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aState Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua
University, 100084, Beijing, China

bECE Department, Stevens Institute of Technology, 07030 Hoboken, New Jersey, USA
cSchool of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland

dFaculty of Engineering, University of Porto and INESC TEC, 4200-465 Porto, Portugal

Abstract

The proliferation of demand response programs in the smart grid provides the
system operator unique opportunities to reduce the load peak and alleviate
network congestions. This paper considers the economic dispatch problem with
elastic demands which flexibly respond to the locational marginal prices (LMPs).
However, LMP is the dual variable of optimal power flow (OPF) problem and
thus is unknown before the OPF problem is solved. Without LMP, the elastic
demand is unclear, and the OPF problem cannot be set up. Given this inter-
active nature, it is difficult to acquire the dispatch strategy as well as the LMP
according to the traditional OPF method. This paper thoroughly addresses
this problem. Specifically, the limitation of the traditional LMP scheme in the
described situation is analyzed. An equilibrium solution may not exist because
the demand function and the discontinuous LMP may not have an intersection.
To overcome this difficulty, LMP at the discontinuity point is redefined, so that
the dispatch problem always has an equilibrium solution. A mixed-integer linear
programming model for the economic dispatch problem with LMP-dependent
load is proposed, and the equilibrium solution simultaneously offers the dispatch
strategy and LMPs. Case studies demonstrate the difficulties of traditional ap-
proaches and the effectiveness of the proposed method.
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NOMENCLATURE

The majority of symbols and notations used throughout this paper are de-
fined as follows for the convenience of reference. Others are clarified after their
first appearance in case of need.

Abbreviations
DC Direct current.
DR Demand response.
ED Economic dispatch.
KKT Karush-Kuhn-Tucker.
LMP Locational marginal price.
LP Linear program.
MILP Mixed integer linear program.
OPF Optimal power flow.
SOS2 Special-ordered set of type 2.

Parameters
c Vector of generator cost coefficients.
P 0
D Vector of fixed demands.
PLG Vector of generator minimum output.
PMG Vector of generator maximum output.
FL Vector of line flow limits.
S Matrix of power transfer distribution factors.

Decision Variables
PG Vector of generator output.
PRD Vector of elastic demands.
ξ Vector of LMPs.
η Dual variable of power balance condition.
π−, π+ Dual variables of line flow limit constraints.
µ−, µ+ Dual variables of generation capacity constraints.
λ Vector of continuous weighting variables.
v Vector of binary variables in SOS2 constraints.

1. Introduction

1.1. Motivation

The increasing demand in modern power systems enlarges the gap between
the maximum and minimum load values across a day. Updating power genera-
tion and transmission infrastructures is a cost-intensive option and often leads
to the less effective utilization of system facilities during off-peak hours. Price-
inspired demand response (DR) program encourages consumers to adjust their
electricity usage in response to the price signal, and therefore shaves the peak
demands, reduces the reserve capacity and alleviates congestion in the power
systems [1–3].
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DR is a well-studied topic. Typically, DR programs can be roughly divided
into direct load control programs and price-incentive programs. In the former
category, participators can benefit from subsidy or cost-saving if they allow the
operator to directly control their home appliances (such as air conditioners and
heaters) in the case of power shortage [4, 5]. In the latter category, participants
can play a more active role by freely adjusting their electricity usage in response
to time-varying electricity prices [6, 7]. The study in this paper focuses on the
latter category. Several renowned pricing schemes have been proposed and dis-
cussed in extensive literature, such as time-of-use pricing, critical peak pricing,
and real-time pricing [3]. Since the amount of load reduction is driven by an
economic signal rather than controlled directly, to achieve a certain target, it is
vital to quantify how consumers would respond to the electricity price.

1.2. Literature Review

Modeling DR using various optimization and game models is still an active
research field. According to the structure of the optimization problems, existing
studies in this direction can be roughly classified into three categories.

1) The first category tackles a cost-minimization problem or a profit-maximization
problem through a single-level optimization problem under uncertainty and
volatility.

For the cost-minimization formulation, DR has been integrated with unit
commitment problems[8, 9]. Uncertain factors such as renewable generation
and system component outage are modeled via scenarios under the stochastic
programming framework. In Ref. [8], reserve scheduling is determined to min-
imize expected total cost. Time-of-use program is designed in [9] based on an
expected reliability index. In the situation that the probability distribution of
uncertain factors is not available, robust optimization has been proposed to deal
with unit commitment problem considering DR. Robust optimization considers
the impact of all possible values of unknown parameters on system performance
and copes with the worst case, providing a security guarantee at the cost of a
certain level of conservatism, which is applied in [10, 11] to cope with uncertainty
from both wind power output and DR mode.

For the profit-maximization problem, the situation is that a price-taker con-
sumer determines the daily usage of electricity while facing uncertain market
prices, e,g., the real-time prices in most cases. To avoid financial risks, price
uncertainty is taken into account in a stochastic programming model in [12], ro-
bust optimization models in [13, 14], and information gap decision model in [15].
To reduce the conservatism, a three-stage hybrid stochastic/robust optimization
model is suggested in [16] for strategic bidding of a microgrid in the day-ahead
market. In the first two stages, day-ahead prices and renewable output are mod-
eled via scenarios in the stochastic programming framework; in the last stage,
uncertainty of real-time market prices is tackled by robust optimization.

