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Abstract 

A crucial factor for the sustainable development of human society is access to 

electricity. This fact has motivated the development of renewable energy systems 

isolated or connected to the electric distribution network. Evaluation of autonomous 

hybrid energy systems from a technical and economic perspective is a difficult problem 

that requires using complex mathematical models of renewable sources and generators, 

such as photovoltaic (PV) panels and wind turbines, and the implementation of 

optimization techniques in order to obtain an economically successful design. This 

chapter describes and analyzes traditional isolated energy systems powered by solar PV 

and wind energies provided with a battery energy storage system (BESS). Simulation 

and optimization are illustrated through the analysis of a rural electrification project in 

Tangiers (Morocco) in order to provide electricity to rural clinic. Optimization analysis 

suggests the installation of a PV/BESS system due to the magnitude of the load to be 

supplied, operating costs, and environmental conditions. 
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8.1. Introduction 

Energy is a leading factor for the development of human beings from a social, cultural 

and economic perspective. In spite of this, approximately 17% of the world’s population 

still needs an electricity supply [1]; this percentage represents those people who live in 

rural communities and do not have access to Electric Distribution Network (EDN) or 

any autonomous energy system. Some problems related to energy provision in remote 



areas have an administrative character. An example of this condition is when rural 

electrification funds are invested; frequently, power resources are assigned so that 

economically advantaged communities receive the majority of the available economical 

support.  

Other problems arise when those poorest householders are not able to pay the costs 

related to EDN connection; hence, cost-connection could be considered as a barrier for 

development of some people living in rural areas. The implementation of a rural 

electrification program is typically based on two important factors; economical 

sustainability and welfare. In order to guarantee self-sustained development from an 

economical perspective, monetary resources are invested according to the distance 

between the community to be provided with electrical service and the nearest EDN 

already installed. In addition to this factor, other parameters such as population size and 

whole community income are taken into account. Another very important factor is the 

population welfare, which is integrated into the electrification strategy by considering 

livelihoods, gender role and relationships, and geographical location, among other 

parameters.  

Commonly, all of these features are considered in order to determine the way in which 

each community is going to be provided with electric service. It could be carried out by 

using a connection to the nearest EDN, which requires a detailed knowledge about grid-

connection costs, or by installing an autonomous Hybrid Power System (HPS), which 

requires the evaluation of economical-resources allocation by means of subsidies. 

Electricity can improve people’s lifestyle and lead economic growth in a relevant way; 

it could be used for lighting streets and residential environments, it could be used in 

public and social facilities such as restaurants, as well as for irrigation. Other important 

applications are related to the energy supply of household appliances, such as television 



and radio, which allows increasing health knowledge about fertility control and other 

topics.  

In addition, health facilities provided with electric service are able to stay open during 

more time per day [2]. Fig. 8.1 presents the rural electrification rate per region of the 

world. It is possible to observe that most of the people without access to electricity are 

located in countries such as sub-Saharan Africa, Southeast Asia, and the rest of 

developing Asia with 17%, 69%, and 53% of rural electrification rate, respectively [1]. 

“Insert  Fig. 8.1 here” 

Recently, several rural electrification projects are being implemented in developing 

countries such as Cambodia, Bangladesh, and Laos, with 18%, 47%, and 82% of rural 

electrification rate, in addition to Vanuatu [1]. In Cambodia [3], the efficiency and 

reliability of EDN has been enhanced by incrementing its capacity and performance at 

high, medium, and low voltage levels; as a consequence, energy losses of EDN were 

reduced from 14% to 9.8%. This action had a positive impact on the whole population 

due to rural energy enterprises, and 565,733 people were provided with a modern 

energy infrastructure and service. In order to assure the economic sustainability of the 

electrification project, a regulatory framework for the power sector was designed to 

improve the commercialization of the service, including its privatization process; as the 

main results, 297 rural energy enterprises were provided with licenses by the Electricity 

Authority of Cambodia, and a renewable energy policy was developed so that 

hydropower generation capacity was increased to 14.5% of the total installed capacity. 

An electrification project carried out in Bangladesh [4] allowed the improvement of the 

population’s lifestyle and system performance. Specifically, the rehabilitation of 11,295 

km of lines of EDN, joined with the connection of 656,802 new users and the 

installation of about 3 million Solar Home Systems (SHSs), reduced system losses to 



13.7% and reduced illiteracy rates from 21% to 14% by increasing the number of years 

of continuous scholar activity in school from 6.43 to 6.86 years. Moreover, television 

improved the lifestyle of women because they got useful information about reproductive 

health and family planning, among other topics. In Laos [5], rural electrification rate 

improved 16% as a result of enhancing energy efficiency and renewable energy 

integration in a substantial form, combined with an increment on the connections to 

EDN and HPSs installation in remote zones. According to recent information [6], about 

42,300 rural households have been electrified by May of 2015, while losses at EDN 

have been reduced to 13.5% in 2014, in addition to the installation of hydro and biogas 

units with 50 kW and 260 kW, respectively. In Peru [7], it is estimated that around 

105,000 households and small-scale businesses, including around 35,000 indigenous 

people and 2,900 schools, health clinics and community centers, are going to benefit 

from a rural electrification project carried out to extend EDN and to incorporate 

renewable power generation in order to increase access to electric service. Within this 

group, around 7,100 households will be supplied by using SHSs. In Vanuatu [8], there 

is a project to supply households, aid posts and community halls in rural areas at which 

it is not expected that EDN will be extended or any mini-grid will be installed; it is 

estimated that around 85% of the 20,470 households will benefit from the installation of 

SHSs. 

In this context, simulation and optimal sizing of HPS became a relevant topic of 

research by many scientific organizations all over the world, supported in many cases 

by governmental institutions; from this effort, several computational tools have been 

created: 

 Hybrid Optimization Model for Electric Renewables (HOMER) is a simulation 

and optimization model developed by National Renewable Energy Laboratory 



(NREL) of the United States for the analysis of isolated and grid-connected 

HPS. It is able to consider several power sources for isolated systems and 

modern electrical grids such as biomass, small-scale hydropower, combined heat 

and power generation, thermal and electrical loads, real-time and time of use 

pricing schemes, as well as hydrogen energy storage [9]. The optimization 

technique used by HOMER consists of the evaluation of all possible 

combinations of HPS components in order to reduce Net Present Cost (NPC), 

which could be a time-consuming task depending on the amount of elements 

considered. To reduce the computational complexity of the problem, HOMER 

Optimizer® was recently introduced as an optimization tool to be jointly used 

with HOMER.  

 Hybrid2 is a simulation model developed by Renewable Energy Research 

Laboratory (RERL) of University of Massachusetts (UMass) and NREL. This 

model is able to provide a reliable simulation of HPS with diesel generators, 

wind turbines, Photovoltaic (PV) generators with Maximum Power Point 

Tracker (MPPT), power converter, and electrical loads managed by means of 

supervisory control to implement optimal management strategies. Time series 

analysis is used to predict system behavior on a long-term basis, while a 

probabilistic approach is included at each time step to consider the influence of 

short-term fluctuations related to renewable generation and load demand [10].  

 Improved Hybrid Optimization by Genetic Algorithm (iHOGA) is a simulation 

and optimization model of isolated and on-grid HPS by means of Genetic 

Algorithm (GA), which allows obtaining a near-optimal solution in a reasonable 

computational time, useful when complex systems need to be analyzed. It is able 

to carry out optimization analysis minimizing NPC (mono-objective 



optimization) or minimizing NPC and Greenhouse Gas (GHG) emissions 

simultaneously (multi-objective optimization). The mathematical model of 

Battery Energy Storage System (BESS) includes aging mechanisms such as 

corrosion and degradation phenomena in order to reasonably predict battery 

bank lifetime; control strategies among other parameters can be optimized, too 

[11].  

