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Abstract 14 
 15 
Wind power integration has always been a key research area due to the green future power system target. However, the 16 
intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators 17 
(ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand 18 
Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to 19 
consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit 20 
Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power 21 
systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are 22 
evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid 23 
integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the 24 
success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are 25 
the main factors to modify the system load profile to support wind power integration.  26 
© 2014 Elsevier Ltd. All rights reserved. 27 
 28 
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 30 

1. Introduction 31 

The predominant share of conventional fossil fuel units in the electricity supply mix has increased concerns on 32 

climate change, energy security and price volatility. To address these concerns, many power systems have 33 

started changing their energy generation portfolios to include significant amounts of renewable energy  34 

resources [1]. Although most renewable energy resources have a dramatic installed capacity growth in the recent 35 

years, the development of wind power has enhanced much more, especially. The global installed wind 36 

generation capacity increased from 10 megawatts (MW) in 1980 to 282 gigawatts (GW) by the end of 2012 [2].  37 

 38 
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However, uncertain and non-dispatchable characteristics of wind power compared to other conventional plants 40 

may pose important challenges to power system operation. Highly intermittent nature of wind power may impair 41 

power system’s balance between supply and demand and lead to system reliability endangerment as well as 42 

higher operation costs. Furthermore, ramping requirement of the system in the presence of wind generation is 43 

more than the case where no wind power is generated. In such situation, existing generation units must ramp up 44 

and down more frequently and operate in de-rated capacity. As a result, the average operating efficiency will be 45 

decreased [3]. 46 

On this basis, a challenge that system operators are facing with large-scale integration of wind power is how to 47 

cope with and mitigate the wind variability and forecast uncertainties. To address the mentioned challenges, 48 

several different studies have conducted on large-scale grid integration of wind power. In this regard, providing a 49 

more flexible power grid is a common aim that can be seen in all previous researches. To achieve that aim, 50 

several solutions are presented for power system operators in former publications which can be classified into 51 

three major categories: 52 

1) Utilizing energy storage technologies. 53 

2) Providing additional reserve capacity throughout electricity market and improving market mechanism, 54 

rules and structures. 55 

3) Using flexible demand side resources.  56 

In a tremendous share of the previous researches utilization of a storage device alongside wind farms has been 57 

suggested. Rabiee et al. [4] review various storage systems for wind power applications. In addition, Jannati et 58 

al. [5] compare the ability of four different types of the energy storage systems to mitigate wind power 59 

fluctuations. Zafirakis and Kaldellis [6] propose an optimization model to determine the rated power and 60 

capacity of a Compressed Air Energy Storage (CAES) to accommodate high wind power penetration in remote 61 

island networks. A dynamic optimization model is presented by Loisel [7], which simulates the key role of 62 

CAES under two development scenarios for European Commission (EC) and French Transmission System 63 

Operator (RTE) by 2030.  64 

Combined operation of wind-hydrogen based, wind-flywheel based, and wind-pumped based energy storage 65 

systems are discussed by [8], [9], and [10], respectively. Also, applying a hydro power plant as a supplemental 66 

unit beside wind farms is another solution which is taken into consideration for reducing the intermittent impacts 67 

of wind generation[11]. 68 
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Another set of papers have proposed new market structures to facilitate wind power integration. Weber [12] 69 

discusses some key feature of the short-term adjustments required by wind energy and the necessity of intraday 70 

markets. The obtained results of a realistic case related to Australian National Energy Market (NEM) have been 71 

outlined in [13] which investigate policy and market design to facilitate wind integration. Other studies such as 72 

[14], [15], and [16] investigate additional reserve capacity requirements for reliable grid integration of wind 73 

power through electricity market environment, belonging to the second category. It is worthy to note that, 74 

application of deterministic approaches in wind-thermal scheduling problems is not effective due to the 75 

stochastic behaviour of wind generation. Hence, many recent papers focused on stochastic programming 76 

approaches as it has exerted in [15]-[16]. 77 

The third group of researches includes flexible demand side resources such as Plug in Hybrid Electric Vehicles 78 

(PHEVs) and Demand Side Management (DSM) solutions, particularly Demand Response (DR). Electric 79 

Vehicles (EVs) have been proposed as an option to alleviate the diversity between the electricity supply and 80 

demand in systems with high penetration of wind power as emphasized in [17], [18], and [19]. In addition to 81 

EVs, some papers investigated the major role of DR in compensating wind power uncertainties. The possible 82 

impacts of DR on power system operation with high penetration of wind power have been analysed in [20]-[21]. 83 

Many researches have been investigated to detail the impacts of DR on wind integration. Sioshansi and Short 84 

[22] evaluate the effects of a price-based DR program on the usage of wind power. Precisely, the impacts of 85 

Real-Time Pricing (RTP) implementation on increasing both the percentage of load that is served by wind 86 

generation, and potential wind generation is examined. In the paper, DR is implemented under a RTP tariff 87 

considering own price elasticity, only. Demand side resources have been considered in the form of peak clipping 88 

and demand shifting units with application to wind integration [23]-[24]. Parvania and Fotuhi-Firuzabad [25] 89 

propose an incentive-based DR program in order to achieve a smoother load profile and decrease the steep ramps 90 

of the net load (load minus wind power) caused by wind generation in a market-based environment. The 91 

drawback with this work is that the DR program used in this reference only provides load reduction. Yousefi et 92 

al. [26] has gone a step further by considering load reduction as well as load recovery using the self and cross 93 

price elasticity concept. 94 

The above mentioned studies use deterministic approaches while wind power has a stochastic nature. Moreover, 95 

quantitative metrics have not been addressed for the concept of flexibility in the literature. Most of flexibility 96 

studies are based on multi-temporal simulation of power system operation. In other words, a detailed simulation 97 

is required to calculate the mentioned metrics, in order to analyse and estimate the flexibility level of a system.  98 
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On this basis, this paper presents a two stage Stochastic Network Constrained Unit Commitment incorporating 99 

DR (SNCUCDR) with application to wind power integration in which various types of voluntary DR programs 100 

are also taken into account. The contributions of this paper are threefold: 101 

• Investigating the effects of various voluntary DR types, DR participation levels and electricity tariffs on 102 

providing a flexible load profile and facilitating grid integration of wind power. 103 