Recently, the flexibility potentials of multi-energy systems are exploited in
DR programs, where electricity networks’ interaction with natural gas system
[17, 18], combined heat and power systems [19, 20], and shared parking station
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for electric vehicles [21] are analyzed respectively. A distributionally robust op-
timization method is proposed in [22] for gas-electricity system scheduling with
DR. Random factors are described by a family of probability distributions whose
support set and mean value are given. An interval optimization method is de-
veloped in [23] for gas-electricity system scheduling considering DR and volatile
wind power. The work in [24] utilizes the discrete choice theory and formulates a
day-ahead dispatch model for micro-energy system where customers may make
energy substitution.

There has also been extensive study on DR integrated with multi-objective
dispatch problems where renewable obligation or pollution emission is modeled
as extra objective function [25]. A DR mode considering electricity price, con-
sumption hour, and customer type is developed in [26], and is integrated in
[27] to minimize operational cost and environmental pollution simultaneously
via a copula-scenario based uncertainty modeling technique and multi-objective
group search optimization. A robust economic dispatch model is developed in
[28] considering DR and renewable obligation with penalty, where energy supply
is guaranteed by introducing adequate spinning reserve.

2) The second category addresses simultaneous pricing and DR scheduling
in a holistic bi-level optimization problem.

At the retailer level, a retailer arbitrages energy as an intermediary agency
between an upstream market and end consumers. Thus, the retailer needs to
estimate how consumers would respond to the price and cope with market price
uncertainty. In [29] and [30], the interaction between the retailer and DR partici-
pators are modeled through a bi-level program, while market price uncertainty is
taken into account via stochastic programming and robust optimization, respec-
tively. Indeed, when the capacity grows larger, DR has the ability to influence
the market price. To model market power of the DR aggregator, the market
is cleared subject to the DR bidding strategies. Such clearing mechanisms are
formulated by one-leader multi-follower bi-level model in [31], and stochastic bi-
level programming in [32, 33]. To solve such bi-level models, the market-clearing
problem in the lower level is replaced by its Karush-Kuhn-Tucker (KKT) op-
timality condition and further linearized, and the final problems give rise to
mixed-integer linear programs (MILPs). Heat-electricity coupled DR can be
formulated using a similar bi-level structure [34]. In [35] and [36], multi-period
coupling DR is observed in integrated energy systems with electricity, heat, nat-
ural gas, and energy storage units under bi-level frameworks. A hybrid pricing
method based DR function is expressed using price elasticity in [37], and the
bi-level DR program for the residential microgrid is converted to a single-level
mixed-integer nonlinear program.

3) The third category endeavors to characterize an equilibrium among mul-
tiple DR participators in a competitive market, say, in cases that the market
price depends on the total amount of demand.

A supply function bidding based market model is studied in [38]; a dis-
tributed DR algorithm is suggested to achieve the Nash equilibrium, which is
shown to maximize social welfare. In [39], the pricing function is announced
by the system operator. A non-cooperative game model is proposed in [40] to
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describe the transaction mechanism in the regional energy market considering
integrated DR of users. The multi-period DR is considered in [41] and is also
formulated as a Nash equilibrium problem. A Bayesian game among heteroge-
neous consumers is set forth. Cooperative game theory is employed in [42] to
allocate loss reduction among participators, and in [43] to retrieve fair pricing
among utility companies in the retail market. Evolutionary game is used in [44]
to study the dynamic change of users’ preferences.

The problem studied in this paper is a particular sort of DR. It is a vari-
ant of the DCOPF for power system economic dispatch, in which elastic loads
that flexibly adjust their demand in response to real-time LMPs are taken into
account. LMPs are dual variables of power balance constraints and unknown
before the optimal solution is found. However, without LMP, the elastic por-
tion of the nodal load is unclear, so the DCOPF problem cannot be set up.
Given this interactive nature, it is difficult to acquire the dispatch strategy as
well as the LMP according to the traditional OPF method. Such a problem
has been studied in [45] without considering network constraints, so the system
shares the same LMP. It is revealed that the uniform pricing market can be
unstable with a large fraction of high-sensitive DR loads, and the stability con-
dition is derived using contraction mapping theorem since the model is simple
for analytical study. In [46], the problem is generalized to distribution power
market with an alternating current OPF model and distribution LMP. An it-
erative algorithm is proposed to identify the fixed point of the OPF problem
with elastic demands, which interprets the equilibrium of a distribution market.
Because LMPs are generally discontinuous, the equilibrium may not exist, and
the iterative algorithms may fail to converge.