 Integrated Simulation Environment Language (INSEL) is a programming 

language designed by University of Oldenburg (UniOldenburg) to face 

computational simulation problems in a general sense. It is provided with 

validated simulation models suitable for renewable energy applications such as 

solar irradiance simulation and the evaluation of PV and solar thermal 

generators [12].  

 In a similar way, Transient Energy System Simulation Program (TRNSYS) is a 

software environment able to simulate electrical and thermal systems, as well as 

traffic flow and biological processes. It is composed of two parts: one part is 

used to read and evaluate the input data and carry out the computational 

calculations in order to determine mathematical convergence and thermo-

physical behavior, while the another part is used to store the characteristics of 

each element (pumps, wind turbines, electrolyzers, etc.) in a library [13].  

In this chapter, simulation and optimization of small-scale HPSs is illustrated and 

analyzed. In section 8.2, HPS modeling on an hourly basis is described by including 

several elements such as PV panels, wind turbines, BESS, power converter, and charge 

controller. In section 8.3, the methodology for optimal sizing of HPSs by GA is 

described. In section 8.4, a rural electrification project in Tangiers (Morocco) is carried 



out in order to supply a small-rural clinic with electric service. Finally, conclusions and 

remarks are presented in section 8.5. 

8.2. Hybrid Energy Systems Modeling 

In a general sense, there is a wide range of components and power sources that could be 

integrated in a HPS. In many cases, the components to be installed are selected by 

considering techno-economic parameters, so that PV/Wind/BESS and PV/Diesel/BESS 

are frequently chosen [14]. Fig. 8.2 presents the typical configuration of a HPS to be 

installed in a remote area; it is powered by wind and solar energies through a small-

capacity wind turbine and a PV generator with a MPPT. An important element is BESS; 

in most cases this is based on lead-acid batteries with a charge controller to protect the 

battery bank against extreme operating conditions (for example, by avoiding State of 

Charge (SOC) values lower than ܱܵܥ௠௜௡ and controlling the charging process). Power 

inverter converts energy obtained from the renewable sources and BESS in Direct 

Current (DC) to Alternant Current (AC) in order to be consumed by the householder. 

Dump load is an auxiliary energy consumption installed to maintain power balance by 

dissipating excess of energy produced.  

“Insert Fig. 8.2 here” 

Typically, a conventional diesel generator is included in order to have a controllable and 

dispatchable power source; however, costs related to the operation and fuel 

consumption of these units are high and fuel is difficult to be transported towards 

isolated zones.  

The economic viability of installing a diesel generator strongly depends on the expected 

number of hours of operation, which is determined by the meteorological conditions and 

available renewable resources; if the running time is low, then adoption of diesel 



generation could be economically viable [15]. A mathematical model of each device is 

described in the next sub-sections. 

8.2.1 Photovoltaic Panel Modeling 

In a general sense, power production of a PV panel could be estimated by using (8.1) 

and (8.2); however, in many cases information provided by the manufacturers is 

estimated under Standard Test Conditions (STC), so that power generation under actual 

conditions could be approximated by using this information. STC are defined for a solar 

radiation of 1 kW/m2 and cell temperature of 25 °C without wind; then, evaluating PV 

power for STC and actual conditions through (8.1) and (8.2), and combining these 

expressions, PV power in terms of actual solar radiation and cell temperature is 

obtained (equations (8.3) and (8.4)) [16,17]. 

௣ܲ௩(௧) =  ௣௩(௧) (8.1)ߟ(௧)ܩ௣௩ܣ
௣௩(௧)ߟ = ௌ்஼ൣ1ߟ + ൫ߙ ௖ܶ(௧) − 25 °C൯൧ (8.2) 

௣ܲ௩(௧) = ௌ்ܲ஼ ൜൬
(௧)ܩ

1 kW mଶ⁄ ൰ ൣ1 + ൫ߙ ௖ܶ(௧ଵଵ) − 25 °C൯൧ൠ (8.3) 

௖ܶ(௧) = ௔ܶ(௧) + ൬ ேܶை஼் − 20 °C
0.8 kW mଶ⁄ ൰ܩ(௧) (8.4) 

Incorporation of MPPT allows extracting maximum available power from the PV 

generator according to the current meteorological conditions by modifying the voltage 

at the terminals; hence, voltage effects on PV performance could be partially avoided in 

the mathematical formulation [16]. 

8.2.2 Wind Turbine Modeling 

Energy contained in the wind is transformed into electricity through the wind turbine. 

Fig. 8.3 shows a general purpose power curve of a small-capacity wind turbine typically 

used in HPS. As can be observed, a wind speed value between 3 and 4 m/s is enough to 

produce power; this wind speed value is known as cut-in speed. Then, as wind speed 

rises, frequently to a value between 12 and 15 m/s, power generation increases until the 



rated power of the wind turbine ( ௪ܲ
௥); wind speed at this stage is known as the rated 

wind speed. Finally, when wind speed increases to 18 m/s approximately, output power 

is reduced to a range between 30% and 70% of the rated power in order to protect the 

turbine structure [15, 16]. 

“Insert Fig. 8.3 here” 

8.2.3 Battery Energy Storage System Modeling 

BESS has been widely analyzed in the technical literature and as a result, several 

mathematical models were developed to describe its performance. Shepherd [18] 

developed a mathematical model to describe charging and discharging behavior in terms 

of open-circuit voltage and its variation with SOC through a linear relation, as well as 

the variation of battery voltage at its terminals. Manwell and McGowan [19] developed 

Kinetic Battery Model (KiBaM) inspired on the chemical kinetics; this model assumes 

that energy could be stored on the battery to be instantly affordable or limited by the 

chemical reaction. An important advantage of this model is that it is suitable to be used 

on simulation analysis on an hourly basis and only requires the determination of three 

parameters.  

Copetti et al. [20] carried out an extensive experimental work in order to analyze the 

behavior of internal resistance for charging and discharging processes under several 

current rates and ambient temperature values. From this effort, a normalized 

mathematical model was developed based on the assumption that the product between 

the resistance and the capacity remains constant from one battery to another one. Guash 

and Silvestre [21] extended the model presented in [20] by incorporating several 

concepts such as Level of Energy (LOE) and State of Health (SOH), in addition to 

considering behavior of the battery as a sequence of steady states such as saturation, 



overcharge, charge, discharge, and over-discharge or exhaustion, avoiding the analysis 

of transient phenomena.  

Regarding BESS lifetime, Svoboda et al. [22] defined operating categories for BESS 

based on stress factors frequently used by HPS experts. Using the charge factor, Ah 

throughput, highest discharge rate, time between full charge, time at low SOC, and 

partial cycling as stress factors, and analyzing aging mechanisms related to grid 

corrosion, active mass degradation, active mass shedding, hard-irreversible sulphation 

of active mass, water loss-drying out, and electrolyte stratification, several categories 

were identified. The corresponding categories consider several HPS operating 

conditions from systems with deficient power generation with deep and shallow cycle 

operation, BESS with shallow cycling combined with overcharge, deep cycling 

operation combined with strong charges, BESS with limited charges, as well as BESS 

under optimal operating conditions from a qualitative point of view. All these categories 

could be used to help HPS designers to evaluate BESS behavior.  

Schiffer et al. [23] developed a model at which Ah throughput over battery lifetime is 

weighted according to the operating conditions. This approach is known as weighted Ah 

throughput method. The values of weighting factors are assigned according to Depth of 

Discharge (DOD), current rate, acid stratification, and time since the last full charging; 

this method is a heuristic way to represent aging mechanisms of lead-acid batteries. 

Dufo-López et al. [24] carried out a comparative analysis between weighted Ah 

throughput method and real-life data, finding an estimation error between 6.5% and 

13.7%. Due to the important capabilities of the last described model to simultaneously 

include BESS performance and aging models, the proposed work used it in this chapter 

in order to illustrate BESS behavior in a typical HPS; in general sense, this is an aging 



model with medium mathematical complexity that allows optimizing the operating 

strategy and conditions of BESS with a computational difficulty of a medium level [25].  