• Quantifying the flexibility concept by proposing novel technical and economic indices to evaluate the 104 

impact of various DR programs implementation on flexibility enhancement.   105 

• Stochastic scheduling of both generation units and responsive loads in power systems with high 106 

penetration of wind power to minimize total operating cost and air pollutant emissions, simultaneously. 107 

The rest of this paper is organized as follows. Section 2 deals with modelling the proposed DR programs. 108 

Mathematical formulation of the problem is given in section 3. Section 4 introduces novel indices for evaluating 109 

the effectiveness of different DR programs on wind integration. Simulation results are presented in section 5. 110 

Finally, section 6 outlines conclusions. 111 

2. Economic model of responsive loads 112 

DR comprises some reactions taken by the end-use customers to decrease or shift the electricity consumption in 113 

response to change in the price of electricity or a specified incentive payment over time. Several studies have 114 

described the advantages of DR in electricity markets [27]-[28]. According to the benefits of DR programs for 115 

achieving reliable and efficient electricity markets, the programs have been legalized and implemented in several 116 

countries [29]. Aghaei and Alizadeh [30] assess DR benefits in seven categories: economic; environmental; 117 

pricing; market efficiency; customer services; lower cost electric system and services; risk management and 118 

reliability. DR programs are categorized into two basic groups, called Price-Based Programs (PBPs) and 119 

Incentive-Based Programs (IBPs) [31]. It should be note that, IBPs are classified into three subsets namely; 120 

voluntary, mandatory, and market clearing programs. Each of these groups is consisted of several programs as 121 

depicted in Fig. 1.  These DR programs are discussed in more detail in [29]. 122 

"See Fig. 1 at the end of the manuscript". 123 

In order to model responsive load, the current paper uses the concept of elasticity of demand to model load 124 

reduction and load recovery by participants in DR programs. In this context, the comprehensive economic model 125 

of DR programs developed by Aalami et al. [32] is considered to indicate the necessity of DR programs in 126 

providing a flexible load profile. This provided flexibility can potentially increase wind power integration into 127 

the grid in a cost effective way.  128 
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In this paper, both the priced-based and incentive-based DR programs are taken into account. The highlighted 129 

boxes in Fig. 1 refer to the considered voluntary DR programs implemented to achieve flexible load in the paper.  130 

2.1. Price-based DR model 131 

Price-based DR programs persuade end-use customers to decrease or shift their demand by changing electricity 132 

tariffs. The paper considers Time-of-Use (TOU) and Real-Time Pricing (RTP) programs with a rationale view. 133 

The main reason is that the Critical Peak Pricing (CPP) applied in emergency conditions in a few days of a year, 134 

therefore the program is not considered as a permanent implemented DR program such as TOU and RTP. 135 

In order to represent the customer’s sensitivity to change in electricity tariffs, the current paper uses the concept 136 

of elasticity of demand. Elasticity is defined as the load’s reaction to the electricity price. As the elasticity 137 

increases, the load sensitivity to price increases as well. In fact, the elasticity is used to estimate the load 138 

reduction and load recovery by DR participants. The price elasticity of demand in t-th period versus t'-th period 139 

can be defined as it can be seen in Eq. (1).  Actually, demand can react to change in electricity tariffs in one of 140 

followings. A set of loads is reduced without recovering it later, the so-called fixed loads. Such loads have 141 

sensitivity just in a single period and it is called “self-elasticity”. This value is always negative. Some loads 142 

could be moved from the peak periods to off-peak periods as required, namely transferable loads. Such 143 

behaviour is called multi period sensitivity and it is evaluated by “cross-elasticity”. This value is always positive. 144 

The concepts of self and cross-elasticity are represented by Eq. (2). 145 

0

0

( )( )( , ) . 1, 2,3,..., 24
( ) ( )

td tE t t t
t d t

ρ
ρ

′∂′ ′= =
′∂

 (1) 

where 

( , ) 0 ( ) , 1, 2,..., 24
( , ) 0 ( )

E t t if t t d tand constont for t t
E t t if t t tρ

′ ′≤ =⎧ ∂ ′= =⎨ ′ ′ ′≥ ≠ ∂⎩  

(2) 

If the value of electricity from customer’s point of view for using ( )d t during hour t is considered as ( ( ))B d t , 146 

the customer net benefit can be calculated as follows: 147 

( ( )) ( ). ( )NB B d t d t tρ= −  (3) 

As mentioned previously, the first term in Eq. (3) indicates the income of customer from the use of ( )d t in hour 148 

t, and the last term in Eq. (3) is related to electricity cost in hour t. It should be note that calculation of ( ( ))B d t  149 

is behind the scope of the current paper and more details are given in [33]. 150 

 151 



6 

To maximize the customer’s net benefit, the derivate of Eq. (3) should be equal to zero:  152 

( ( )) ( ) 0
( ) ( )

NB B d t t
d t d t

ρ∂ ∂
= − =

∂ ∂
 (4) 

As a consequence: 153 

( ( )) ( )
( )

B d t t
d t

ρ∂
=

∂
 (5) 

In general, the customer’s net benefit is considered as a quadratic function of his/her consumption as follow [33]: 154 

[ ] 0
0 0 0

0

( ) ( )
( ( )) ( ) ( ) ( ) ( ) 1

2 ( , ) ( )
d t d t

B d t B t t d t d t
E t t d t

ρ
⎧ ⎫−

= + − +⎨ ⎬
⎩ ⎭

 (6) 

By differentiating Eq. (6) and substituting the results in Eq. (5), the initial price-based economic load model will 155 

be obtained as shown in Eq. (7): 156 

[ ]0
0

0

( , ) ( ) ( )
( ) ( ) 1

( )
E t t t t

d t d t
t

ρ ρ
ρ

⎧ ⎫−⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

 (7) 

According to the concept of the cross elasticity, a change in the electricity price in hour t ′may cause the load 157 

variation in hour t as represent in Eq. (8).  158 

[ ]
24

0
0 0

1 0

( )
( ) ( ) ( , ) ( ) ( )

( )t
t t

d t
d t d t E t t t t

t
ρ ρ

ρ′=
′≠

′ ′ ′= + −
′∑  (8) 

As a result of the combination of Eqs. (7) and (8), the comprehensive price-based DR model will be obtained as 159 

shown in Eq. (9). 160 

24
0

0
1 0

[ ( ) ( )]
( ) ( ) 1 ( , ).