Methods and modeling assumptions of DR in typical literature mentioned
above and in this paper are summarized in Table 1. As is shown in Table 1,
the requirement of full DR flexibility, consideration of network constraints, and
existence of market equilibrium have not been fulfilled in a specific model in the
previous study. Manipulation of convergence problems and/or network model is
quite simplified. It is urged to bridge the gap and produce a realizable optimal
dispatch strategy via an optimization model that can guarantee existence of
equilibrium.
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Table 1: Review of Price-incentive DR Modeling Methods

Ref. Cat. Research Background of DR Objective Function
Type of Optimization
Problem

Network Model
Consideration
of Uncertainty

[9] 1
Time-of-use program in security
constrained unit commitment

Expected total
generation cost

Stochastic MILP DC Yes

[20] 1 Combined heat and power systems
Total cost of
energy procurement

Robust optimization
and MINLP

None Yes

[24] 1
Micro-energy system where user
can make energy substitution

Real-time net income of
micro-energy system

Discrete choice
model and MINLP

None Yes

[25] 1
Microgrid considering DR and
internal power market

Minimization of operational
cost and microgrid emission

Stochastic linear
programming

None Yes

[28] 1
Multi-objective economic dispatch
under renewable obligation

Operating cost minimization,
and renewable penetration
& user utility maximization

ε-constraint
method and MIQP

DC Yes

[30] 2
Interaction between smart grid
retailer and DR participators

Net income of retailer by
selling energy to customers

Robust optimization,
KKT, and MILP

None Yes

[33] 2
Short-term scheduling of
electricity retailers

Maximization of retailer’s
expected profit

Two-stage stochastic
programming

None Yes

[37] 2
Day-ahead scheduling of a
residential microgrid with DR
expressed by price elasticity

Profit maximization MINLP AC No

[39] 3
DR in Smart Grids considering
consumer preferences

(generic) Bayesian game None Yes

[42] 3
Loss reduction allocation
in smart grid

Loss reduction for maximum
DG benefit and load feedback
for system stability

Cooperative game None Yes

[44] 3
DR Management with
multiple utility companies

equilibrium that reduces
peak-to-average ratio

Evolutionary game None No

[45] 2 General economic dispatch Operating cost minimization Iterative convex QP None No
[46] 2 Distribution OPF Operating cost minimization Iterative SOCP AC No

This paper 2 DCOPF Operating cost minimization KKT and MILP DC No
This paper 2 DCOPF Operating cost minimization KKT and MILP DC No
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1.3. Contributions

To address the above challenges, this paper extends the studies in [45] and
[46] from two aspects, constituting the contributions of this paper:

1) We analyze the market instability caused by the discontinuity of LMP with
a complete DCOPF model and network congestion constraints. We proposed to
redefine the value of LMP at the discontinuous point of the price curve, so that
the existence of an equilibrium solution is guaranteed. In [45], the instability
is caused by slopes of the price curve and the demand curve at the equilibrium
point, which is different from that in this paper. Compared with [46], the
equilibrium solution always exists by a slight modification on LMP.

2) We propose a non-iterative method to calculate the equilibrium solution
which encapsulates the optimal dispatch strategy and LMPs. By concentrating
the KKT optimality condition and the linearized demand function, a MILP
model is built to compute the equilibrium. We use a dedicated linearization
method that incorporates only a few binary variables. Compared with [45, 46],
there is no convergence issue because iteration is no longer needed. Typical
demand functions or inter-period deferring mode are selected in [28, 37] to avoid
explicit LMP expression and thus the convergence problem, while in this paper,
demand function is submitted by each elastic load, so the flexibility of price-
incentive DR can be fully activated.

1.4. Paper Organization

The rest of this paper is organized as follows. The dispatch problem and
the LMP-dependent load model are introduced in Section 2, followed by the
analysis on limitations of traditional LMP scheme and the new definition of
LMP at discontinuous points. The equivalent MILP model is developed in
Section 3. Case studies are conducted in Section 4. Finally, conclusions are
drawn in Section 5.

2. Mathematical Model

This paper studies a cost-minimum dispatch problem with LMP-elastic de-
mands, which is executed as follows. First, each elastic load submits a demand
function PRDj(ξj) to the system operator, where ξj is the LMP at consumer

node j; PRDj is the power usage depending on the LMP; Some typical functions
covering practical responsive behaviors are suggested in [45]. Once the system
operator has collected demand function bids and traditional inelastic loads, it
executes a special OPF procedure, which offers the dispatch strategy and the
LMP. We provide additional remarks to clarify the problem.

1) In the proposed method, a consumer can bid a demand function whenever
his preference has a change. In practice, this demand function may also resem-
ble a contract or behavior and remains the same in a relatively long period.
Therefore, the operator only needs to collect traditional demands, which is the
same as in a standard OPF problem.
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2) All generators are owned by the system or a non-profit entity, implying
that generators possess no strategic behavior or market power. Electricity con-
sumption is paid according to the marginal cost, i.e., the LMP, whose model is
well studied. A tutorial can be found in [47].

3) To set up an OPF, all demands must be given. However, the elastic de-
mand is a function of LMP, the output of OPF. In other words, once the LMP
is released, the consumers’ electricity usage determined from PRDj(ξj) must be
equal to the demand used in the OPF problem. In this regard, the dispatch
problem in this paper cannot be directly solved in the same way as the tradi-
tional OPF.

2.1. DCOPF with LMP-elastic Demands

The problem is formally stated as follows:

min cTPG (1a)

s.t. 1TPG − 1TPD = 0 : λ (1b)

− FL ≤ S (APG −BPD) ≤ FL : π−, π+ (1c)

PLG ≤ PG ≤ PMG : µ−, µ+ (1d)

together with

PDj = P 0
Dj + PRDj(ξj), ∀j (1e)

ξ = λ · 1− ST
(
π+ − π−

)
(1f)

In problem (1), matrix A/B in (1c) reconciles the dimensions between vector
PG/PD and matrix S; Greek letters following a colon represents the dual vari-
ables; 1 is an all-one vector with the same dimension as c. Objective (1a)
minimizes the generation cost; (1b)-(1d) are system-wide power balance, line
flow limits, and generator capacity constraints, respectively. In contrast to a
traditional OPF problem, the nodal demand vector PD consists of a fixed part
P 0
D and a LMP-elastic part PRD as in (1e), and the LMP ξ intrinsically depends

on the dual variables in accordance with (1f), so does PD.