This model is composed of two main parts: performance analysis and aging 

mechanisms evaluation. During performance analysis, battery voltage and SOC are 

determined for a single cell, including the effects of charge controller and the other 

components of HPS. This process is carried out by using the Shepherd model, in which 

SOC is estimated taking into account the effects of gassing; then, aging mechanisms 

(corrosion, acid stratification, sulphation and sulfate crystal growth, and degradation of 

active material) are analyzed in order to determine lost capacity [23]. In the next sub-

sections, all of these processes are briefly described and discussed. 

8.2.3.1 Performance model of a typical lead-acid battery 

As stated before, battery voltage at each time step is determined by means of the 

Shepherd model; mathematical expressions for charging (ܫ௕(௧) > 0) and discharging 

௕(௧)ܫ) < 0) processes are presented in (8.5) and (8.6), where the first term represents the 

open-circuit voltage under fully charged conditions and constant density of the 

electrolyte, the second term represents the variations of the open-circuit voltage with 

DOD, the third term represents the effects of internal resistance, and the fourth term 

represents operating conditions when the battery is almost fully charged or fully 

discharged [23, 26, 27]. 

௕ܸ(௧) = ଴ܸ − (௧)ܦܱܦ݃ + ௖(௧)ߩ ൬
௕(௧)ܫ

ேܥ
൰ 

௖ܯ௖(௧)ߩ+ ൬
௕(௧)ܫ

ேܥ
൰ ቆ

(௧)ܥܱܵ

௖ܥ − (௧)ܥܱܵ
ቇ ௕(௧)ܫ ; > 0 

(8.5) 

௕ܸ(௧) = ଴ܸ − (௧)ܦܱܦ݃ + ௗ(௧)ߩ ൬
௕(௧)ܫ

ேܥ
൰ 

ௗܯௗ(௧)ߩ+ ൬
௕(௧)ܫ

ேܥ
൰ ቆ

(௧)ܦܱܦ

ௗ(௧)ܥ (௧)ܦܱܦ−
ቇ ௕(௧)ܫ ; ≤ 0 

(8.6) 



SOC is estimated according to (8.7) and (8.8), where the energy effectively stored on 

the battery is calculated by subtracting the current required by the gassing process 

related to the hydrogen and oxygen production at the negative and positive electrodes, 

respectively [23]. 

(௧)ܥܱܵ = (௧ି௱௧)ܥܱܵ + න ቆ
௕(ఛ)ܫ − ௕(ఛ)ܫ

ீ

ேܥ
ቇ

௧

௧ି௱௧
݀߬ (8.7) 

௕(௧)ܫ
ீ = ൬

ேܥ
100൰ ௕̅(଴)ܫ

ீ ቄ݁݌ݔ ቀܿ௨൫ ௕ܸ(௧) − തܸ௕ீ൯ + ்ܿ൫ ௔ܶ(௧) − തܶேீ൯ቁቅ (8.8) 

8.2.3.2 Aging model of a typical lead-acid battery 

Corrosion as an aging factor is evaluated by means of the estimation of corrosion 

voltage of the positive electrode using the Shepherd model, which is presented in (8.9) 

and (8.10). In a similar way, the first term corresponds to the corrosion voltage under 

fully charged conditions, the second term corresponds to the influence of DOD, the 

third term corresponds to the impact of internal resistance, and the fourth term 

corresponds to the operating conditions when the battery is almost fully charged or fully 

discharged.  

However, in this formulation, DOD impact has been weighted with the factor 10/13 due 

to the voltage change between the positive and negative electrodes, while the impact of 

internal resistance and the current rate was assumed to be equally distributed [23,27].  

௖ܸ(௧) = ଴ܸ
௖ −

10
(௧)ܦܱܦ13݃ +

1
௖(௧)ߩ2 ൬

௕(௧)ܫ

ேܥ
൰

+
1
௖ܯ௖(௧)ߩ2 ൬

௕(௧)ܫ

ேܥ
൰ ቆ

(௧)ܥܱܵ

௖ܥ − (௧)ܥܱܵ
ቇ ௕(௧)ܫ ; > 0 

(8.9) 

௖ܸ(௧) = ଴ܸ
௖ −

10
(௧)ܦܱܦ13݃ +

1
ௗ(௧)ߩ2 ൬

௕(௧)ܫ

ேܥ
൰

+
1
ௗܯௗ(௧)ߩ2 ൬

௕(௧)ܫ

ேܥ
൰ ቆ

(௧)ܦܱܦ

ௗ(௧)ܥ (௧)ܦܱܦ−
ቇ ; ௕(௧)ܫ  ≤ 0 

(8.10) 

Evolution of the corrosion process is represented by the increment of the effective layer 

thickness (߂ (ܹ௧)). This is estimated by means of (8.11) and (8.12); it depends on the 



corrosion voltage and the corrosion speed, which is described according to the Lander 

corrosion speed vs. voltage curve [28] and Arrhenius law [23, 26, 27]. 

߂ (ܹ௧) = ቐ ݇௦ݔ଴.଺; ݔ = ൬
߂ (ܹ௧ି௱௧)

݇௦
൰
ଵ/଴.଺

߂ (ܹ௧ି௱௧) + ݇௦ݐ߂; ௖ܸ(௧) ≥ 1.74
+ ௖ܸ(௧) ;ݐ߂ < 1.74 (8.11) 

݇௦൫ ௖ܸ(௧), ௔ܶ(௧)൯ = ݇൫ ௖ܸ(௧)൯݁݌ݔ ቀ݇௦,்൫ ௔ܶ(௧) − തܶே஼൯ቁ (8.12) 

The increment on the internal resistance due to corrosion is estimated by using (8.13)-

(8.15), where the limit values of resistance (ߩ௟௜௠) and capacity loss (ܥ௟௜௠௖ ) are calculated 

under the assumption that 20% of battery capacity is reduced due to the increment on 

the internal resistance and 80% is reduced due to loss of active material due to 

corrosion. 

(௧)ߩ߂ = ௟௜௠ߩ ൬
߂ (ܹ௧)

߂ ௟ܹ௜௠
൰ (8.13) 

(௧)ܥ߂
௖ = ௟௜௠௖ܥ ൬

߂ (ܹ௧)

߂ ௟ܹ௜௠
൰ (8.14) 

߂ ௟ܹ௜௠ = ܶ൫ܮ௙௟௧൯൫݇௦௟௜௠൯ (8.15) 

Battery lifetime is estimated at each time instant by using the weighted number of 

cycles according to (8.16), at which the impact of SOC, current rate, and acid 

stratification are taken into account; in other words Ah throughputs are weighted 

according to the operating conditions at each time step. 

ܼௐ(௧) =
1
ேܥ

න ௕(ఛ)ܫ
ௗ

(݂ఛ)
ௌை஼

(݂ఛ)
஺஼஽

௧

଴
݀߬ (8.16) 

Lost capacity due to degradation process is estimated by means of (8.17), assuming that 

battery capacity is 80% of its nominal value at the end of its lifetime [23, 26, 27]. 

(௧)ܥ߂
ௗ = ௟௜௠ௗܥ exp൭−ܿ௓ ൬1 −

ܼௐ(௧)

ூா஼ݖ1.6
൰൱ (8.17) 



The effects of operation at a low SOC during a long time since the last full charge (ݐ −

 ଴), as well as the influence of poor charge periods (݊) (equation 8.19) and the impact ofݐ

current rate at the beginning of cycling period (current factor), are combined in the state 

of charge weighting factor at each time instant ( (݂௧)
ௌை஼) defined in (8.18). In this way, 

effects of mechanical stress on the active material due to the operation at low SOC and 

the increment in the size of sulfate crystals are both integrated [23, 26, 27]. 