( )t

t t
d t d t E t t

t
ρ ρ

ρ′=

′ ′⎧ ⎫−′= +⎨ ⎬′⎩ ⎭
∑  (9) 

Equation (9) indicates the optimum amount of customer consumption in a 24 hours period while participating in 161 

price-based DR programs. 162 

2.2. Incentive-based DR model 163 

Incentive-based DR programs are also encouraging customers to change their typical demand in return for a 164 

specified incentive payment. Emergency DR Program (EDRP) is a voluntary incentive-based program which 165 

considers no penalty for customers. Since in most communities reward leads to a significant improvement in 166 

subjects’ behaviour in compare with punishment [34], and the fact that EDRP also provides more right choice 167 

for customers in comparison with Direct Load Control (DLC) program, therefore among all DR programs fall in 168 

IBPs category, EDRP is chosen in this paper.  169 
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Unlike price-based DR programs, implementation of EDRP imposes some cost to Independent System Operators 170 

(ISOs). This cost is related to the incentive payments to customers for their load reduction in specific hours and 171 

formulate as bellow in each hour: 172 

( )0( ) ( ) ( ) ( )EDRPC t A t d t d t= × −  (10) 

Therefore, the customer net benefit can be calculated as it can be seen in Eq. (11): 173 

( )0( ( )) ( ). ( ) ( ). ( ) ( )NB B d t d t t A t d t d tρ= − + −  (11) 

Through the similar procedure explained in the former subsection in details, the final EDRP model will be 174 

achieved: 175 

24

0
1 0

( )( ) ( ) 1 ( , ).
( )t

A td t d t E t t
tρ′=

⎧ ⎫′
′= +⎨ ⎬′⎩ ⎭

∑  (12) 

By substituting the above equation in Eq. (10), the cost of customer's participation in EDRP from ISO 176 

perspective can be formulated as Eq. (13): 177 

224

0
1 0

( )( ) ( ) ( , ).
( )EDRP

t

A tC t d t E t t
tρ′=

⎧ ⎫′
′= ⎨ ⎬′⎩ ⎭

∑  (13) 

From Eq. (13), it can be concluded that ( )EDRPC t is a quadratic function of incentive as shown in Fig. 2. The 178 

function can be accurately approximated by a piecewise linear model as represent in Eq. (14).  179 

( ) ( )
1

( )
NS

EDRP n n
n

C t v t AS t
=

=∑  (14) 

"See Fig. 2 at the end of the manuscript". 180 

3. Problem description and formulation 181 

The objective of the proposed SNUCDR model is to schedule conventional units and DR resources such that the 182 

total operation costs of the system with large amount of wind power are minimized as well as air pollutant 183 

emissions. In this regard, a two stage stochastic network constrained market clearing procedure which links 184 

demand and supply-side resources to the generation scheduling problem presented. The applied two stage 185 

stochastic programming is well-known and has been used in same problems, already [35]-[36].  186 

The first-stage actually represents the decisions to be declared as hourly unit commitment statuses of thermal 187 

generation units, while the second stage represents possible instances of the wind-power generation that should 188 

be altogether considered (according to their probability) in order to obtain a single day-ahead market clearing. 189 

Indeed, the main purpose of the proposed stochastic programming model is to decide the commitment status of 190 

generation units in day-ahead market for high wind penetrated power grids.  191 
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It is worthy to note that, although the present paper uses stochastic programming model, for the sake of 192 

simplicity, the DR programs are given in their deterministic form. Hence, the only stochastic parameter 193 

appertains to wind farm generation. The main objective of this formulation is to determine an optimal wind-194 

thermal generation scheduling considering different DR programs with the aim of increasing system flexibility to 195 

facilitate wind power integration. The schematic of proposed model is shown in Fig. 3. 196 

Mathematically, SNCUCDR is a decision making problem with an objective function should be minimized while 197 

satisfying several equality and inequality constraints from the ISO’s point of view. 198 

"See Fig. 3 at the end of the manuscript". 199 

The objective function for SNCUCDR can be represented as: 200 

( ) ( )

( )2 2
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. .

. ( ( ) ( )) ( ) ( )
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i
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e e re nre
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ω

=

=

⎡ ⎤+ + ⋅ + ⋅⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ⋅ + ⋅ + ⋅∑∑ ∑ ∑∑⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤+ + ⋅ ⋅ + ⋅ ⋅⎣ ⎦+ ⋅

∑∑

∑ 1

int

( )

iNSE

i t

curt
FIT st cur st

t

EDRP
t

W W

C t

π π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤∑∑ ∑⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤+ ⋅ + ⋅∑ ⎣ ⎦⎜ ⎟
⎜ ⎟+∑⎜ ⎟
⎝ ⎠

 
(15) 

In Eq. (15), the first two terms are start-up and shout-down costs of unit i at hour t pertaining to the first-stage 201 

stochastic programming model which is not depend on scenarios occurrence. In addition, in order to ensure that 202 

the scheduled wind is safely integrated to the grid, both the spinning reserve and non-spinning reserve capacities 203 

are formulated by the next two terms. The other lines in the objective function are related to the second-stage of 204 

stochastic programming formulation, corresponding to scenarios realization. In the second line, the generation 205 

unit cost function is linearized by a set of piecewise blocks. Afterwards, the cost of deploying spinning and non-206 

spinning reserve is represented. Due to the environmental concern, emission should be taken into account in the 207 

objective function as well as operation cost, simultaneously. Typically, emission is expressed using a quadratic 208 

function. In this paper, the third line is dedicated to emission cost which is approximated in a piecewise manner 209 

similar to cost function. In order to encourage wind generation units to participate more actively in power 210 

production, some incentive mechanisms have been used to promote share of wind power all over the world.  211 

The most well-known mechanism used is the Feed-In-Tariff (FIT) incentive mechanism which has been 212 

considered in the present paper [37]. In addition, there may be moments in the scheduling horizon that limiting 213 

constraints of transmission network do not let the integration of wind power.  214 
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On this basis, wind power curtailment cost is also considered in the objective function. The two last mentioned 215 

costs are embedded in the fourth line. Finally, the last term is associated to the EDRP cost as expressed in Eq. 216 

(14). The constraints are as follows: 217 

• Start-up and shut-down costs constraints 218 

The relation between start-up and shut-down indicators and commitment status of unit is represented by Eq. (16) 219 