2.2. Analysis of the Limitation of Traditional LMP

A fixed-point method to solve problem (1) is outlined in Algorithm 1 (Alg-
FP for short). However, a fixed point may not exist, because LMP is generally
discontinuous [48]. In such circumstances, Alg-FP may fail to converge. This
phenomenon is analyzed as follows.

Consider a simple system with three buses and two lines illustrated in Fig.
1. Parameters of components are given in the figure. Now we consider the LMP
as a function of demand at load bus D. If d ≤ 150MW, the demand is served
by unit G1, so the LMP is equal to the marginal cost c1 < c2. If d > 150MW,
the incremental demand is served by unit G2, so the LMP is qual to c2. The
LMP curve is plotted in Fig. 2(a). It is discontinuous at d = 150MW. When
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Algorithm 1 : Alg-FP

1: Choose an initial value of system demand.
2: Solve DCOPF problem (1a)-(1d) with given demands.
3: Retrieve dual variables, update LMP and elastic demands according to (1f)

and (1e), respectively.
4: If the change of elastic demands in two successive iterations is smaller than

a certain threshold, terminate; otherwise, return to step 2

G1 G2D
L1 L2

1

1

50$ / MWh
200MWm

c
p



2

2

100$ / MWh
400MWm

c
p



1 150MWmf  2 450MWmf 

Figure 1: A two-node system for the illustration of market instability

demand

LMP

(b)

1c

2c

Elastic demand and 
modified LMP

I

LMP curve Demand function

demand

LMP

(a) Non-elastic demand 
and traditional LMP

1c

2c

Figure 2: Definition of LMP at the discontinuous point

the demand is inelastic, the demand function and the LMP curve intersect at
the red point in Fig. 2(a).

When DR is taken into account, the situation is different. The simplest DR
curve is depicted in Fig. 2(b): when LMP is either too high or too low, the
demand is a constant; otherwise, the demand is a linear function in LMP. In
particular, the DR function and the LMP curve may not have an intersection.
In such a circumstance, Alg-FP will not converge, as illustrated in Fig. 2(b).
Suppose the initial point is I, the iterations repeat with a period of 2. Such
kind of instability is not caused by the choice of initial point; instead, it is the
consequence of the way how LMPs are defined. To overcome this issue, we need
to analyze and redefine the values of LMP at discontinuous points.
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2.3. Definition of LMP at Discontinuous Points

To obtain deeper insights of the above example, we write out the KKT
condition at the discontinuous point

ci = λ− µ+
i + µ−i − π

+
i + π−i , i = 1, 2 (2a)

0 ≤ π+
i ⊥fim − pgi ≥ 0, 0 ≤ π−i ⊥pgi ≥ 0, i = 1, 2 (2b)

0 ≤ µ+
i ⊥pim − pgi ≥ 0, 0 ≤ µ−i ⊥pgi ≥ 0, i = 1, 2 (2c)

pg1 + pg2 = d (2d)

where notation 0 ≤ a⊥b ≥ 0 stands for complementarity and slackness condi-
tions a ≥ 0, b ≥ 0, aT b = 0. Since both of a and b are non-negative vectors,
aT b = 0 implies aibi = 0, ∀i elementwise. According to the parameters given in
Fig. 1, at the point where LMP is discontinuous, generation lower and upper
bounds in (2c) for unit G1 are inactive, and thus µ+

1 = µ−1 = 0; generation
upper bound in (2c) for unit G2 is inactive, so µ+

2 = 0; transmission upper
bound in (2b) for line L1 (L2) is active (inactive), implying pg1 = f1m, π+

1 ≥ 0,
π+
2 = 0; transmission lower bound in (2b) for line L1 (L2) is inactive (active),

indicating π−1 = 0, π−2 ≥ 0.
According to above analysis, at the discontinuous point, the KKT conditions

become

c1 = λ− π+
1 , c2 = λ+ µ−2 + π−2 (3a)

f1m = d(λ− π+
1 + π−2 ) (3b)

where d(·) and λ− π+
1 + π−2 represent the demand function and LMP at bus D,

respectively.
If d(·) is a constant, equation set (3) is underdetermined; the KKT condition

(2) has infinitely many feasible solutions, for example, λ = c1, π+
1 = µ−2 = π−2 =

0 together with those already determined satisfy KKT condition (2), and the
corresponding LMP is ξ∗ = λ − π+

1 + π−2 = c1. In fact, by choosing different
values of dual variables, the LMP can take any value in the interval [c1, c2], and
ξ∗ is the minimum price that consumers prefer to pay. Therefore, the red point
in Fig. 2(a) is adopted in practice.

Taking DR into consideration, d(·) is a function in the LMP which is equal
to λ − π+

1 + π−2 . Since µ−2 does not impact LMP, we simply set it to 0; then
equation set (3) is properly defined. It includes three equations in variables λ,
π+
1 , and π−2 , and thus can be solved to derive a unique solution. From Fig. 2(b)

we can see that equation set (3) has a unique solution marked by a red point.
If the demand function and the LMP curve intersect at the flat region,

such as in Fig. 3(a), we can observe that the demand is locally non-elastic, so
the situation can be treated as the traditional OPF, as long as the flat region
where the intersection point rests in can be determined in advance. In Fig.
3(b), although the demand is elastic, the traditional Alg-FP method can still
converge.