(݂௧)
ௌை஼ = 1 + ൫ܿௌை஼௢ + ܿௌை஼௠௜௡ൣ1 − ݉݅݊൫ܱܵܥ(ఛ)൯, ߬ ∊ ,଴ݐ] ൧൯[ݐ

×ඨ
௕௥ܫ

௕(௧)ܫ
ට݁݌ݔ ቀ

݊
3.6ቁ

య ݐ) −  (଴ݐ
(8.18) 

݊ ← ݊ + ቐ
0.0025 − (0.95 − ௠௔௫)ଶܥܱܵ

0.0025 ; ௠௔௫ܥܱܵ     > 0.9
௠௔௫ܥܱܵ                              ;0 ≤ 0.9

 (8.19) 

Total impact of acid stratification at each time step is quantified by means of the factor 

( (݂௧)
஺஼஽) in (8.20), where effective increment of acid stratification and current factor are 

taken into account. 

(݂௧)
஺஼஽ = 1 + (݂௧)

ௌ்ோඨ
௕௥ܫ

௕(௧)ܫ
 (8.20) 

Effective increment of acid stratification is represented in (8.21), which is determined 

by the subtraction between those factors that increases and reduces acid stratification 

numerically integrated during each time step. On one hand, increment in acid 

stratification is related to the operation at low SOC and the current factor, which 

strongly depends on the discharging current at the beginning of cycling period; these 

phenomena are represented in (8.22). On the other hand, acid stratification is reduced by 

means of gassing and diffusion processes as expressed in (8.23)-(8.25) [23, 26, 27]. 

(݂௧)
ௌ்ோ = (݂௧)

ௌ்ோ + න ൫ (݂ఛ)
௉௅ௌ − (݂ఛ)

ெூே൯݀߬
௧

௧ି௱௧
 (8.21) 



(݂௧)
௉௅ௌ = ܿ௣௟௦൫1 − ݉݅݊൫ܱܵܥ(௧)൯, ߬ ∊ ,଴ݐ] ൫−3݌ݔ൯݁[ݐ (݂௧)

ௌ்ோ൯
௕(௧)ܫ
ௗ

௕௥ܫ
 (8.22) 

(݂௧)
ெூே = (݂௧)

ெூே,ீ + (݂௧)
ெூே,஽  (8.23) 

(݂௧)
ெூே,ீ = ܿ௠௜௡ඨ

100
ேܥ

௕̅(௧)ܫ
ீ

௕̅(଴)ܫ
ீ ݌ݔ݁ ቀܿ௨൫ ௕ܸ(௧) − ௕ܸ

௥൯ + ்ܿ൫ ௔ܶ(௧) − തܶேீ൯ቁ (8.24) 

(݂௧)
ெூே,஽ =

ܦ8
ଶݖ (݂௧ି௱௧)

ௌ்ோ 2൫்ೌ(೟)ିଶ଴ °େ൯/ଵ଴ ୏  (8.25) 

Variations of effective resistance over battery lifetime for charging and discharging 

conditions are estimated according to (8.26) and (8.27) and specifically related to the 

corrosion process. 

௖(௧)ߩ = ௖(଴)ߩ +  (8.26) (௧)ߩ߂
ௗ(௧)ߩ = ௗ(଴)ߩ +  (8.27) (௧)ߩ߂

Finally, actual battery capacity at each time step is calculated by subtracting the 

capacity lost due to corrosion and degradation from its nominal normalized value, as 

presented in (8.28), so that when ܥௗ(௧) reached 80% or an immediately lower value, it is 

considered that the battery lifetime has been fulfilled [23, 26, 27]. 

ௗ(௧)ܥ = ௗ(଴)ܥ − (௧)ܥ߂
௖ − (௧)ܥ߂

ௗ  (8.28) 

8.2.4 Charge Controller 

Generally speaking, algorithms for charge control are based on the implementation of 

three or four stages, depending on the application, which allows optimizing the charge 

acceptation of the battery and its lifetime. The three-stage algorithm is composed of 

bulk, absorption, and float charging steps; during bulk charge, the battery is partially-

charged until a SOC value between 50% and 80%. In this stage charging current 

remains constant, while battery voltage increases to a determined value ( ௔ܸ௕௦).  

Then, the absorption charge is applied by keeping the battery voltage constant for a 

determined time interval (ݐ௔௕௦), while the charging current is rapidly reduced. At the 

end of this stage, SOC frequently reaches a value higher than 95%. Finally, during the 



float stage, battery voltage is reduced to a determined value ( ௙ܸ௟௧). The four-stage 

algorithm is composed of bulk and absorption charging stages, followed by an 

additional step known as equalization charge, carried out in order to increase SOC 

above 95% by raising the charging voltage until a save limit ( ௘ܸ௤௟) in order to recharge 

the last 5% in a reduced time (ݐ௘௤௟) [29].  

The equalization charge allows controlling gassing process in order to diffuse the layers 

of differing acid density, so that the variations on voltage and current within the battery 

are minimized [30]. After this stage, the float charge is applied as previously explained. 

Nowadays, these charging stages are implemented through a feedback control system 

based on Pulse Width Modulation (PWM) technique in order to control charging current 

[31]. Fig. 8.4 presents the analysis of a 2V-cell with ܥே=1,000 Ah, where the operation 

of a four-stage controller is described and control variables such as battery voltage, 

SOC, and charging current are shown.  

As can be observed, absorption charge is applied when battery voltage reaches 2.4V 

( ௔ܸ௕௦=2.4V), while SOC reaches 90% approximately. Then, the equalization charge is 

applied by increasing battery voltage until 2.45V ( ௘ܸ௤௟=2.45V); finally, the float charge 

is applied by reducing battery voltage until 2.25V ( ௙ܸ௟௧=2.25V); hence, the battery is 

fully charged at the end of the process. 

“Insert Fig. 8.4 here” 

8.2.5 Power Converter 

In many simulation models presented in the literature, the power converter is 

represented by means of a constant efficiency between AC and DC buses; however, 

such efficiency value depends on the amount of power to be converted. Taking the 

experience from the large-scale PV system connected to the grid, the simplified 

mathematical formula presented in (8.29) has been used [32], where the value of the 



parameters ݉଴ and ݉ଵ has been calculated by using the experimental results reported in 

[33]. 

௖ߟ = ௟ܲ(௧)

݉଴ ௖ܲ
௥ + (1 + ݉ଵ) ௟ܲ(௧)

 (8.29) 

Results obtained from parameter identification process carried out to determine ݉଴ and 

݉ଵ are shown in Fig. 8.5: finding ݉଴ = 0.015784 and ݉ଵ = 0.078815; the identification 

method was based on Generalized Reduced Gradient (GRG) algorithm [34]. 

“Insert Fig. 8.5 here” 

8.3. Hybrid Energy Systems Sizing and Optimization 

In this chapter, the proposed work is going to illustrate mono-objective optimization, 

which is carried out by taking into account NPC during the project’s lifetime (݆); 

satisfying a determined reliability level (ܫܧ ௧ܷ௥), the definitions of all these concepts are 

presented in (8.30)-(8.32) [16]. 

ܥܲܰ =
ܥܥܣ) + ܥܴܣ + (ܥܯܣ

(௜,௝)ܨܴܥ
 (8.30) 

(௜,௝)ܨܴܥ =
݅(1 + ݅)௝

(1 + ݅)௝ − 1 (8.31) 

ܷܫܧ =
∑ ܰܧ (ܵ௧)௧

∑ ௟ܲ(௧)௧
 (8.32) 

Optimization technique to be used is GA; it could be implemented by following the 

algorithm presented as follows [35]: 

 Step 1: Create the initial population using integer random generation, so that 

1 ≤ ଵܩ ≤ ଵ௠௔௫, 0ܩ ≤ ଶܩ ≤ ଶ௠௔௫, 1ܩ ≤ ଷܩ ≤ ଷ௠௔௫, 0ܩ ≤ ସܩ ≤ ସ௠௔௫, 1ܩ ≤ ହܩ ≤

ହ௠௔௫, and 1ܩ ≤ ଺ܩ ≤  is represented by (ݍ) ଺௠௔௫; where a determined individualܩ

the six chromosomes arranged as follows: |ܩଵ|ܩଶ|ܩଷ|ܩସ|ܩହ|ܩ଺|. 