[38]: 220 

, 1 , 1 , 1 ,i t i t i t i ty z I I+ + +− = −  (16) 

 It is not possible that a unit be started-up and shut-down at an hour simultaneously, therefore [38]: 221 

1it ity z+ ≤  (17) 

0 1itz≤ ≤  (18) 

• Power balance constraints at each bus 222 

To ensure the power system security, hourly generation and load dispatch in each scenario must satisfy power 223 

balance constraint at each bus. In this regard, DC load flow equation is applied as it can be seen in Eq. (19). 224 

( )mod int

b b

tot curt
its bt st st b wind bus lts

i G l L
P P W W F= −

∈ ∈

⎡ ⎤− + − =⎣ ⎦∑ ∑  (19) 

where,  225 

min

1

. ( )
iNSF

tot e
its i it its its its

m

P P I P m sr nsr
=

= + + +∑  (20) 

max0 ( ) ( )e
its iP m P m≤ ≤

 
(21) 

Moreover, in the Eq. (19), mod
btP is the modified demand of bus b at hour t after implementing DR which is 226 

allocated to appropriate buses as represent in Eqs. (22) and (23) for price-based and incentive-based DR 227 

programs, respectively. 228 

24
mod 0

0 0
1 0

[ ( ) ( )]
. (1 ). ( ) . ( ). ( , ).

( )bt b d d
t

t t
P LD d t d t E t t

t
ρ ρ

η η
ρ′=

⎧ ⎫′ ′⎡ ⎤−⎪ ⎪′= − +⎨ ⎬⎢ ⎥′⎪ ⎪⎣ ⎦⎩ ⎭
∑  (22) 

24
mod

0 0
1 0

( ). (1 ). ( ) . ( ). ( , ).
( )bt b d d

t

A tP LD d t d t E t t
t

η η
ρ′=

⎧ ⎫⎡ ⎤′⎪ ⎪′= − +⎨ ⎬⎢ ⎥′⎪ ⎪⎣ ⎦⎩ ⎭
∑  

(23) 

In addition, Eqs. (24) and (25) indicate transmission line flow through line l and transmission capacity limits: 229 

( )lts bts b ts lF Xδ δ ′= −  (24) 

max max
l lts lF F F− ≤ ≤  (25) 
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• Spinning and non-spinning reserve constraints 230 

In order to ensure that the scheduled wind is safely integrated into the grid, both the spinning reserve and non-231 

spinning reserve are considered. Equations (26) and (27) express the spinning and non-spinning reserve limits.  232 

Also, the deployed reserves in each scenario should be lower than the amount of scheduled capacity reserve in 233 

the first stage. These constraints are given by Eqs. (28) and (29). Also, it is assumed that the provided spinning 234 

reserve should be synchronized within 10 minutes’ notice as shown in Eq. (30).   235 

max0 it i itSR P I≤ ≤ ⋅  (26) 

( )max0 1it i itNSR P I≤ ≤ ⋅ −  (27) 

0 its itsr SR≤ ≤
 

(28) 

0 its itrns NSR≤ ≤
 

(29) 

10 .
60its isr RU⎛ ⎞≤ ⎜ ⎟

⎝ ⎠  

(30) 

• Generation unit individual constraints 236 

Eq. (31) indicates maximum and minimum power generation bounds of conventional units. Also, Eqs. (32) and 237 

(33) represent the generation unit ramp up and down constraints, respectively. Furthermore, minimum up and 238 

down time constraints of generation units are shown by Eqs. (34) and (35), respectively. 239 

min maxtot
i it its i itP I P P I⋅ ≤ ≤ ⋅  (31) 

min
( 1) ( 1). (1 )tot tot

its i t s i it i i tP P RU I P I− −− ≤ + ⋅ −  (32) 

min
( 1) ( 1). (1 )tot tot

i t s its i i t i itP P RD I P I− −− ≤ + ⋅ −  (33) 

( 1)
2

(1 ) ( )
it UT

it i it i t i
t t

I UT I I UT
+

′ −
′= +

− + ⋅ − ≤∑  
(34) 

( 1)
2

( )
it DT

it i i t it i
t t

I DT I I DT
+

′ −
′= +

+ ⋅ − ≤∑  
(35) 

• Wind power constraints 240 

The amount of integrated wind power must be less than the available wind generation. Also, just both the 241 

amounts of curtailed wind power and integrated wind power are positive variables. These issues are addressed in 242 

Eq. (36). Eq. (37) ensures that the summation of integrated and curtailed wind power will be less than the 243 

available wind power. 244 

int max0 , 0curt
st st stW W W≤ ≤ ≥  (36) 

int maxcurt
st st stW W W+ ≤  (37) 
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4. Performance metrics 245 

Strong growth of wind power increases the need for ramp up/down services by the conventional generation units. 246 

In order to provide the ramping requirements of the system, increasing system flexibility seems a crucial issue. 247 

In fact, the more flexibility means the less regulation services.  248 

Due to technical restrictions of conventional generating units, such as ramp rates constraints, minimum up/down 249 

times, etc., the need for more flexible resource is essential. In the 24st wind task of the International Energy 250 

Agency (IEA), which investigates issues, impacts, and economics of wind power grid integration, DR resources 251 

were introduced as the most flexible and cost effective option to facilitate the grid integration of wind power 252 

[39]. In this regard, since load changes are very important for regulated activities of wind power, some novel 253 

measures have been proposed in this paper.  254 

Based on this, in order to investigate the impact of different DR programs on facilitating grid integration of wind 255 

power, a novel measure is introduced. Average DR Benefit (ADRB) represents the decrease in system operation 256 

cost as a result of 1 MWh additional integration of wind power. In the other words, this measure represents the 257 

impression of DR implementation on the average cost reduction of 1 MWh additional wind power injection to 258 

the power system. The measure is presented in Eq. (38). 259 

24

int
1

1
24 .

