historical data 251 

related to Sotavento wind farm is considered and scaled as forecasted wind power generation so that the total daily 252 

wind forecast is 6108 MWh while the total daily load is 53160 MWh (i.e. 11.5%). The initial electricity price is 253 

obtained by calculating the average of market clearing price before DR implementation which is approximately 254 

equal to 15 $/MWh. It is noteworthy that the load curve is divided into three periods: low-load period (1:00-8:00), 255 

off-peak period (9:00-16:00), and peak period (17:00-24:00).  256 

It is noticed that the current paper investigates the effects of various DR strategies including TBRDRPs as well as 257 

IBDRPs. Under this perspective, TOU, RTP, and CPP programs are considered as obligatory DR programs while 258 

Emergency DR Program (EDRP) is applied as an IBDRP. The TOU tariffs at the low-load and peak period is 7.5 259 

$/MWh and 30 $/MWh, respectively, otherwise it is assumed to be 15 $/MWh. Moreover, the electricity tariffs for 260 

the RTP program are considered as the obtained market clearing prices at each hour. In order to investigate the 261 

effects of CPP program, two hours with highest demand (i.e. 18 and 19) are considered as critical hours in which the 262 

rates of electricity set to be 60 $/MWh otherwise it is assumed to be 15 $/MWh. Moreover, the value of incentive 263 

payment at peak period is 15 $/MWh.  264 

The values of self and cross price elasticity of demand are extracted directly from [21]. The ES is assumed to have 265 

1:1 charge to discharge ratio and 4:1 reservoir energy capacity to discharge ratio with charging/discharging 266 

efficiency of 80%. Moreover, the bulk ES energy and up- and down spinning reserve offers are considered to be 10 267 

$/MWh, 6 $/MWh, and 6 $/MWh, respectively. Also, the offered cost of ES for providing non-spinning reserve is 268 

assumed to be 2 $/MWh. The state of charge of ESs is assumed to be between 10% and 90% according to the 269 
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suggestion of some manufacturers and the initial state of the charge of both ESs is considered to be 50%. The value 270 

of incentive for wind power integration that ISO should pay to wind power producer and penalty for wind power 271 

curtailment which is imposed to ISO in certain conditions are considered to be 15 and 20 $/MWh. Moreover, the 272 

maximum participation level of customers in DRPs is considered 20%.  273 

4.2. Case studies 274 

The proposed model was solved using CPLEX 12.5.0 [28] on an Intel Core i5-2410 computer at 2.3 GHz and 4 GB 275 

of RAM under General Algebraic Modeling System (GAMS) software. In the following numerical illustration sub-276 

sections, several studies are performed and the obtained results are discussed under two main categories: 277 

 Technical assessment: The studies mainly focused on evaluating the role of integrated operation of 278 

conventional power plants, bulk ESs, and DR programs in systems with high amounts of variable wind 279 

generation from technical point of view. In short, this part represents the technical potential benefits of a 280 

greater operational flexibility. 281 

 Economic assessment: The studies investigate the effectiveness of coordinated scheduling of ESs and 282 

different DR strategies from economical perspective. In fact, this part deals with economical potential 283 

benefits of a greater operational flexibility. 284 

The simulation results are presented in four cases. The base case is related to conventional scheduling of system 285 

without considering any flexible technology. In the first case, the behavior of bulk ESs as independent market 286 

participants is investigated. The second case just investigates the role of a typical DR program on optimal generation 287 

scheduling so that TOU program as well as EDRP are implemented simultaneously considering 0.5A  . Finally, 288 

the impacts of coordinated scheduling of ESs and DR programs (combination of two former mentioned cases) are 289 

explored in the third case.  290 

It is noteworthy that the dimensions of the mathematical programming approach have a negligible difference in 291 

various case studies. However, in order to clarify the dimension of the mathematical programming problem and 292 

convergence performance of the proposed model, the optimization statistics for the mentioned four cases are given 293 

in Table 2. 294 

"See Table 2 at the end of the manuscript". 295 
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4.3. Simulation results 296 