10



 

LMP curve

demand

LMP

(a)

1c

2c

Demand function 

demand

LMP

1c

2c

LMP curve

Demand function 

(b)

Figure 3: Flat intersections do not cause instability

According to above discussions, to dispatch a power system with LMP-
dependent demands, we have to define the value of LMP at discontinuous points
properly. Inspired by the example, we give the following descriptive definition:

At discontinuous points, the LMP is determined by a set of equations com-
prised of KKT conditions and demand functions.

Based on this definition, the properties of the optimal solution are discussed
as follows.

Existence. As LMP can take any value in [c1, c2] in the new definition, the
LMP curve can be regarded as continuous. Furthermore, the demand function
is also continuous, the two curves must have an intersection since the demand
becomes inelastic when the price is either too high or too low.

Uniqueness. In practice, elastic demands decrease with the increase in
price. If the LMP curve is increasing in demand, the intersection is also unique.
However, in a large-scale system, the LMP depends on all nodal demands, and
the situation can be very complicated. A counter-intuitive example can be found
in [47]. Nonetheless, for a real power system, it is acceptable to assume that
LMP curve is increasing in demand.

3. An Equivalent MILP Model

A monolithic MILP model will be developed in this section to solve problem
(1) without iteration.

3.1. KKT Condition of the OPF Problem

To solve problem (1b)-(1d) while considering the response (1e)-(1f) of elastic
demands, we need to optimize primal and dual variables at the same time. To
this end, we write out the following KKT condition of problem (1b)-(1d) while
treating PD as constant

c+ λ · 1 +ATST
(
π+ − π−

)
+ µ+ − µ− = 0

0 ≤ π−⊥S (APG −BPD) + FL ≥ 0

0 ≤ π+⊥FL − S (APG −BPD) ≥ 0

0 ≤ µ−⊥PG − PLG ≥ 0, 0 ≤ µ+⊥PMG − PG ≥ 0

1TPG − 1TPD = 0

(4)
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Dual variables are explicitly modeled in KKT condition (4). We can solve (4)
with (1e)-(1f) simultaneously, giving rise to a nonlinear complementarity prob-
lem. However, two difficulties prevent such a complementarity problem from
being solved efficiently. One is the nonlinearity of the demand function PRDj(ξj)
in (1e); the other is the complementarity constraints themselves, because they
violate constraint quantification conditions at any feasible point [49] and cause
numeric issues.

To circumvent these difficulties, we endeavor to develop a monolithic MILP
model, which has the same optimal solution as problem (1), as MILPs can be
reliably solved by commercial software. On this account, we have to reformulate
the demand function and the complementarity constraints in forms that are
compatible with MILP solvers.

3.2. Linearizing the Demand Function

We express the nonlinear demand function PRDj(LMPj) via a piecewise linear
(PWL) function with 0-1 variables. Suppose we have a collection of samples
(prkdj , ξ

k
j ), k = 0, 1, · · · ,K, where prkdj = PRDj(ξ

k
j ). Associating each pair (prkdj , ξ

k
j )

with a non-negative weight coefficient γkj , the PWL demand function is given
by

ξj =
∑
k

γkj ξ
k
j , P

R
Dj =

∑
k

γkj p
rk
dj , ∀j (5)

(γ0j , · · · , γKj ) ∈ ∆K+1 is SOS2, ∀j (6)

where ∆K+1 = {x ∈ RK+1|x ≥ 0,1Tx = 1} stands for a probability simplex. In
a special-ordered set of type 2 (SOS2), at most two adjacent elements can take
strictly positive values while remaining ones are 0. Using the technique in [50],
SOS2 constraint can be formulated as MILP form with dlog2Ke 0-1 variables.
Specifically, we use PWL function with K = 8. In such a circumstance, the
SOS2 constraint in (6) evolves

γ0j + γ1j + γ2j + γ3j ≤ 1− v1j
γ5j + γ6j + γ7j + γ8j ≤ v1j
γ0j + γ1j + γ6j ≤ 1− v2j
γ3j + γ4j + γ8j ≤ v2j
γ0j + γ4j + γ5j ≤ 1− v3j
γ2j + γ7j + γ8j ≤ v2j
v1j , v2j , v3j ∈ {0, 1}


, ∀j (7)

In (7), only three binary variables v1j , v2j , v3j are introduced to linearize one
demand function. Suppose the demand function PRDj (ξj) is second-order contin-

uously differentiable on interval [ξ, ξ + h], and its linear interpolation function
is denoted by P1j(ξj). Let DM denote the upper bound of the second-order
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derivative of PRDj . It can be proved that the error bound satisfies

∣∣∣PRDj (ξj)− P1j(ξj)
∣∣∣ ≤ DMh

2

8
= O(h2) (8)

When we perform piecewise linear interpolation on PRDj (ξj) in interval [ξ0, ξm]

with even sampling distances, the maximum error of approximation is O([(ξm−
ξ0)/K]2), which means that the error can be arbitrarily small by adding more
sampling points. Furthermore, the SOS2 constraint incorporates only dlog2Ke
0-1 variables. Therefore, the piecewise linear function can provide a satisfactory
approximation of the nonlinear demand function when a larger K is chosen. The
proof of error bound (8) is given in Appendix A.