NoDR DR
t t

t s st
s

TCost TCost
ADRB

Wω=

⎡ ⎤−⎣ ⎦= ∑ ∑
 (38) 

Moreover, in order to measure the impact of DR programs on the load curve and consequently facilitating grid 260 

integration of wind power, three other measures are proposed. Based on this, load turbulence index (LTI) is 261 

proposed to indicate the smoothness of the load curve. The lower LTI shows the smoother load curve and the 262 

easier regulation. The index is presented in Eq. (39). Another feature of load curve that is very important for 263 

regulated activities is the rate of demand change. The bigger changes of demand causes the more difficult 264 

following the load. On this basis, maximum load up and down indices (MLU and MLD) are utilized to measure 265 

the maximum rate of demand changes. The measures are presented in Eqs. (40) and (41), respectively. 266 

24

1

1 ( ) ( 1) ( )
24 t

LTI d t d t d t
=

= − −∑  (39) 

{ }max ( ) ( 1), 1,...,24MLU d t d t t= − − =  (40) 

{ }max ( 1) ( ), 1,...,24MLD d t d t t= − − =  (41) 

In the next section, the mentioned indices are applied to investigate the results more precisely. 267 

 268 
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5. Numerical studies 269 

Numerical studies have been accomplished to illustrate the abilities of the proposed model. For this purpose, the 270 

modified IEEE-RTS is considered assuming the 6 hydro units which were in bus 22 are excluded. Instead of 271 

hydro units, a wind farm with 1200 MW installed capacity (almost 28% of total generation capacity) is assigned 272 

to bus 22. Due to the targets set by many developed countries, this portion of wind power is considered as high 273 

penetration. The system peak load is assumed to be 2670 MW corresponding to 1 p.u. in the load curves. Details 274 

of the mentioned test network can be found in [40]. It is presumed that generation units submit their offers to 275 

produce energy based on their marginal incremental costs given in Table 1. The capacity cost of spinning and 276 

non-spinning reserves are considered to be at the rates of 25% and 20% of the highest incremental cost of 277 

producing energy, respectively. Also, the deployed reserve cost is considered to be equal to the highest 278 

incremental cost of energy production. In addition, two most popular pollutants are considered to conduct 279 

emission cost calculations. The pollution coefficients are assumed as presented in Table 2. The environmental 280 

cost coefficient of pollutants are assumed to be 0.5 $/kg for SO2 emissions and 3 $/kg for NOx emissions [41]. 281 

"See Table 1 at the end of the manuscript". 282 

"See Table 2 at the end of the manuscript". 283 

In order to model the wind power generation in each hour, a Weibull distribution is considered for wind speed as 284 

in [42]. Then a similar procedure as it has been explained in [42] is used to obtain the corresponding wind 285 

power. Different realizations of wind power production can be modelled using a scenario generation process 286 

based on Roulette Wheel Mechanism (RWM). At first, the distribution function is separated into several class 287 

intervals. Afterwards, each interval is related to a certain probability achieved by the PDF. Consequently, due to 288 

the various intervals and the mentioned probabilities, RWM is utilized to generate hourly scenarios, as in [43]. 289 

The higher numbers of scenarios produce a more accurate model to consider the mentioned uncertainties. 290 

However, it yields an unmanageable optimization problem. Hence, a scenario reduction technique is considered, 291 

using K-means clustering technique [44], resulting in a scenario tree with ten independent scenarios as shown in 292 

Fig. 4. It should be noted that, the wind farm installed capacity is considered as the base value in this figure. 293 

"See Fig. 4 at the end of the manuscript". 294 

The value of FIT incentive and wind curtailment cost are assumed to be 25 and 30 $/MWh, respectively. The 295 

value of wind curtailment cost is selected higher than the value of FIT incentive in order to encourage system 296 

operator to integrate maximum wind power. The self and cross price elasticities of demand have been extracted 297 

from [32] and are illustrated in Table 3.  298 
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It should be noted that calculation of arithmetical values of price elasticity is a complex procedure which may 299 

vary widely across different sectors (residential, industrial and commercial) and regions. Moreover, simultaneous 300 

data between marginal prices and consumption are needed, which is usually hard to acquire. 301 

"See Table 3 at the end of the manuscript". 302 

The initial electricity prices (i.e. 0ρ ) are assumed to be 24.1 $/MWh equal to the average of hourly electricity 303 

prices in the base case. Also, Table 4 summarizes tariff related to TOU and RTP programs in details. The 304 

obtained results are analysed in different case studies. These cases have been solved on a PC, 2.3MHz with 4 GB 305 

of RAM under General Algebraic Modelling System (GAMS) software. The computation times in all the studies 306 

are about 40–75 seconds regarding CPLEX. In order to clarify the dimension of the mathematical programming 307 

problem, the optimization statistics for the TOU program (TYPE 2) are given in Table 5. The base-case in the 308 

following figures is referred to no DR implementation. 309 

"See Table 4 at the end of the manuscript". 310 

"See Table 5 at the end of the manuscript". 311 

Effect of various scenarios of wind speed on power generation of different system buses have been indicated in 312 

Fig. 5. In the figure, the generated powers with and without presence of EDRP have been presented. Moreover, 313 

the maximum participation level of EDRP is considered to be 10%. It should be noted that, for the sake of 314 

simplicity, the generation of only four buses that have the most sensitivity to implementation of DRPs have been 315 

presented in this paper. As it can be seen, the different scenarios of wind speed affect the hourly generation of 316 

Bus 1, Bus 2 and Bus 7 more than the one of the other buses (e.g. Bus 23). Utilization of EDRP causes that  317 

Bus 1 generates in all hours and, contrary to the base case, it injects power to the grid in hours 2 to 5. In addition, 318 

impact of ERDP on Bus 1 and Bus 2 is more than on other buses. The amount of generation of Bus 1 considering 319 

the utilization of EDRP is less than the one in base case in hours 9, 12 to 14, 17 to 20 and 22. In Bus 2, although 320 

EDRP cannot cause the bus to generate in hours between 2 and 6, it reduces the amount of generation of the bus 321 

in almost all hours between 8 and 21. Moreover, it can be seen that the generation of Bus 7 is less than the base 322 

case in hours 1, 11, 15, 16 and 21. It can be observed from Fig. 5 that, different scenarios of wind significantly 323 

affect the generation of Buses 1, 2 and 7 in some hours. For instance, the amount of generation of Bus 2 in hour 324 