 Step 2: Analyze the first generation by setting 1⃪ݕ. 



 Step 3: Estimate the behavior of each individual in the population by means of a 

simulation on a yearly basis in order to calculate NPC and Energy Index of 

Unreliability (EIU). 

 Step 4: Calculate fitness using (8.33) for each individual, if (ܷܫܧ < ܫܧ ௧ܷ௥); then 

a high value of NPC is artificially assigned (ܰܲܥ→∞). 

ூ(௤)ܨ =
(ܳ + 1) − ݍ

∑ {(ܳ + 1) − ொ{ݏ
ௌୀଵ

; ݍ   = 1,2, … , ܳ (8.33) 

 Step 5: Carry out reproduction, crossing, and mutation processes according to 

the corresponding rates. 

 Step 6: If (ݕ < ܻ); then ݕ⃪ݕ + 1 and go to step 3; else stop. 

8.4. Rural Electrification in a Remote Community 

In Morocco a rural electrification project was carried out that allowed this country to 

increase its rural electrification rate from 18% in 1995 to 97.4% in 2011 [36]. In this 

section, the optimal sizing of HPS is illustrated by analyzing a hypothetical case study 

that consists of providing electric service to a small rural clinic located in Tangiers 

(Latitude: 35°, 46’ N and Longitude: 5°, 48’ W). The expected hourly electric 

consumption of the rural clinic is shown in Fig. 8.6. Hourly solar radiation data for the 

optimal slope of 60º (and azimuth 0º) was synthetically generated by using the method 

proposed by Graham and Hollands [37] combined with information provided by 

National Aeronautics and Space Administration (NASA) [38], which is shown in Fig. 

8.7. Regarding ambient temperature: as in the case of solar radiation, average, 

maximum and minimum values, such data were obtained from NASA database (Fig. 

8.8) and combined with the model proposed by Erbs et al. [39], which is presented in 

(8.34) and (8.35). 

“Insert Fig. 8.6 here” 



“Insert Fig. 8.7 here” 

“Insert Fig. 8.8 here” 

ܽ = ℎ)ߨ2 − 1) 24⁄  (8.34) 
௔ܶ(௧) = ௔ܶ

௔௩௚ + ൫ ௔ܶ
௠௔௫ − ௔ܶ

௠௜௡൯ 
⨉[0.4632 cos(ܽ − 3.805) + 0.0984 cos(2ܽ − 0.360)

+ 0.0168 cos(3ܽ − 0.822) + 0.0139 cos(4ܽ − 3.513)] 
(8.35) 

Wind speed time series was synthetically generated by using the model developed by 

Nfaoui et al. [40], which is based on the Autoregressive Model (AR) model of order p 

(AR(p)) shown in (8.36). 

ഥ(௧)ݓ = øଵݓഥ(௧ିଵ) + øଶݓഥ(௧ିଶ) +··· +ø௣ݓഥ(௧ି௣) +  (8.36) (௧)ߝ

Let ݓ(௧) be the wind speed time series measured in situ, a transformation and 

standardization processes are required to obtain the parameters of the corresponding 

AR(p) model. These processes could be briefly described in (8.37), where the 

transformation is carried by elevating ݓ(௧) at the power ݉, so that a Gaussian 

Probability Density Function (PDF) is obtained. 

Then, the transformed time series is normalized by using the hourly mean (ߤ௛) and the 

hourly standard deviation (ߪ௛) as shown in (8.37); it is important to note that these 

signals are considered to be periodical, hence: ߤ(ଵ) = (ଶ)ߤ ,(ଶହ)ߤ = (ଵ)ߪ and ,(ଶ଺)ߤ =

(ଶ)ߪ ,(ଶହ)ߪ =  .and so on ,(ଶ଺)ߪ

ഥ(௧)ݓ =
൧(௧)ݓൣ

௠
− (௛)ߤ

(௛)ߪ
; ݐ = 1, … , ܶ; ℎ = 1,2, … ,  (8.37) ܪ

However, the goal of this work is not to fit the AR(p) model from measured data; on the 

contrary, it needs to undo this process in order to obtain a simulation of Typical 

Meteorological Year (TMY) for Tangiers from data already reported in the literature. 

Wind speed is statistically described by Weibull PDF, shown in (8.38). 



ௐ(௪)ܨ = 1 − ݌ݔ݁ ቆ−ቂ
ݓ
ߠ
ቃ
ఒ
ቇ. (8.38) 

Table 8.1 presents the information related to Weibull PDF and autocorrelation function 

for each month: specifically, the factors for the first two lags. According to the original 

work [40], the order of AR(p) model is two (p=2); then using ݎଵ and ݎଶ from Table 8.1, 

the parameters øଵ and øଶ, and the standard deviation for the white noise (ߝ(௧)) can be 

estimated.  

Once all parameters of (8.36) are known, a transformed and standardized time series 

could be synthetically generated. After that, the obtained series is multiplied by ߪ(௛) and 

summed to ߤ(௛) (equation (8.37)). Hence, a transformed time series is obtained, or, in 

other words, a time series with Gaussian PDF. In order to obtain a Weibull PDF with 

the parameters presented in Table 8.1, each value of the transformed time series is 

evaluated on (8.39) [41]; this probabilistic transformation allows modifying the 

transformed time series from a Gaussian PDF to a Weibull PDF of (8.38). This 

procedure is repeated for each month of the year using the data of Table 8.1, and the 

hourly values of ߤ(௛) and ߪ(௛) reported in Tables 8.2 and 8.3. 

෥(௧)ݓ = (௛)ߤே൫ܨௐିଵൣܨ +  ഥ(௧)൯൧. (8.39)ݓ(௛)ߪ

“Insert Table 8.1” 

“Insert Table 8.2” 

“Insert Table 8.3” 

The most important results obtained from the aforementioned procedure for the 

simulation of wind speed time series are shown in Figs 8.9-8.11. Fig. 8.9 presents PDF 

of simulated wind speed time series with scale factor of 7.101 m/s and shape factor of 

1.65. Fig. 8.10 shows the simple and partial autocorrelation functions, which effectively 



correspond to a AR(2) model, and Fig. 8.11 presents the hourly average profile for each 

season of the year. 

“Insert Fig. 8.9 here” 

“Insert Fig. 8.10 here” 

“Insert Fig. 8.11 here” 

Simulation and optimization processes were carried out by considering the values 

presented in Table 8.4. In a general sense, a single battery string of 50 Ah and a single 

PV string of 50 Wp were defined so that, through the optimization process, the optimal 

capacity of the wind turbine (between 0 W and 1,000 W), the optimal number of battery 

strings (between 1 and 10), and the optimal number of PV strings (between 0 and 20) 

were determined.  

The wind turbine was modeled by means of the normalized power curve of Fig. 8.3; 

hence, ௪ܲ
௥ϵ[0 W; 1,000 W]. Similarly, the PV generator was modeled by using (8.1)-

(8.4) and scaled according to the number of PV strings ( ௣ܰ௩௣ϵ [0; 20]), while the battery 

bank was modeled by using the parameters of OGi batteries presented in [23], whereas 

battery bank size is obtained by scaling the results for a single string according to the 

number of battery strings ( ௕ܰ௣ ϵ [1; 20]).  