4.3.1. Day-ahead energy dispatch 297 

Fig. 2 indicates the impact of bulk ESs and DR programs on the day-ahead energy dispatch. According to Fig. 2, in 298 

case 1, the day-ahead energy dispatch decreases in peak hours and a part of demand is supplied by discharging the 299 

bulk ESs in the hours, as indicated in Fig. 3. On this basis, in hour 18 when the demand is maximum amount, the 300 

ESs inject power back to the grid with their maximum capacity. As it can be seen in case 2, DR programs cause that 301 

the units generation is increased in the valley period and decreased in the peak hours, and consequently the profile of 302 

generation becomes smoother. In case 3, since the total demand in peak period is reduced, the bulk ESs do not inject 303 

power back to the grid in hours 17 to 24. Alternatively, bulk ESs are discharged in off-peak period when the new 304 

demand is higher than other hours of the day. 305 

"See Fig. 2 at the end of the manuscript". 306 

"See Fig. 3 at the end of the manuscript". 307 

4.3.2. Ramping capability of conventional power plants 308 

The impact of conventional power plants’ ramp rate is illustrated in Fig. 4. In order to study the mentioned impact, 309 

the ramp rate of all conventional power plants is multiplied by a ramp rate factor. In addition, effect of 310 

implementation of different DRPs is investigated. Meanwhile, for the sake of simplicity of analysing the results, 311 

A is considered zero, hence, the impact of EDRP is not considered. As can be seen in Fig. 4.a, in operation of 312 

power system without implementation of DRPs, the bulk ESs are charged between hours 5 and 9, when the system 313 

cost is low. The charged amount is injected back to the grid in hours 10 to 13. Then, the ESs are charged again 314 

between hours 13 and 17 in order to have enough charge to inject back to the grid during peak hours. By decreasing 315 

the ramp rate of units (i.e. ramp rate factor=0.5), the bulk ESs are charged between hours 20 and 24. The reason is 316 

that the conventional power plants cannot decrease their generations to follow the demand reduction, thus, the bulk 317 

ESs play the role of demand to compensate the lack of ramp rate down of generators. This can increase the operation 318 

cost as indicated in Fig. 5. 319 

As can be seen in Fig. 4.b, implementation of TOU can change the behaviour of bulk ESs in the power system. In 320 

this case, the load profile is smoother than base case; hence, the number of charge and discharge cycles of ESs is 321 

lower. By increasing the ramp rate of conventional power plants (i.e. ramp rate factor=1.5) the mentioned number of 322 
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charge and discharge cycle is reduced. This can show that the power system prefers to follow the load changes by 323 

conventional power plants rather than the bulk ESs.         324 

"See Fig. 4 at the end of the manuscript". 325 

The impact of ramp rate of conventional power plants on the total operation cost is indicated in Fig. 5. As it can be 326 

seen, by increasing the ramp rate, the operation cost is decreased in all cases. However, the reduction is not linear 327 

and higher amount of ramp rate has no significant impact on the operation cost. It should be noted that, the cases 328 

with implementing TOU and RTP have the highest sensitivity to the ramp rate of conventional power plants. In 329 

these cases, by decreasing the ramp rate of units, the bulk ESs have to be charged in hours 20 to 24 in order to 330 

compensate the lack of ramp rate down of generators. Another key factor of operation cost is the start-up cost. As 331 

indicated in Fig. 6, a lower amount of ramp rate causes that the start-up cost of generation units is significantly 332 

increased in cases that TOU and RTP are implemented.  333 

"See Fig. 5 at the end of the manuscript". 334 

"See Fig. 6 at the end of the manuscript". 335 

4.3.3. Evaluation of DR strategies 336 

In this section, the different DR strategies are evaluated. The impact of different DRPs on the different terms of 337 

operation cost and the hourly amount of energy stored in the bulk ESs is studied. On this basis, three cases are 338 

considered based on the implementation of TOU, RTP and CPP. In all the cases, EDRP is implemented 339 

simultaneously by considering 0.5A  . The terms of operation cost is presented in Table 1.As it can be seen, 340 

implementation of TOU and EDRP has the lowest start-up cost and up/down reserve capacity cost. However, the 341 

cost of bulk ESs for supplying energy and reserve is the highest. The incentive cost in the case of implementing RTP 342 

and EDRP is the highest. It can be concluded that the tendency of responsive customers for participating in EDRP is 343 

higher when they have RTP as the TBRDRP option.   344 

"See Table 1 at the end of the manuscript". 345 

 346 

The amount of stored energy in the bulk ESs is illustrated in Fig. 7. According to Fig. 7.a and Fig. 7.c, in cases 347 