15 can change from 30 to 112 MW according to different scenarios of wind. This can show the high sensitivity 325 

of the mentioned bus to the generation of the wind farm (that stands on Bus 22) in that hour. This significant 326 

sensitivity can be also seen in hour 21 for the mentioned bus.  327 
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Meanwhile, Bus 23 has an insignificant sensitivity to the generation of the wind farm. For the sake of simplicity, 328 

in the remainder of numerical studies, the expected value resulted from scenarios of wind speed is been 329 

presented. Impact of different DRPs on power generation of different system buses have been illustrated in  330 

Figs. 6-8. 331 

"See Fig. 5 at the end of the manuscript". 332 

"See Fig. 6 at the end of the manuscript". 333 

"See Fig. 7 at the end of the manuscript". 334 

"See Fig. 8 at the end of the manuscript". 335 

The impact of EDRP on generated power in different buses has been indicated in Fig. 6. As it can be seen, by 336 

utilization of EDRP the generation of buses is reduced in most hours. Furthermore, by increasing the level of 337 

participation in EDRP the power generation is decreased more in those hours. This impact for Buses 1, 2 and 23 338 

is more than for other buses. For instance, the amount of generation of Bus 7 has minor changes by increasing 339 

the level of participation in EDRP. Meanwhile, the generation of Bus 23 changes from 657 MW (in the base 340 

case) to 578 MW (in participation level of EDRP equal to 30%) in hour 19 (approximately 12% generation 341 

reduction). Moreover, the amount of generation of Bus 1 is changed from 68 MW (in the base case) to 30 MW 342 

(in 30% participation level) in hour 17 (approximately 56% generation reduction). Similarly, Bus 2 generates 343 

65% less by 30% participation level of EDRP in hour 11. It should be mentioned that, implementation of EDRP 344 

can increase the amount of generation only in Bus 1 in hours 1 to 6.  345 

Fig. 7 shows that generation power in buses 1 and 2 has been increased in hours 1 to 6 by implementing RTP. 346 

The generation increase for Bus 1 with RTP implementation is 15 MW more than the one with EDRP utilization. 347 

The amount of generation of Bus 1 in 30% participation level of RTP in hour 17 is equal to 30 MW, which is the 348 

same as 30% participation level of EDRP. By comparing Fig. 6 and Fig. 7, it can be observed that there is no 349 

significant difference between implementation of EDRP and RTP on the power generation of buses.     350 

The effect of the first considered type of TOU on the power generation of system buses has been illustrated in 351 

Fig. 8. As it can be seen, the power generation of buses 1, 2 and 23 changed significantly by implementing TOU. 352 

On this basis, the generation of buses 1 and 2 becomes equal to the constant amount of 30 MW in most hours. 353 

Moreover, this amount is equal for different levels of participation in TOU, i.e. 10%, 20% and 30%. The 354 

generation of Bus 23 is drastically decreased by utilizing TOU.  355 

 356 
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In peak hours, the power generation of the mentioned bus from 660 MW (in base case) is reduced to about 550 357 

MW (in 10% participation level), 410 MW (in 20% participation level) and 275 MW (in 30% participation 358 

level). As it can be observed, the TOU program is more effective than the RTP program to reduce the power 359 

generation of the buses.  360 

It should be noticed that, implementation of the first type of TOU with 30% participation level causes the 361 

generation of buses 1, 2 and 7 to be increased in off-peak period (hours 23 and 24). This means that, the system 362 

needs more generation in the mentioned hours due to the increase of demand. The minimum operation costs of 363 

the electricity system considering various DRPs have been compared in Fig. 9. As it can be seen, for all DRPs 364 

the increase of maximum participation level of DR causes the total operation cost to be decreased. In addition 365 

TOU-Type2 can cause the minimum operation cost among different DRPs. Behind the second type of TOU 366 

program, TOU-Type1, TOU-Type3 and EDRP are the most effective DRPs to decrease the operation cost. It can 367 

be observed that RTP has the least effect to minimize the operation cost. 368 

"See Fig. 9 at the end of the manuscript". 369 

Impact of the mentioned DRPs on the terms of operation cost has been presented in Fig. 10. As it can be seen, 370 

although EDRP can significantly reduce the fuel and pollution costs, the market payments to responsive 371 

demands duo to take part in the program causes the effect of EDRP on the operation cost to be less than all three 372 

types of TOU. In addition, TOU-Type2 can decrease the fuel and emission costs better than other DRPs.   373 

"See Fig. 10 at the end of the manuscript". 374 

Fig. 11 shows the changes of daily load curve because of various DRPs. As it can be seen, EDRP can decrease 375 

the amount of load peak and consequently it can produce a flatter load curve compared to the base case, although 376 

it has no significant effect on demand in low-load and off-peak periods. Moreover, RTP has an insignificant 377 

effect on the load curve compared to other DRPs; whereas, TOU programs can reduce the demand peak and also 378 

increase the low-load and off-peak demand. Therefore, the programs can cause the load curve to be smoother. It 379 

is noteworthy that, implementation of TOU programs with 20% and 30% participation level causes that the hour 380 

of demand peak is changed and shifted to hour 23. As it can be observed from Figs. 11 (c) to 11 (e), if the system 381 

operator aims to have smoother load curves, using very different prices for different hours of a day (e.g. 382 

implementation of the third type of TOU program) can cause negative impacts and even cause some higher 383 

demand peaks.     384 

"See Fig. 11 at the end of the manuscript". 385 
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The effect of various types of DRP on the prices of electricity market has been presented in Figs. 12 and 13. As 386 

it can be seen, EDRP and TOU are more effective than RTP to change the market prices. These two DRPs can 387 

stabilize the prices of energy market in different hours. Only at hour 23 an increase in the energy price can be 388 

seen because the hour is when the generation of wind power is reduced and the system demand is increased due 389 

to TOU programs (in 30% participation level).  390 

Since the TOU programs can shift some parts of load in peak period to off-peak, price in off-peak periods is 391 

increased. Fig. 12.b. indicates that by growing the maximum level of participation in DRPs and by increasing the 392 

difference between peak and off-peak tariffs (e.g. type3) the time of price peak can be changed. In other words, 393 

the price peak can shift to off-peak periods, especially if the low cost generation units cannot generate in the 394 

periods. As it can be observed, at hour 23 when the wind power is low and a part of peak load shifts to the hour, 395 

market price is increased. It should be mentioned that, implementation of different DRPs not only decreases the 396 

high energy prices (during peak period), but also causes that lower prices (e.g. hour 7) are increased compare to 397 

base case and become approximately equal to other prices, especially by implementing TOU programs. 398 

