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Abstract. Distributed Generation (DG) using renewable technologies is 
increasing due to their benefits including energy security and emission 
reduction. However, installing new DGs in distributed networks is limited due to 
network constraints such as feeder capacity and short circuit level, as well as 
higher investment costs. In this paper, network reconfiguration and reactive 
power planning are used to maximize DG penetration level and to minimize 
annual loss for DGs with biomass technologies. In order to model the problem 
uncertainties, 96 scenarios considering ten different network load levels are 
studied. A multi-objective method is applied for solving this optimization 
problem by using Pareto front. The numerical results indicate the positive 
impacts of the proposed approach on improving the network security. 

 
Keywords: Annual loss, Biomass, DG penetration, Network reconfiguration, 
Pareto front, Reactive power planning, Renewable energy. 

 

1   Introduction 

Environmental concerns, such as global warming causes that renewable energy, e.g., 
biomass, play an important role in supplying energy [1]. The planning of distribution 
systems is a critical issue that the system planners faced with [2].  

In one hand, appropriate placement of DGs in the distribution systems has an 
essential role in the enhancement of the system efficiency; consequently finding the 
optimum placement of DGs is critical [3].  

On the other hand, a large number of researchers have focused on the reactive 
power planning in the distribution system, especially when it has have high-
penetration of renewable resources DG [4].  

In this sense, network reconfiguration is a method to change the topology of 
branches through altering the open and close statuses of sectionalizing and tie 
switches [3]. This can be carried out in different seasons of a year to reduce the total 
loss and increase the system reliability.  
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For instance, as reported in [4], a DG planning was proposed for the coordination 
of reconfiguration of feeders and voltage controlling with the goal of maximizing the 
DG capacity at a specific bus.  

In the current work, it is planned biomass DG for four different scenarios. In the 
first scenario, the annual loss is minimized without considering network penetration. 
The second scenario represents minimized annual loss considering network 
penetration. In the third scenario, network penetration is maximized, and finally, in 
the fourth scenario, a multi-objective problem is provided that minimizes the annual 
loss and maximizes the network penetration. 

2   Relationship to Smart Systems 

Distributed Generation (DG) of electricity using renewable technologies is increasing 
due to their benefits including energy security and emission reduction [5]. Smart grid 
can be defined as a contemporary structure of electricity systems to improve 
effectiveness, reliability, and safety, via integration of sustainable energies, as well as 
automated and intelligent controlling and advanced communications technologies [6], 
[7]. It affects entire parts of power systems, and consequently it needs a widespread 
data communication structure [8].  

Importantly, smart grid allows modern network controlling schemes and provides 
operative integrated DGs in the demand side [9], [10]. Smart Grid will have a 
significant role to support high penetration level of DGs; nevertheless, the existing 
standard/code leading DGs’ interconnection does not allow implementing various 
applications that can be advantageous for the system [11]. Novel approaches for 
utilizing the data in the supervisory controllers would be required, as well as an 
environment in which tools could be emerged in online stream event processing. 

3   PSO and MOPSO Algorithm 

The particle swarm optimization (PSO) applied in optimization techniques; it was 
inspired from the movement migration of population species that lives grouped [12]. 
The elementary philosophy behind PSO is that each individual from the swarm, 
hereafter called as particle, uses the information from the swarm, based on the 
knowledge, sharing, and historical information to find its survival means. 
Computationally, PSO process starts with a random swarm of particles delimited from 
delimited universe, where each particle, from the movement process, will be a 
momentary solution of the problem with tuned fitness rate.  

The aforementioned fitness is computed and optimized in each iteration. The 
movement rule, defined by a position and velocity, defines the direction, speed, and 
position of the swarm to reach the optimal and are updated in each iteration. In this 
process, the particles interact with each other and them they move from the delimited 
universe till reach the best solution (the optimal from the optimization process).  