TOU+EDRP and CPP+EDRP, the bulk ESs are charged during hours 5 and 9, in order to supply a part of demand 348 

between hours 10-14. However, according to Fig. 7.b, in case RTP+EDRP, the only participation of the bulk ESs 349 
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during valley and off-peak periods is related to a 34.8 MW discharge at hour 12. It can be concluded that, the 350 

participation of bulk ESs in the electricity market is significantly high in both cases TOU+EDRP and CPP+EDRP 351 

during valley and off-peak hours. 352 

"See Fig. 7 at the end of the manuscript". 353 

4.3.4. Evaluation of customer behaviour 354 

In order to investigate the customer behavior, the demand profile is studied for different types of DRPs as well as 355 

different amounts of incentive factor. On this basis, A is changed between 0 and 1 and the amount of demand is 356 

obtained for each DRP as shown in Fig. 8. As it can be observed from Fig. 8.a, in the case of implementing 357 

TOU+EDRP, by increasing the incentive factor the amount of demand is decreased in the valley period, but the load 358 

does not have significant changes in other periods. In the case of implementation of RTP+EDRP, increasing the 359 

incentive factor has a significant impact on the peak demand. It should be noted that RTP has a lower impact on the 360 

peak shaving compared to TOU, CPP (as can be seen in 0A  ) and EDRP (as can be seen in 1A  ). In the case 361 

of implementation of CPP+EDRP, by increasing the incentive factor the peak demand is decreased, but the load 362 

does not change in other periods meaningfully.   363 

"See Fig. 8 at the end of the manuscript". 364 

4.3.5. System operation cost 365 

The daily operation cost in different cases is indicated in Fig. 9. As it can be seen, the case 3 is the most effective 366 

case and can decrease 7.2% of the total operation cost of the system. Following case 3, case 2 has the highest impact 367 

on reducing the cost. As it can be seen, case 1 that denotes presence of bulk ESs without implementation of DRPs 368 

has significantly lower effect on the system operation cost. 369 

"See Fig. 9 at the end of the manuscript". 370 

5. Conclusion 371 

This paper investigated the role of coordinated scheduling of bulk ESs and different DR strategies as two emerging 372 

flexible options in order to achieve a greater operational flexibility in systems with high amount of variable wind 373 

generation. Regarding this matter, a robust optimization problem was proposed to derive an optimal unit 374 

commitment in co-optimized energy and reserve markets. The numerical results showed that the coordinated 375 

dispatch of bulk ESs and DR programs can bring significant benefits for grid operators from economic and technical 376 
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points of view. Complementary case studies revealed that implementation of different DR strategies can change the 377 

optimal scheduling of bulk ESs as well as conventional generation units in market environment. Moreover, the 378 

results achieved in this study confirmed that the type of obligatory TBRDRPs can affect the customer’s participation 379 

in voluntary IBDRPs, remarkably. More exact modeling of DR programs and even investigating the effectiveness of 380 

other types of flexible technologies such as electric vehicles are interesting directions for future researches. 381 

 382 

Nomenclature 383 

Indices  

,b b   Index of system buses 

i  Index of generating unit 

j  Index of bulk energy storage units 

l  Index of transmission line 

m  Segment index for linearized fuel cost 

Tpeak  Index of peak hours 

  Index of worst case 

,t t   Index of hours 

NM  Number of segments for the piecewise linearized emission and fuel cost curves of units 

NG  Number of generation units 

NES  Number of bulk energy storage units 

NT  Number of hours under study 

NB  Number of network buses 

Parameters  

0
td  Initial electricity demand at hour t (MW) 

bLD  Demand contribution of bus b (MW) 

e
itmC  Slope of segment m in linearized fuel cost curve of unit i at hour t ($/MWh) 

iMPC  Minimum production cost of unit i ($) 
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0
t  Initial electricity price at hour t ($/MWh) 

t  Electricity tariff in TBRDRPs at hour t ($/MWh) 