"See Fig. 12 at the end of the manuscript". 399 

"See Fig. 13 at the end of the manuscript". 400 

The effect of the mentioned DRPs on the hourly total operation cost has been illustrated in Figs. 14 and 15. As it 401 

can be seen, the DRPs can reduce the operation costs in peak period because of decreasing the electricity loads 402 

and consequently electricity prices. In these figures, the high amount of operation cost in hour 1 is because of the 403 

start-up cost of required units. As it can be observed, in most hours the operation cost is decreased by utilizing 404 

DRPs. However, implementation of TOU programs causes an increase in operation cost in off-peak and low-load 405 

periods because of the load shifting feature. For instance, at hour 23 when the wind power is low and demand is 406 

increased, operation cost is significantly increased. 407 

"See Fig. 14 at the end of the manuscript". 408 

"See Fig. 15 at the end of the manuscript". 409 

In Figs. 16 to 19, the various DRPs have been compared using the proposed indices. As it can be seen, the 410 

second type of TOU program has the highest ADRB, hence the program has the most effect on decreasing the 411 

operation cost due to wind power generation. However, the mentioned program can produce high load 412 

turbulence as reflected in all of LTI, MLU and MLD indices. The second type of TOU program has been 413 

followed by the first type of TOU program regarding the index of ADRB.  414 
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TOU-Type1 causes acceptable load turbulence in comparison with the other DRPs. This program has been 415 

followed by TOU-Type3 to have the higher ADRB. However, according to LTI, MLU and MLD indices the 416 

DRP has caused the highest load turbulence among the studied programs. TOU-Type3 program has been 417 

followed by the EDRP to have the higher ADRB index. According to LTI, MLU and MLD indices the EDRP 418 

has created less load turbulence than TOU-Type1. Finally, the ADRB index shows that the RTP program has the 419 

least effect on reducing the operation cost because of wind power generation compared with other DRPs. 420 

"See Fig. 16 at the end of the manuscript". 421 

"See Fig. 17 at the end of the manuscript". 422 

"See Fig. 18 at the end of the manuscript". 423 

"See Fig. 19 at the end of the manuscript". 424 

 425 
6. Conclusions 426 

This paper provided a decision making framework for system operators in order to select the best DR program 427 

facilitating wind power integration, considering technical, economic and environmental aspects. For this 428 

purpose, the effectiveness of various DR programs implementation on system flexibility was investigated 429 

considering the role of customer participation level, electricity tariffs, and optimal incentive values. To quantify 430 

the flexibility concept and compare different DR programs effectiveness, novel technical and economic indices 431 

were proposed.  These proposed measures can be used as a guideline for system operators in order to harness the 432 

system to cope with wind power uncertainty using optimal DR programs in different conditions. On this basis, 433 

not only the maximum available wind power will be integrated, but also the system operation costs will be 434 

decreased in an appropriate way. Applying other flexible resources, which can contribute to the required 435 

flexibility besides DR resources, can be considered in future works. 436 

 437 
Nomenclature 438 

Indices  

b  Index of system buses 

i  Index of generating unit 

l  Index of transmission line 

m  Segment index for linearized fuel cost 

n  Segment index for linearized total incentive curve 

s  Index of scenarios 
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,t t ′  Index of hours 

iNSE iNSF  Number of segments for the piecewise linearized emission and fuel cost curves of unit i 

NS  Number of segments for the piecewise linearized total incentive curve 

Parameters  

( )nAS t  Slope of segment n in linearized total incentive curve in hour t (MWh) 

( )e
iC m  Slope of segment m in linearized fuel cost curve of unit i ($/MWh) 

0 ( )d t  Initial electricity demand (MW) 

SR
itC   Offered capacity cost of spinning reserve provision of unit i in hour t ($/MW) 

NSR
itC   Offered capacity cost of non-spinning reserve provision of unit i in hour t ($/MW) 

re
itC   Offered energy cost of spinning reserve provision of unit i in hour t ($/MWh) 

nre
itC   Offered energy cost of non-spinning reserve provision of unit i in hour t ($/MWh) 

( )ie m  Slope of segment m in linearized emission curve of unit i (kg/MWh) 

ECC   Environmental cost coefficient of pollutants ($/kg) 

( , )E t t ′  Elasticity of demand 

iEm  Lower limit on the emission cost of unit i ($/h) 

iF  Lower limit on the fuel cost of unit i ($/h) 

bLD  Demand contribution of bus b (MW) 

min max
i iP P  Minimum/ Maximum output limit (MW) 

i iRU RD  Ramp up/down  (MW/h) 

i iSU SD  Start-up/shutdown cost of unit i ($) 

i iUT DT  Minimum up/down time (h) 

max
stW  Available wind power (MWh) 

lX  Reactance of line l  

dη  Customer participation level in DRPs 

FITπ  FIT incentive value ($/MWh) 
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curπ  Cost of wind power curtailment ($/MWh) 

0 ( )tρ  Initial electricity price ($/MWh) 

sω  Probability of wind power scenario s 

Variables  

( )EDRPC t  Cost of customer's participation in EDRP ($) 

ltsF  Power flow through line l in hour t of scenario s (MW) 

itI  Binary status indicator of generating unit i in hour t 

it ity z  Binary start-up/shutdown indicator of unit i in hour t 

( )e
itsP m  Generation of segment m in linearized fuel cost curve (MWh) 

mod
btP  Modified demand of bus b in hour t after implementing DR (MW) 

tot
itsP  Total scheduled power of unit i in hour t of scenario s (MW) 

itSR   Scheduled spinning reserve of unit i in hour t (MW) 

itNSR   Scheduled non-spinning reserve of unit i in hour t (MW) 

itssr   Deployed spinning reserve of unit i in hour t of scenario s (MWh) 

itsnsr   Deployed non-spinning reserve of unit i in hour t of scenario s (MWh) 

( )itsq m  Generation of segment m in linearized emission curve (MWh) 

( )nv t  Award of segment n in linearized total incentive curve in hour t ($/MWh) 

int
stW  Integrated wind power in hour t of scenario s (MWh) 

curt
stW  Curtailed wind power in hour t of scenario s (MWh) 

btsδ  Voltage angle at bus b in hour t of scenario s (rad) 

 439 
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Figure captions 

 

Fig. 1. Classification of DR programs. 