Both, position and velocity are updated them from the experience from the past 
position and velocity and the best position found from the swarm. Computationally, 
the aforementioned description can be expressed: 
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where ܺ௣௜௧௘௥ is the last position of a particle p from iteration iter that may express the 
best result to the optimization problem. By other words, and specifically in DG 
optimization problem, ܺ௣௜௧௘௥ is a set of DG decision variables and ௣ܸ

௜௧௘௥ is the velocity 
from particle p from iteration iter. Moreover, ௚ܺ,௕௘௦௧

௜௧௘௥  is the best global position g 
found from the swarm in iteration iter. So, the movement direction of the swarm is 
dependent by the influence, respectively, from ௣ܸ

௜௧௘௥, and ௚ܺ,௕௘௦௧
௜௧௘௥  [13].  

By other words, the swarm movement is strictly influenced by the inertia, memory 
and cooperation of the swarm, expressed by the three term of (2). However, for the 
multi-objective problem of DG optimization proposed in this work the original PSO 
strategy is modified. The original goal to find a unique solution is then turned in one 
new array of multiple solutions, based on Pareto strategy to solve the multi-objetive 
DG problem [14], [15].  

4   Formulation 

The planning model aims the minimization from the yearly energy loss and 
maximizes network penetration in the distribution system for all possible loads. Time 
segments are represents in sets of 90h (i.e., the number of days for each season). 
Moreover, in (3), g represents as load states, and ௟ܲ௢௦௦(݃) represents energy loss at (g) 
load state. Furthermore, in (4), Cm represents biomass capacity installed at each 
candid bus (CB). 
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Subject to: 

 

Active and Reactive power balance: 
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In (5) and (6),  LP g represent load peak level that shown in Table 1. 
,g iV  

represents voltage magnitude at load level g. ,D iP and ,D iQ  represent active and 
reactive demands, respectively.  
 

Slack Bus Constraints: 

,1 0  gV   (7) 

,1 0 g   (8) 
 

Voltage Constraints at the Other Buses: 

,       min g i maxV V V   (9) 
 

where Vmin and Vmax are 0.95p.u and 1.05 p.u respectively. 
 

Feeder Capacity Limits: 

, ,0       g ij ij maxI I   (10) 

 
DG Penetration: 
To this end, it has 2 different type of DG penetration in DG planning. (11) 

represent DG penetration for candidate bus. This limitation depends on the land and 
protection level of the candidate bus. In this paper, it is assume this limitation at 1200 
kW. (12) limit installed DG capacity in the whole network. This limitation assumes to 
be 1200 kW too. (12) just consider in the 3rd scenario. 
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5   Numerical Results of the Model 

The PG&E 69bus distribution test case [16] has been considered to implement the 
proposed model. In normal operation, disregarding DGs, the yearly energy loss is 
199.5 MWh. The slack bus of the system is node 1. The candidate bus for installing 
DG is CB= {20, 46, 49, 50, 53}. Total active and reactive demands are 3802kW and 
2695kVAr, respectively.  

The 69bus case study is also presented in Fig. 1. Implemented DG in the network is 
biomass resources with the controllable output. The hourly demand is represented in 
Table 1 as a proportion of the yearly demand peak.  

The proposed planning problem is applied to 4 scenarios with different constraint 
and objective function. Outcomes are represented in Table 2. Based on the results, if it 
is added DG, penetration constraint to an optimization problem, annual loss would 
increase.  