Regarding the simulation process, taking into account the available resources and load 

demand at a determined time instant, the current to be absorbed or delivered by the 

battery bank is determined by using system voltage ( ௦ܸ௬௦); then the current to be 

absorbed or delivered by a single cell (ܫ௦௬௦(௧)) is estimated by using the number of 

battery strings. After that, the current ܫ௕(௧) is obtained from the evaluation of the control 

actions of the charge controller (bulk, absorption, equalization, and float charges). 

Finally, this current value is used to evaluate the impact of the different aging 

mechanisms on battery lifetime. 



“Insert Table 8.4 here” 

Technical and economic analysis were carried out by considering wind turbine capital 

cost as $4,200/kW and a lifetime of 10 years, replacement cost US$3,300/kW, and 

Operation and Maintenance (O&M) cost as US$120/kW. Capital and replacement costs 

of the power converter were estimated by assuming it as US$875/kW and a lifetime of 

10 years, while O&M cost was assumed to be 1% of the initial investment.  

Regarding BESS, capital and replacement costs were estimated as US$100/kWh and 

O&M was assumed to be 1% of the initial investment. Capital and replacement costs of 

PV panels were assumed as US$1.5/W, and O&M cost was assumed to be 1% of the 

initial investment with a lifetime of 20 years. Nominal interest rate considered was 7% 

with an inflation rate of 3%.  

Convergence of GA during the optimization process is shown in Fig. 8.12, where the 

optimal design corresponds to a PV/BESS system with a PV generator with 7 strings of 

50 Wp (total 350 Wp) and a battery bank with 9 strings of 50Ah (total 5.4 kWh) with an 

estimated NPC of US$3,924 (levelized cost of energy US$0.53/kWh).  

The expected battery lifetime of the optimal solution is 3.42 years. Simulation and 

optimization models were implemented in MATLAB® in a standard personal computer 

provided with an i7-3630QM CPU at 2.40 GHz, 8 GB of RAM and 64-bit operating 

system, obtaining similar results to those provided by iHOGA software [11] in less than 

one minute.  

“Insert Fig. 8.12 here” 

The hourly PV output power is shown in Fig. 8.13 (all the years are considered similar). 

SOC time series during the first four years of the optimized solution is presented in  

Fig. 8.14, and Fig. 8.15 shows the SOC of 10 days of January of the 3rd year. As can be 

observed, the battery bank remains with a very high SOC during its operative lifetime 



with a cycle operation during short-time intervals without deep discharges; as a 

consequence, discharging capacity is mainly influenced by the corrosion process (Fig. 

8.16), while the number of bad charges (Fig. 8.17) impacts battery bank lifetime just at 

its end, which could be identified by analyzing the number of weighted cycles (Fig. 

8.18).  

In order to get a cost-effective solution, on one hand GA looks for those configurations 

that are able to extend the battery bank lifetime as long as possible, so that deep 

discharges and the operation during long-time under low SOC are avoided. On the other 

hand, as the battery lifetime is simulated all over its float lifetime on an hourly basis, it 

represents an important increment on the computational burden of the optimization 

problem. 

“Insert Fig. 8.13 here” 

“Insert Fig. 8.14 here” 

“Insert Fig. 8.15 here” 

“Insert Fig. 8.16 here” 

“Insert Fig. 8.17 here” 

“Insert Fig. 8.18 here” 

8.5. Conclusions 

Renewable energy systems are a good option to provide electric service in a sustainable 

way by taking advantage of the natural resources locally available. A direct application 

of this philosophy is rural electrification, in which electricity in remote areas is provided 

by means of autonomous systems, EDN extensions, or mini-grids installation. To carry 

out this task in a cost-effective manner, simulation and optimization techniques are 

applied by considering an estimation of the renewable resources, ambient temperature, 

and load demand, as well as the behavior of the different components of the system 



such as wind turbine, PV generator, and BESS, so that a reliable and affordable energy 

system is finally installed.  

All of these topics have been studied in this chapter through the analysis of an 

autonomous HPS composed of a wind turbine, a PV generator, a storage system based 

on lead-acid batteries, a power converter, and a dump load. Wind speed and solar 

radiation time series were synthetically generated by using information previously 

reported in the literature and public databases for the location under analysis (Tangiers, 

Morocco); variations on the efficiency of the power converter with the AC load, as well 

as charge controller operation including bulk, absorption, equalization, and float 

charges, battery bank performance and aging mechanisms, were integrated in a 

optimization model based on GA. From the obtained results, it was possible to observe 

how the optimization algorithm looks for those HPS configurations able to prolong 

battery bank lifetime by avoiding the operation of it at low SOC during long time 

periods. 

List of symbols 

 Time step (1h) ݐ߂
 [ܶ,1]∍ݐ Index for time of the year ݐ
ܶ Total simulation time (8760h) 
ℎ Index for time of the day ℎ∊[1,ܪ] 
 Total daily time (24h) ܪ
 Index for each individual in the population ݍ
ܳ Total number of individuals in the population (Population size) 
ܻ Total number of generations of GA 
 Index for each generation of GA ݕ
ௗܲ(௧) Power consumed by dump load at time ݐ (W) 
௟ܲ(௧) Load demand at time ݐ (W) 
ܰܧ (ܵ௧) Energy not supplied at time ݐ (Wh) 
௣ܰ௩௣ Number of PV strings 
௣ܲ௩(௧) PV generation of a single panel at time ݐ (W) 
 ௣௩ Area of PV panel (m2)ܣ
ௌ்ܲ஼  Power generation of PV panel under standard test conditions (W) 
 (kW/m2) ݐ Incident solar radiation at time (௧)ܩ
 Temperature coefficient of power (%/°C) ߙ
௖ܶ(௧) PV cell temperature (°C) 



௔ܶ(௧) Ambient temperature (°C) 
௔ܶ
௔௩௚ Daily mean ambient temperature (°C) 
௔ܶ
௠௔௫ Daily maximum ambient temperature (°C) 
௔ܶ
௠௜௡ Daily minimum ambient temperature (°C) 
ேܶை஼்  Nominal operating cell temperature (°C) 
ܹ (ܶ௪) Wind turbine power curve (W) 
௪ܲ
௥ Rated power of wind turbine (W) 
௪ܲ(௧) Wind power production at time ݐ (W) 
 (m/s) ݐ Wind speed at time (௧)ݓ
 (m/s) ݐ ഥ(௧) Transformed and standardized wind speed at timeݓ
 (m/s) ݐ ෥(௧) Simulated wind speed at timeݓ
݉ Transformation power of wind speed time series 
øଵ, … , ø௣ Autoregressive coefficients of AR(p) model 
 ݐ White noise autoregressive model at time (௧)ߝ
 ௛ Hourly average of transformed wind speed at time ℎ (m/s)ߤ
 ௛ Hourly standard deviation of wind speed at time ℎ (m/s)ߪ
 ௐ Cumulative Weibull distribution functionܨ
 ௐିଵ Inverse Weibull distribution functionܨ
 ே Cumulative normal distribution functionܨ
 Shape factor of Weilbull distribution ߣ
 Scale factor of Weilbull distribution (m/s) ߠ
 ଵ Value of autocorrelation function in one lagݎ
 ଶ Value of autocorrelation function in two lagsݎ
 ௖ Efficiency of power inverterߟ
௖ܲ
௥ Rated power of inverter (W) 