3.3. The MILP Model

To explain the method more clearly without trapped into extensive symbols
and notations, the complementarity constraints are denoted as 0 ≤ a⊥b ≥ 0,
where b includes all dual variables, and each element of a is a linear function
depending on PG. The most renowned method for linearizing complementarity
constraints is the Fortuny-Amat approach in [51], leading to

0 ≤ a ≤M(1− z), 0 ≤ b ≤Mz (9)

where z is a vector that consists of 0-1 variables with a compatible dimension;
M is a large enough constant. The binary value of zi imposes either ai or bi
being at 0, and thus complementarity conditions in (4) hold. However, with
this technique, the MILP model does not have an objective function, and the
branch-and-bound procedure lacks sufficient information to prune unnecessary
branches.

Alternatively, we try to minimize aT z + bT (1 − z) subject to a ≥ 0, b ≥ 0
and other constraints. If a feasible solution satisfying complementarity exists,
the optimal value must be 0. The situation is a little different. In (9), zi = 0
implies ai = 0, while in the above objective function, zi = 1 implies ai = 0. The
objective function is nonlinear as it contains bilinear terms like ziai and zibi.
These bilinear terms comprised of a binary variable and a continuous variable
can be equivalently converted into an MILP compatible form with an auxiliary
continuous variable wi satisfying

0 ≤ wi ≤Mzi, 0 ≤ ai − wi ≤M(1− zi) (10)

For problem (4), we seek to minimize

Obj =(1− z1)Tπ− + zT1 (f + FL)

+(1− z2)Tπ+ + zT2 (FL − f)

+(1− z3)Tµ− + zT3 (PG − PLG)

+(1− z4)Tµ+ + zT4 (PMG − PG)

(11)
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where f = S (APG −BPD) is the line power flow vector.
Let Obj-Lin be the linear objective function after performing linearization

technique in (10) to (11), and Cons-Lin the additional constraints in the form of
(10) which are introduced by the linearization procedure. The proposed MILP
model for problem (1) is cast as

min Obj-Lin

s.t. Cons-Lin

c+ λ · 1 +ATST
(
π+ − π−

)
+ µ+ − µ− = 0

1TPG − 1TPD = 0, f = S (APG −BPD)

π− ≥ 0, π+ ≥ 0, − FL ≤ f ≤ FL
µ− ≥ 0, µ+ ≥ 0, PLG ≤ PG ≤ PMG

λ− STj
(
π+ − π−

)
=
∑8

k=0
γkj ξ

k
j , ∀j

PDj = P 0
Dj +

∑8

k=0
γkj p

rk
dj , ∀j

(γ0j , · · · , γ8j ) ∈ ∆9, ∀j, (7)

(12)

where Sj .is the j-th column of matrix S. A few more discussions are provided
below.

1) The selection of variable bounds. The proper value of M depends on the
bounds of primal and dual variables. Because dual variable can be interpreted
as the incremental cost at optimum with respect to per unit change in constraint
right-hand coefficient, the bounds of µ−i and µ+

i can be chosen by multiplying
the generator marginal cost ci with a scalar σ > 1. The bounds of λ can be
set as σmaxi{ci}. A rough estimation of π− and π+ can be obtained from
sensitivity tests.

2) About the generation cost function. Although we employ linear gen-
eration cost functions in objective function (1a) for the ease of discussion, the
method remains intact if convex quadratic cost functions are taken into account,
because quadratic terms in the Lagrangian function L will become linear after
differentiation, and condition ∂L/∂pi = 0 in the KKT conditions gives rise to
linear equations.

3) Sometimes, it is helpful to include complementarity constraint (4) in the
form of (9) into MILP (12), because they constitute valid inequalities and tighten
the lower bound in the branch-and-bound procedure. However, this strategy is
not always useful, as it also complicates the feasible region.

4. Case Studies

We conduct numeric tests on a modified IEEE 118-bus system. Complete
system data can be found in [52]. Elastic demands connect to the system at
buses #15 in area 1, #42, #49, #54, #56, #59, #60 in area 2, and #62, #80,
#90 in area 3, accounting for about 20 percent of the total demand. Simulations
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Figure 4: Five types DR functions [45].

are implemented on a laptop with Intel i5-8300H CPU and 16 GB memory.
MILP is solved by CPLEX 12.8.

In practice, DR function is bid by consumers or calibrated from historical
energy consumption data. We consider five DR functions suggested in [45],
which are shown in Fig. 4. According to [45], these curves can reflect different
sensitivities of responsive loads in different price intervals. We assume elastic
loads take part in the DR program if LMP is in the interval [ξ0, ξ0+20] $/MWh;
outside this interval, their demands are either maximum or minimum and do not
vary with respect to LMP. We fix the maximum value pdrub of elastic demands,
and change the minimum value pdrlb ; β = pdrlb /p

dr
ub is called the DR participation

level. By changing the values of ξ0 and β, we investigate the system impact of
DR loads and performances of the proposed method.