 
Fig. 1.  69bus PG&E Single Diagram 
 

Table 1.  Load profile for different hours 

Time Winter Spring Summer Autumn 
12:00 – 1:00 am 0.4756 0.3970 0.64 0.3717 

1:00 - 2:00 0.4473 0.3906 0.60 0.3558 

2:00 - 3:00 0.4260 0.3780 0.58 0.3540 

3:00 - 4:00 0.4189 0.3654 0.56 0.3422 

4:00 - 5:00 0.4189 0.3717 0.56 0.3481 

5:00 - 6:00 0.4260 0.4095 0.58 0.3835 

6:00 - 7:00 0.5254 0.4536 0.64 0.4248 

7:00 - 8:00 0.6106 0.5355 0.76 0.5015 

8:00 - 9:00 0.6745 0.5958 0.87 0.5605 

9:00 - 10:00 0.6816 0.6237 0.95 0.5841 

10:00 - 11:00  0.6816 0.6300 0.99 0.5900 

11:00 - 12:00 0.6745 0.6237 1.00 0.5841 

12:00 – 1:00 am 0.6745 0.5859 0.99 0.5487 

1:00 - 2:00 0.6745 0.5796 1.00 0.5428 

2:00 - 3:00 0.6603 0.5670 1.00 0.5310 

3:00 - 4:00 0.6674 0.5544 0.97 0.5192 

4:00 - 5:00 0.7029 0.5670 0.96 0.5310 

5:00 - 6:00 0.7100 0.5796 0.96 0.5428 

6:00 - 7:00 0.7100 0.6048 0.93 0.5664 

7:00 - 8:00 0.6816 0.6174 0.92 0.5782 

8:00 - 9:00 0.6461 0.6048 0.92 0.5664 

9:00 - 10:00 0.5893 0.5670 0.93 0.5310 

10:00 - 11:00  0.5183 0.5040 0.87 0.4720 

11:00 – 12:00 am 0.4473 0.4410 0.72 0.4130 



Another effect of adding this constraint is that it is not possible to control voltage 
bus within 0.95 to 1.05 per-units (p.u). In this scenario, the buses voltage is varied 
from 0.9 to 1.1. In the third scenario, it is maximized DG penetration without violation 
any constraints. In this case voltage limit is 0.95 < V < 1.05.  

In the fourth scenario is planning biomass DG with two objective functions. Pareto 
optimal front found by the algorithm is shown in Fig 2. In this scenario voltage limit 
will be in 0.95 to 1.05 p.u.  

TOPSIS algorithm is implemented to find the best decision for the decision maker. 
The theory of this algorithm is represented in [17]. The answers are represented in 
Table 3. It is used three different set of weight factor for objectives.  

Weight factors are {(0.2, 0.8), (0.5, 0.5), (0.8, 0.2)}. The result is shown in Table 3. 
 

Table 2.  DG Planning Results for different scenarios  

Candidate Bus 
Annual Loss minimization 

(With Consider DG 
Penetration) 

Annual Loss minimization 
(Without Consider DG 

Penetration) 

DG Penetration 
Maximization 

20 560 0 1600 

46 90 0 0 

49 0 0 3020 

50 480 0 1160 

53 1235 1200 0 
Annual Loss 

(KWh) 2365 1200 5760 

Total Installed 
Capacity 252120 313240 388510 

 
 

 
 
Fig. 2. Impact of different types of TOU program on the generation of Genco 1 without the 
presence of wind farm. 



 
Fig. 3. Pareto Front for 4th Scenarios. 
 

Table 3.  PLANNER Best Decision based on different weight factors 

Weight Factor Annual Loss (kWh) DG Penetration 

(0.2,0.8) 258310 2770 

(0.5,0.5) 423140 6239 

(0.8,0.2) 423140 6239 
 

6   Conclusions 

In this work a multi-objective model was presented for the distributed generation 
planning and solved the formulated problem with PSO algorithm. DGs were biomass 
with controllable output, although the proposed strategy could just tackle several types 
of uncertainty from wind or solar energy, for instance. Annual loss minimization and 
DG penetration maximization were considered in this paper. After determining the 
Pareto front, it was used TOPSIS method to choose the best decision for the decision 
maker. The numerical results showed that considering only the DG penetration 
constraint increased the annual loss. In addition, by adding this constraint, the voltage 
bus could not be constrained between desired amounts. However, the proposed 
approach considering both DG penetration constraint and annual loss could 
significantly improve the effectiveness of the DG planning. 
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