݉଴, ݉ଵ Parameters of converter model 
௕ܲ(௧) Power from/to battery bank at time ݐ (W) 
௕ܸ(௧) Battery voltage at time ݐ (V) 
଴ܸ Open-circuit voltage (V) 
଴ܸ
௖ Corrosion open-circuit voltage (V) 
തܸ௕ீ  Nominal gassing voltage (V) 
௕ܸ
௥ Reference voltage for reduction of acid stratification (V) 
௦ܸ௬௦  Nominal voltage of the system (V) 
߂ (ܹ௧) Effective layer thickness 
߂ ௟ܹ௜௠  Effective layer thickness at the end of battery float life 
݇௦ Corrosion speed parameter 
݇(·) Lander corrosion speed vs. voltage curve 
݇௦௟௜௠ Corrosion speed parameter at float voltage 
݃ Electrolyte proportionality constant (V) 
 ݐ Depth of discharge of the battery at time (௧)ܦܱܦ
 ݐ State of charge of the battery at time (௧)ܥܱܵ
 ௠௜௡ Minimum SOC of battery bankܥܱܵ
 ௠௔௫ Maximum SOC reached during fully-charged periodܥܱܵ
 (A) ݐ ௕(௧) Current from/to battery bank at timeܫ
௕(௧)ܫ
ீ  Gassing current at time ݐ (A) 
௕̅(଴)ܫ
ீ  Normalized gassing current respect to a 100 Ah battery (A) 
௕(௧)ܫ
ௗ  Discharging current at time ݐ (A) 



 ௕௥ Reference current of the battery (A)ܫ
 ݐ ௦௬௦(௧) Current supplied or demanded for a single battery at timeܫ
 ௗ(௧) Aggregated internal resistance for charging and discharging (Ω Ah)ߩ ,௖(௧)ߩ
 ௟௜௠ Internal resistance at the end of battery float life (Ω Ah)ߩ
 Increment in the internal resistance due to corrosion (Ω Ah) (௧)ߩ߂
 ௗ Charge-transfer overvoltage coefficient for charging and dischargingܯ ,௖ܯ
 ௗ(௧) Normalized capacity for charging and discharging, respectivelyܥ ,௖ܥ
 ே Nominal capacity of the battery (Ah) (Capacity in 10h)ܥ
തܶேீ Nominal gassing temperature (K) 
തܶே஼  Nominal corrosion temperature (K) 
ܿ௣௟௦ Parameter for the increment of acid stratification 
݇௦,் Temperature factor (1/K) 
ܿ௨ Voltage coefficient (1/V) 
்ܿ Temperature coefficient (1/K) 
ܿ௓ Parameter used in the estimation of capacity loss due to degradation 
ܿ௠௜௡ Parameter for the reduction of acid stratification by gassing 

ܿௌை஼௠௜௡ Coefficient to represent influence of the minimum state of charge in state 
of charge weighting factor (1/h) 

ܿௌை஼௢  Increase in (݂௧)
ௌை஼  factor at state of charge equal to zero (1/h) 

௟௜௠௖ܥ  Lost capacity at the end of battery float life due to corrosion 
௟௜௠ௗܥ  Loss of capacity at the end of battery float life due to degradation 
(௧)ܥ߂

௖  Increment in the loss of capacity at time ݐ due to corrosion 
(௧)ܥ߂

ௗ  Increment in the loss of capacity at time ݐ due to degradation 
 ଴ During a charging cycle, this is the time of the last full charge (h)ݐ
ூா஼ݖ  Number of lifetime cycles under standard conditions 
ܼௐ(௧) Weighted number of cycles at time ݐ 

(݂௧)
ௌை஼  State of charge weighting factor 

(݂௧)
஺஼஽  Factor for total impact of acid stratification 

(݂௧)
ௌ்ோ  Weighting factor for degree of acid stratification factor 

(݂௧)
௉௅ௌ Weighting factor for the increment of acid stratification 

(݂௧)
ெூே Weighting factor for the total decrement of acid stratification 

(݂௧)
ெூே,ீ  Factor for the decrement of acid stratification at time ݐ by gassing 

(݂௧)
ெூே,஽  Factor for the decrement of acid stratification at time ݐ by diffusion 
 ௙௟௧ Battery float life (yr)ܮ
݊ Cumulative number of bad recharge cycles 
 Effective diffusion constant (m2/s) ܦ
 Height of the battery (cm) ݖ
 Intermediate variables ݔ,ݏ,ܽ
௕ܰ௣ Number of battery strings 

 Energy index of unreliability ܷܫܧ
ܫܧ ௧ܷ௥  Required ܷܫܧ of the hybrid system 
௔ܸ௕௦  Voltage during absorption stage of charge controller (V) 
௘ܸ௤௟  Voltage during equalization stage of charge controller (V) 
௙ܸ௟௧  Voltage during float stage of charge controller (V) 
 ௔௕௦ Duration time of absorption stage (h)ݐ
 ௘௤௟ Duration time of equalization stage (h)ݐ



݅ Real interest rate 
݆ Project lifetime (yr) 
 ݆ Capital recovery factor for real interest rate ݅ and project lifetime (௜,௝)ܨܴܥ
 Net present cost (US$) ܥܲܰ
 Annualized capital cost (US$/yr) ܥܥܣ
 Annualized replacement cost (US$/yr) ܥܴܣ
 Annualized maintenance cost (US$/yr) ܥܯܣ
 Crossing rate of genetic algorithm ܭ߂
 Mutation rate of genetic algorithm ܯ߂
 ݍ ூ(௤) Fitness of individualܨ
 ଵ Chromosome to represent the type of wind turbineܩ
 ଶ Chromosome to represent number of wind turbineܩ
 ଷ Chromosome to represent the type of photovoltaic panelܩ
 ସ Chromosome to represent the number of photovoltaic panel stringsܩ
 ହ Chromosome to represent the type of batteriesܩ
 ଺ Chromosome to represent the number of battery stringsܩ
 ଵ௠௔௫ Maximum amount of wind turbine typesܩ
 ଶ௠௔௫ Maximum amount of wind turbinesܩ
 ଷ௠௔௫ Maximum amount of photovoltaic panel typesܩ
 ସ௠௔௫ Maximum amount of photovoltaic panel stringsܩ
 ହ௠௔௫ Maximum amount of battery typesܩ
 ଺௠௔௫ Maximum amount of battery stringsܩ
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Tables 
 
Table 8.1. Monthly Weibull and autocorrelation parameters [40]. 
 

Month Shape factor (ࣅ) Scale factor (ࣂ) ࢘૚ ࢘૛ 
Jan 1.59 6.55 0.9 0.841 
Feb 1.63 7.06 0.913 0.856 
Mar 1.59 6.65 0.906 0.852 
Apr 1.63 6.96 0.892 0.83 
May 1.63 7.09 0.892 0.824 
Jun 1.5 6.9 0.9 0.837 
Jul 1.62 7.95 0.915 0.859 

Aug 1.62 7.54 0.884 0.811 
Sep 1.76 7.6 0.912 0.858 
Oct 1.67 7.28 0.898 0.832 
Nov 1.85 7.01 0.897 0.833 
Dec 1.66 6.65 0.903 0.846 