4.1. Computational Efficiency

First, we test solver times of MILP (12) and Alg-FP with different DR
functions and participation levels. For the inelastic cases, we directly solve
DCOPF problem (1) and retrieve the dual variables associated with LMP. The
solver time is less than a second since DCOPF is a linear program (LP). For the
remaining cases, we solve DR program (1) via MILP (12) and using Alg-FP.
Results are summarized in Table 2.

When β grows larger, a higher fraction of loads joins in the DR program,
and the generation and demand get more interactive. Longer computation time
is observed when solving MILP (12). By-and-large, the time grows with the
increase in participation level β. Nevertheless, the computation time of the
proposed MILP model varies from several second to one minute, which is efficient
enough for practical use. Alg-FP is always faster because it only solves several
LPs. When the DR participation level β changes from 0.1 to 0.6, Alg-FP fails
to converge in 30% ∼ 50% of the total six instances.

4.2. Convergence Performance

As analyzed in Section 2, the equilibrium solution may not exist if the tra-
ditional LMP scheme is adopted. To show this effect, we solve problem (1)
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Table 2: Computation Times With Different Load Responses (in seconds)

DR Type Algorithm
DR participation level β

0.1 0.2 0.3 0.4 0.5 0.6
Inelastic LP 0.019

Type-I
MILP (12) 5.54 4.61 7.19 11.8 19.3 42.2

Alg-FP 0.062(4) 0.052(3) 0.051(3) 0.055(3) fail fail

Type-II
MILP (12) 6.27 7.81 12.5 17.8 15.9 63.9

Alg-FP fail 0.049(3) fail 0.060(3) 0.068(4) fail

Type-III
MILP (12) 3.30 4.56 12.7 7.30 16.8 48.6

Alg-FP fail 0.053(3) 0.051(3) 0.051(3) 0.065(4) fail

Type-IV
MILP (12) 4.42 4.03 10.8 18.5 26.6 48.0

Alg-FP fail 0.049(3) fail 0.053(3) 0.065(4) fail

Type-V
MILP (12) 3.68 1.58 5.62 5.58 14.0 20.0

Alg-FP 0.048(3) 0.047(3) 0.047(3) 0.051(3) 0.061(4) fail

using Alg-FP and via MILP (12). If oscillation occurs in Alg-FP, there is no
equilibrium solution for problem (1) under traditional LMP. Five DR functions
with different values of ξ0 and β are tested, and results are given in Fig. 5.
Each subplot manifests one DR type, and each point corresponds to a pair of
parameters (ξ0, β). The red points manifest that Alg-FP fails to converge; the
blue ones indicate the number of iterations before Alg-FP converges.

For the inelastic demand, no iteration is needed. For the five types of DR
functions, there are approximately 20% ∼ 30% cases in which Alg-FP fails
to converge, implying that under the traditional LMP, market instability may
not be a rare event and could happen no matter β is low or high; no regular
pattern is found for such phenomenon. MILP (12) always has a solution which
can be found in less than 2 minutes, because the value of LMP is softened at
discontinuous points.

To better visualize the process and results of iteration, we pick two partic-
ular system configurations with ξ0 = 36 $/MWh and β = 0.3, in which Type-I
and Type-II DR are adopted respectively. The change of three typical elastic
demand (one in each area) are plotted in Fig. 6(a-b) with MILP equilibrium
marked in dashed lines, where load is expressed by the proportion of its maxi-
mum power consumption. Under Type-I DR, Alg-FP takes three iterations to
reach the equilibrium, and solving MILP gives the same results. Under Type-II
DR, the responsive load takes two different groups of values repetitively in the
iteration process, and Alg-FP fails to produce a traditional equilibrium. While
the MILP model still gives a meaningful market-clearing point, accounting for
the discontinuity of traditional LMP scheme.

4.3. Impact on System Performances

We investigate the impact of DR on system performances from four aspects.
Three types of DR functions are examined, including the linear case (Type-I)
and two extreme cases (Type-IV, Type-V). ξ0 = 36 $/MWh and β = 0.3 are
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h) (b) Type-I DR

0.1 0.2 0.3 0.4 0.5 0.6
30

32

34

36

38

40

M
in

im
al

 R
es

po
ns

iv
e 

L
M

P 
($

/M
W

h) (c) Type-II DR
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h) (d) Type-III DR

0.1 0.2 0.3 0.4 0.5 0.6
30

32

34

36

38

40

M
in

im
al

 R
es

po
ns

iv
e 

L
M

P 
($

/M
W

h) (e) Type-IV DR
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Figure 5: Convergence test with different values of β and ξ0.
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Figure 6: Values of responsive load when performing DR program.

used in our tests. Results are exhibited in Table 3, where

Average LMP =
ξTPD
1TPD

(13)

By introducing responsive demands, a certain fraction of the total demand
switches to respond to the electricity price, leading to the reduction of the total
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Table 3: System Performances With Different Load Types

Inelastic Type-I Type-IV Type-V

Total demand (GW) 3.941 3.765 3.778 3.755

Total operation cost rate
153.3 142.0 142.7 141.5

(×103 $/h)

Cost rate saved by DR − 7.32% 6.86% 7.65%

Average LMP ($/MWh) 63.92 51.94 52.26 51.94

No. congested lines 6 4 4 3
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Total demand in inelastic case: 3.94

Figure 7: Total load demand with different DR types and participation levels.

cost, the average LMP, and the number of congested lines at the equilibrium
solution. A higher cost saving is observed with Type-V DR function in which
load is more sensitive when the price is either high or low, motivating more
significant decrease in demand.