Fig. 2. Piecewise linear total incentive for a typical hour. 

Fig. 3. Framework of implementing proposed SNCUCDR. 

Fig. 4. Considered wind power generation scenarios. 

Fig. 5. Effect of various scenarios of wind speed on power generation in different buses considering 10% 

maximum participation level of EDRP. 

Fig. 6. Effect of EDRP on power generation in different buses. 

Fig. 7. Effect of RTP on power generation in different buses. 

Fig. 8. Effect of TOU on power generation in different buses. 

Fig. 9. Effect of various DRPs on the optimal operation cost. 

Fig. 10. Effect of various DRPs on the different terms of operation cost. 

Fig. 11. Effect of various DRPs on load curve. 

Fig. 12. Effect of various DRPs on market price. 

Fig. 13. Effect of various types of TOU on market price. 

Fig. 14. Effect of various DRPs on hourly operation cost. 

Fig. 15. Effect of various types of TOU on hourly operation cost. 

Fig. 16. Effect of various DRPs on the proposed index LTI. 
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Fig. 17. Effect of various DRPs on the proposed index MLU. 

Fig. 18. Effect of various DRPs on the proposed index MLD. 

Fig. 19. Effect of various DRPs on the proposed index ADRB. 

Table captions 

Table 1. Generation unit energy offering information. 

Table 2. Pollution emission coefficients. 

Table 3. Piece elasticity values. 

Table 4. Demand response programs tariffs. 

Table 5. Optimization statistics for TOU (type 2) program. 
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T
ot

al
 In

ce
nt

iv
e 

($
/h

)

 

Fig. 2. Piecewise linear total incentive for a typical hour. 
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Fig. 3. Framework of implementing proposed SNCUCDR. 

 

 

Fig. 4. Considered wind power generation scenarios. 
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a) Bus 1 b) Bus 2 

c) Bus 7 d) Bus 23 
Fig. 5. Effect of various scenarios of wind speed on power generation in different buses considering 10% 

maximum participation level of EDRP. 

 

a) Bus 1 b) Bus 2 

c) Bus 7 d) Bus 23 
Fig. 6. Effect of EDRP on power generation in different buses. 
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a) Bus 1 b) Bus 2 

c) Bus 7 d) Bus 23 
Fig. 7. Effect of RTP on power generation in different buses. 

 

a) Bus 1 b) Bus 2 

c) Bus 7 d) Bus 23 
Fig. 8. Effect of TOU on power generation in different buses. 
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Table 1 

Generation unit energy offering information 

Unit No. 
Piece wise linearization parameters (MW) Energy bidding data 

min
iP  (1)e

itP  (2)e
itP  max

iP  
 

(1)e
iC  (2)e

iC  (3)e
iC  iF  

1-5 2.4 5.6 8.8 12 26.02 26.19 26.37 24 

6-9 4 9.3 14.7 20 37.9 38.03 38.17 118 

10-13 15.2 35.5 55.7 76 13.82 14.19 14.56 76 

14-16 25 50 75 100 18.56 18.86 19.17 210 

17-20 54.2 87.8 121.4 155 11.4 11.72 12.04 120 

21-23 68.9 111.6 154.3 197 23.57 23.79 24.01 239 

24 140 210 280 350 11.4 11.61 11.83 132 

25-26 100 200 300 400 8.08 8.46 8.85 272 

 

Table 2 

Pollution emission coefficients 

Unit No. Unit type SO2 pollution coefficients    NOx pollution coefficients 

  kg/MWh  $/h  kg/MWh    $/h 

  2 (1)SO
ie  2 (2)SO

ie  2 (3)SO
ie   iEm   (1)xNO

ie  (2)xNO
ie  (3)xNO

ie   iEm  

1-5 Gas 0.9 1.0 1.1       3.2  2.3 2.5 2.8 6.6 

6-9 Gas 0.9 1.1 1.3   15.3   2.2 2.8 3.2 36.8 

10-13 Coal 11.5 12.7 14.7   175.8   1.9 2.0 2.2 31.2 

14-16 Oil 4.2 4.5 4.8   105.6   1.9 2.0 2.2 48.5 

17-20 Coal 9.9 10.3 10.8   537.9   1.7 1.8 1.9 94 

21-23 Oil 4.3 4.3 4.4   296.1   1.9 1.9 2.0 135.1 

24 Coal 10.2 10.7 11.2   1427.1   1.8 1.8 1.9 247.8 

25-26 Nuclear 0 0 0   1   0 0 0 1 
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Table 3 

Piece elasticity values 

 Peak Off-peak Low-load Period 

Peak -0.10 0.016 0.012 8-22 

Off-peak 0.016 -0.10 0.010 1-7 

Low-load 0.012 0.010 -0.10 23-24 

 

Table 4 

Demand response programs tariffs 

Hour 

DR Programs Tariffs 

Hour 

DR Programs Tariffs 

TOU 
RTP 

TOU 
RTP 

TYPE 1 TYPE 2 TYPE 3 TYPE 1 TYPE 2 TYPE 3 

1 16 12 8 21.4 13 36.15 48.2 72.3 25.3 

2 16 12 8 22.2 14 36.15 48.2 72.3 25.3 

3 16 12 8 21.5 15 36.15 48.2 72.3 26.3 

4 16 12 8 21.4 16 36.15 48.2 72.3 26.4 

5 16 12 8 21.9 17 36.15 48.2 72.3 25.3 

6 16 12 8 21.4 18 36.15 48.2 72.3 25.3 

7 16 12 8 21.2 19 36.15 48.2 72.3 25.2 

8 36.15 48.2 72.3 26.3 20 36.15 48.2 72.3 25.3 

9 36.15 48.2 72.3 25.2 21 36.15 48.2 72.3 26.3 

10 36.15 48.2 72.3 25.3 22 36.15 48.2 72.3 25.2 

11 36.15 48.2 72.3 26.3 23 24.1 24.1 24.1 22.4 

12 36.15 48.2 72.3 25.3 24 24.1 24.1 24.1 21.9 

 

Table 5 

Optimization statistics for TOU (type 2) program 

No. of single 
constraints 

No. of single 
variables 

No. of discrete 
variables 

No. of 
iterations Solution time (s) 

395586 281566 9480 70290 64 

 