UC
itC  Offered capacity cost of up-spinning reserve provision of unit i in hour t ($/MW) 

DC
itC  Offered capacity cost of down-spinning reserve provision of unit i in hour t ($/MW) 

NSR
itC  Offered capacity cost of non-spinning reserve provision of unit i in hour t ($/MW) 

UE
itC  Offered energy cost of up-spinning reserve provision of unit i in hour t ($/MWh) 

DE
itC  Offered energy cost of down-spinning reserve provision of unit i in hour t ($/MWh) 

,ES Energy
jtC  Offered energy cost of bulk energy storage j at hour t ($/MWh) 

,ES U
jtC  Offered capacity cost of up-spinning reserve provision of bulk ES j at hour t ($/MW) 

,ES D
jtC  Offered capacity cost of down-spinning reserve provision of bulk ES j at hour t ($/MW) 

,ES NSR
jtC  Offered capacity cost of non-spinning reserve provision of bulk ES j at hour t ($/MW) 

UE
jtC  Offered energy cost of up-spinning reserve provision of bulk ES j at hour t ($/MWh) 

DE
jtC  Offered energy cost of down-spinning reserve provision of bulk ES j at hour t ($/MWh) 

wind
bC  Offered energy cost of wind power producer of bus b ($/MWh) 

spillageC  Cost of wind power curtailment ($/MWh) 

btVOLL  Value of lost load in bus b at hour t ($/MWh) 

tA  Incentive payment at hour t ($/MWh) 

A  Incentive's weighting coefficient 

*
btW  Forecasted value of wind generation in bus b at hour t ($/MWh) 

/Ch DeCh   Charge/discharge efficiency of bulk ES 

ttElas   Price elasticity of demand 

min max
i iP P  Minimum/ Maximum output limit of generation unit i (MW) 

i iRU RD  Ramp up/down of generation unit i  (MW/h) 
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iSC  Start-up cost of generation unit i ($) 

i iMUT MDT  Minimum up/down time of generation unit i (h) 

,max ,max/ChES DeES
j jP P  Maximum charging/discharging power of bulk ES j (MW) 

,min ,max/ES ES
j jE E  Minimum/Maximum energy limit of bulk ES j (MWh) 

j  Percent of initial energy level of bulk ES j 

,
ES
j initialE  Initial state of the charge of bulk ES j at the beginning of scheduling horizon 

lX  Reactance of line l  

max
lF  Maximum capacity of transmission line l (MW) 

  Spinning reserve market lead time (h) 

Variables  

0 /bt bt   Voltage angle at bus b in hour t (rad) 

0 /lt ltF F   Power flow through line l in hour t (MW) 

itU  Binary status indicator of generation unit i in hour t 

/DeBatt ChBatt
jt jtI I  Binary indicator of net discharge/charge status of bulk BES j 

btLS   Involuntary load shedding in bus b at hour t of worst case (MWh) 

btWS   Wind power spillage in bus b at hour t of worst case (MWh) 

e
itmP  Generation of segment m in linearized fuel cost curve (MW) 

td  Modified demand of hour t after simultaneous IBDR and TBRDR programs (MW) 

TBRDRP
td  Modified demand of hour t after implementing only TBRDRPs (MW) 

itP  Total scheduled power of unit i in hour t (MW) 

itSUC  Start-up cost of generation unit i at hour t ($) 

/usr dsr
it itP P  Scheduled up- and down-spinning reserve capacity of unit i in hour t (MW) 

nsr
itP  

Scheduled non-spinning reserve capacity of unit i in hour t (MW) 
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/ChES DeES
jt jtP P  Scheduled charge/discharge power of bulk ES j at hour t (MW) 

/usr dsr
jt jtP P  Scheduled up- and down-spinning reserve capacity of bulk ES j in hour t (MW) 

nsr
jtP  Scheduled non-spinning reserve capacity of bulk ES j in hour t (MW) 