For further analysis of the influence brought by increasing participation of
DR loads, similar tests are conducted by changing β from 0.1 to 0.6, while
ξ0 remains the same. Results are plotted in Figs. 7-10. Apparently, for all
DR types, the total demand and operation cost decrease with the growth of
β. Nevertheless, when β ≤ 0.2, the impacts of different DR functions show
little difference. The influence on demand and cost reduction becomes more
evident for β ≥ 0.3, and system average LMP for β ≥ 0.45. It is also observed
that if the percentage of Type V DR is high, the number of congested lines is
not monotonic: 5 lines are congested when β = 0.6, which is even more than
the case with β = 0.1. In spite of the fact that more line flow constraints are
binding, the total cost and the average LMP still exhibit a decreasing trend.
This phenomenon largely depends on system data.

5. Conclusions

This paper discusses the economic dispatch problem with LMP-dependent
demands. The difficulty caused by the traditional LMP scheme is revealed,
and the LMP concept at discontinuous points is revamped to guarantee the

18



 

0.1 0.2 0.3 0.4 0.5 0.6

1.35

1.4

1.45

1.5

T
ot

al
 O

pe
ra

tin
g 

C
os

t a
t O

pt
im

al
 (

$/
h)

105

Type-I DR
Type-II DR
Type-III DR
Type-IV DR
Type-V DR

Total cost in inelastic case: 1.53 105

Figure 8: Total operating cost rate with different DR types and participation levels.
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Figure 9: Average LMP with different DR types and participation levels.
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Figure 10: Congestion performance with different DR types and participation levels.

existence of an equilibrium solution. An MILP model is proposed to solve
the interactive dispatch problem. Numeric experiments on a 118-bus system
validate the computational efficiency and effectiveness of the proposed model.

Under traditional LMP scheme, the non-existence of an equilibrium solution
may lead to market instability (interpreted by oscillation in numeric tests) with
non-negligible possibility. The proposed DR program with redefined LMP con-
cept can reflect the effect of DR integration including: 1) Transmission conges-
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tion can be alleviated via the DR program, where load peak and market-clearing
price are reduced monotonically with the increasing DR participation level; 2)
The system impact of different DR functions can hardly be distinguished un-
less the DR participation level is sufficiently high (not smaller than 5 percent
of the total demand in our case), and the linear DR function has moderate
performance over the entire price range.

In conclusion, the method in this paper provides a non-iterative approach to
retrieving practical market-clearing strategy under DCOPF with LMP-dependent
demands. The market equilibrium condition consists of the KKT condition of
DCOPF and the linearized demand function. It can be embedded in more so-
phisticated optimization problems that study the strategic behavior or market
power of generation companies in the market environment. In such problems,
the market-clearing problem is usually formulated as constraint sets in order to
be jointly solved together with the decision-making problem of strategic partic-
ipants.

Appendix A: Error Bound of Linear Interpolation

We now prove that the error bound of linear interpolation satisfies (8). Sup-
pose the demand function PRDj (ξj) is second-order continuously differentiable on

interval [ξ(1), ξ(2)]. Assume the linear interpolation error of PRDj (ξj) on interval

[ξ(1), ξ(2)] has the form

R1j(ξj) = PRDj (ξj)− P1j(ξj) = K(ξj)(ξj − ξ(1))(ξj − ξ(2))

where K(ξj) is an undetermined function of ξj , as the linear interpolation at
the endpoints must satisfy

R1j(ξ
(i)) = PRDj (ξ

(i))− P1j(ξ
(i)) = 0, i = 1, 2

Introduce auxiliary function of t

ϕ(t) = PRDj (t)− P1j(t)−K(ξj)(t− ξ(1))(t− ξ(2))

We have ϕ(ξj) = 0 and ϕ(ξ(i)) = R1j(ξ
(i)) = 0, i = 1, 2. Therefore, ϕ(t) has at

least three zero points on interval [ξ(1), ξ(2)]. Using Rolle’s Theorem for twice,
we can derive that

∂2ϕ(t)

∂t2

∣∣∣∣
t=cξ

=
∂2

∂t2
(PRDj (t)− P1j(t)−K(ξj)(t− ξ(1))(t− ξ(2)))

∣∣∣∣
t=cξ

=
d2

dξ2j
PRDj (cξ)− 2K(ξj) = 0
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for some cξ ∈ [ξ, ξ + h]. The interpolation error is thus

R1j(ξj) = PRDj (ξj)− P1j(ξj) =
(ξj − ξ(1))(ξj − ξ(2))

2

d2

dξ2j
PRDj (cξ)

where cξ depends on ξj . Letting [ξ(1), ξ(2)] = [ξ, ξ+h], the error bound satisfies

∣∣∣PRDj (ξj)− P1j(ξj)
∣∣∣ ≤ max

ξj∈[ξ,ξ+h]

{∣∣∣∣∣ d2

dξ2j
PRDj (cξ)

∣∣∣∣∣ (ξj − ξ)(ξ + h− ξj)
2

}

≤ DM max
ξj∈[ξ,ξ+h]

{
(ξj − ξ)(ξ + h− ξj)

2

}
≤ DMh

2

8
= O(h2)

which proves (8).
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