/U D
it itsr sr   Deployed up- and down spinning reserve of unit i at hour t of worst case (MWh) 

, ,/ES U ES D
jt jtsr sr   Deployed up- and down spinning reserve of bulk ES j at hour t of worst case (MWh) 

ES
jtE  Energy stored in bulk ES j at hour t (MWh) 
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Figure captions 459 

 460 

Fig. 1. Schematic representation of proposed robust scheduling problem. 461 

Fig. 2. Units generation in different cases. 462 

Fig. 3. Bulk ESs injection to the grid in different cases.  463 

Fig. 4. Impact of ramp rate on the stored energy in the bulk ESs, (a) without implementation of DRPs (b) with 464 

implementation of TOU program. 465 

Fig. 5. Impact of ramp rate on the operation cost. 466 

Fig. 6. Impact of ramp rate on the start-up cost. 467 

Fig. 7. Stored energy in the ESs, (a) TOU+EDRP (b) RTP+EDRP (c) CPP+EDRP. 468 

Fig. 8. Impact of incentive factor on the demand profile, (a) TOU+EDRP (b) RTP+EDRP (c) CPP+EDRP. 469 

Fig. 9. Operation cost in different cases. 470 
 471 

Table captions 472 

 473 

Table 1. Comparison of different energy storage technologies rating power [14] 474 

Table. 2. Optimization statistics for considered case studies 475 

Table 3. Terms of operation cost in different DR strategies ($) 476 

 477 
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Fig. 1. Schematic representation of proposed robust scheduling problem. 479 
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Fig. 2. Units generation in different cases. 481 
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Fig. 3. Bulk ESs injection to the grid in different cases. 483 
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(b) 487 

Fig. 4. Impact of ramp rate on the stored energy in the bulk ESs, (a) without implementation of DRPs (b) with 488 

implementation of TOU program. 489 
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Fig. 5. Impact of ramp rate on the operation cost. 492 
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Fig. 6. Impact of ramp rate on the start-up cost. 494 
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(b) 506 
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(c) 508 

Fig. 7. Stored energy in the ESs, (a) TOU+EDRP (b) RTP+EDRP (c) CPP+EDRP. 509 
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Fig. 8. Impact of incentive factor on the demand profile, (a) TOU+EDRP (b) RTP+EDRP (c) CPP+EDRP. 520 
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Fig. 9. Operation cost in different cases. 523 
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Table 1. Comparison of different ES technologies rating power [14] 550 

Energy storage technology Rating power range 

(MW) 

Pumped Hydro Storage (PHS) 100-5000 

Compressed Air Energy Storage (CAES) 5-300 

Flywheel Energy Storage (FES) 0-0.25 

Lead Acid (LA) battery 0-20 

Nickel Cadmium (NiCd) battery 0-40 

Lithium Ion (Li-ion) battery 0-0.1 

Sodium Sulphur (NaS) battery 0.05-8 

Vanadium Redox Battery (VRB) 0.03-3 

Zinc Bromine (ZnBr) 0.05-2 

Superconducting Magnetic Energy Storage (SMES) 0.1-10 

Super-Capacitor (SC) 0-0.3 

Fuel Cell (FC) 0-50 

 551 

 552 

 553 

Table. 2. Optimization statistics for considered case studies 554 

Case No. No. of iterations Solution time 

Base-case 4417 3.73 sec 

Case 1 4979 5.09 sec 

Case 2 4518 3.79 sec 

Case 3 6505 8.49 sec 

 555 

 556 
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Table 3. Terms of operation cost in different DR strategies ($) 562 

 TOU+EDRP+ES RTP+EDRP+ES CPP+EDRP+ES 

Start-up cost 677.4 1018.9 1150 

Generation unit production cost 393440 401520 393120 

Up/down reserve capacity cost 1223.02 2031.45 2976.93 

ES energy cost 1477.26 387.75 1280 

ES capacity reserve cost 923.29 242.34 800 

Incentive cost 949.67 8725.13 2967.7 

FIT cost 91633.95 91633.95 91633.95 

Worst case cost -4843.07 -6065.79 -7865.44 

Optimal operation cost 485481.52 499493.73 486063.14 
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