 
Table 8.2. Hourly average of transformed wind speed time series (ߤ௛) [40]. 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ࢎ
1 2.480 2.793 2.574 2.757 2.353 1.865 2.157 1.94 2.599 2.639 3.784 2.675 
2 2.490 2.713 2.607 2.695 2.362 1.854 2.176 1.895 2.635 2.65 3.661 2.725 
3 2.458 2.787 2.630 2.654 2.367 1.852 2.135 1.902 2.612 2.639 3.701 2.701 
4 2.532 2.688 2.599 2.655 2.39 1.884 2.114 1.857 2.595 2.591 3.616 2.624 
5 2.518 2.649 2.576 2.658 2.345 1.861 2.098 1.85 2.528 2.646 3.631 2.593 
6 2.507 2.629 2.511 2.641 2.312 1.813 2.101 1.848 2.584 2.652 3.633 2.602 
7 2.473 2.646 2.469 2.675 2.375 1.853 2.111 1.855 2.554 2.574 3.618 2.56 
8 2.476 2.686 2.466 2.700 2.545 2.169 2.335 1.998 2.683 2.627 3.611 2.63 
9 2.520 2.700 2.545 2.965 2.876 2.511 2.628 2.324 3.036 2.771 3.605 2.706 
10 2.544 2.843 2.821 3.258 3.025 2.736 2.879 2.644 3.47 3.136 3.828 2.786 
11 2.744 3.013 3.040 3.362 3.186 2.874 3.007 2.837 3.645 3.286 4.244 2.981 
12 2.912 3.141 3.268 3.492 3.339 2.941 3.072 2.941 3.722 3.393 4.364 3.19 
13 3.071 3.259 3.334 3.615 3.395 2.985 3.151 3.062 3.77 3.469 4.431 3.303 
14 3.147 3.330 3.413 3.685 3.484 3.051 3.247 3.123 3.9 3.504 4.523 3.301 
15 3.180 3.328 3.416 3.724 3.53 3.07 3.335 3.2 3.997 3.528 4.507 3.314 
16 3.156 3.423 3.434 3.732 3.588 3.083 3.356 3.254 4.012 3.515 4.586 3.28 
17 3.054 3.382 3.395 3.696 3.556 3.073 3.309 3.191 3.965 3.456 4.441 3.124 
18 2.951 3.238 3.315 3.567 3.454 3.013 3.238 3.098 3.804 3.261 4.064 2.973 
19 2.750 3.035 3.154 3.355 3.264 2.836 3.049 2.848 3.438 2.928 3.851 2.81 
20 2.602 2.885 2.927 3.141 3.015 2.601 2.78 2.531 3.178 2.713 3.782 2.719 
21 2.584 2.799 2.733 3.085 2.771 2.315 2.528 2.242 2.953 2.644 3.746 2.657 
22 2.467 2.693 2.555 2.898 2.622 2.11 2.349 2.071 2.842 2.544 3.637 2.579 
23 2.527 2.637 2.551 2.819 2.497 2.006 2.298 1.96 2.781 2.615 3.764 2.56 
24 2.476 2.687 2.514 2.783 2.415 1.949 2.225 1.953 2.632 2.545 3.805 2.581 

 
  



Table 8.3. Hourly standard deviation of transformed wind speed time series (ߪ(௛)) [40]. 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ࢎ
1 1.514 1.652 1.784 1.691 1.641 1.47 1.586 1.561 1.974 1.649 2.098 1.702 
2 1.483 1.697 1.724 1.744 1.601 1.42 1.567 1.547 1.957 1.626 2.112 1.686 
3 1.520 1.686 1.735 1.767 1.626 1.39 1.545 1.506 1.914 1.611 2.034 1.651 
4 1.462 1.684 1.715 1.734 1.577 1.37 1.524 1.522 1.892 1.643 2.066 1.671 
5 1.445 1.721 1.715 1.726 1.57 1.34 1.504 1.506 1.918 1.559 2.088 1.703 
6 1.442 1.683 1.704 1.750 1.565 1.36 1.534 1.511 1.884 1.539 2.118 1.719 
7 1.430 1.718 1.681 1.704 1.524 1.39 1.527 1.515 1.899 1.548 2.109 1.659 
8 1.396 1.656 1.698 1.729 1.519 1.35 1.548 1.521 1.898 1.588 2.106 1.609 
9 1.324 1.657 1.719 1.669 1.458 1.17 1.467 1.497 1.936 1.64 2.236 1.545 
10 1.443 1.689 1.762 1.597 1.354 1.05 1.287 1.37 1.691 1.581 2.274 1.65 
11 1.472 1.734 1.665 1.568 1.278 1.0345 1.235 1.234 1.64 1.447 2.2 1.696 
12 1.490 1.653 1.590 1.475 1.227 1.019 1.229 1.198 1.567 1.379 2.18 1.626 
13 1.397 1.555 1.518 1.416 1.136 1.026 1.208 1.174 1.54 1.229 2.09 1.56 
14 1.325 1.527 1.501 1.411 1.166 1.012 1.176 1.154 1.541 1.324 2.096 1.596 
15 1.305 1.483 1.531 1.438 1.166 1.001 1.18 1.138 1.536 1.389 2.098 1.573 
16 1.326 1.471 1.560 1.397 1.146 1.014 1.176 1.112 1.556 1.41 2.081 1.542 
17 1.369 1.493 1.604 1.384 1.176 1.031 1.182 1.129 1.529 1.398 2.103 1.597 
18 1.386 1.540 1.649 1.394 1.217 1.101 1.212 1.155 1.578 1.431 2.197 1.571 
19 1.356 1.528 1.592 1.431 1.276 1.072 1.253 1.262 1.691 1.528 2.215 1.625 
20 1.471 1.643 1.653 1.505 1.362 1.204 1.404 1.365 1.804 1.608 2.196 1.64 
21 1.495 1.675 1.721 1.571 1.515 1.32 1.519 1.482 1.931 1.646 2.292 1.654 
22 1.544 1.732 1.772 1.663 1.528 1.379 1.568 1.557 2.004 1.647 2.231 1.703 
23 1.493 1.792 1.780 1.762 1.609 1.406 1.623 1.581 1.997 1.643 2.135 1.708 
24 1.495 1.722 1.762 1.410 1.625 1.443 1.626 1.577 2.02 1.66 2.145 1.697 

 
  



Table 8.4. Simulation and optimization parameters. 
 

Parameter Value Parameter Value 
଴ܸ 2.1V ܩଵ௠௔௫ 1 
଴ܸ
௖ 1.75V ܩଶ௠௔௫ 21 
തܸ௕ீ  2.23V ܩଷ௠௔௫ 1 
௕ܸ
௥ 2.5V ܩସ௠௔௫ 21 

௦ܸ௬௦  12V ܩହ௠௔௫ 1 
௔ܸ௕௦  2.4V ܩ଺௠௔௫ 20 
௘ܸ௤௟  2.45V 9-10×20 ܦ m2s-1 
௙ܸ௟௧ 2.25V 20 ݖ cm 
௖ܲ
௥ 100W ܫܧ ௧ܷ௥  1% 
 C ܿ௨ 11 V-1°/% 0.43- ߙ
ேܶை஼் 47 °C ்ܿ 0.06 K-1 
തܶேீ 298K ܿ௓ 5 
തܶே஼  298K ܿ௠௜௡ 0.1 
௕̅(଴)ܫ
ீ  20 mA ܿௌை஼௠௜௡  3.307×10-3 h-1 
ଵ଴ܫ) ௕௥ 10Aܫ = ଵ଴ܥ 10⁄ ) ܿௌை஼௢  6.614×10-5 h-1 
 ௔௕௦ 2h ܿ௣௟௦ 1/30ݐ
 ௘௤௟ 2h ݇௦,் ln(2)/15 K-1ݐ
݃ 0.076V ߩ௖(଴) 0.42 ΩAh 
 ௗ(଴) 0.699 ΩAhߩ 3.8% ݅
݆ 20 yr ܯ௖ 0.888 
 ௗ 0.0464ܯ %90 ܭ߂
 ௖ 1.001ܥ %1 ܯ߂
 ௗ(଴) 1.75ܥ 15 ܳ
 ௙௟௧ 10 yr (at 20ºC)ܮ 15 ܻ

ூா஼ݖ ௠௜௡ 0.3ܥܱܵ  600 
 
 
 
 
 
  



Figure 
 

 
Fig. 8.1. Rural electrification rates per region [1]. 
 
 
 
 

 
Fig. 8.2. Scheme of a typical HPS. 
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Fig. 8.3. Typical power curve of a small-capacity wind turbine. 
 
 
 
 

 
Fig. 8.4. Voltage, current, and SOC during charge of a single cell. 
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Fig. 8.5. Fitting of power inverter model. 
 
 
 
 

 
Fig. 8.6. Hourly load profile. 
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Fig. 8.7. Monthly solar radiation and clearness index. 
 
 
 
 

 
Fig. 8.8. Monthly average, maximum and minimum temperature. 
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Fig. 8.9. Probability distribution of wind speed. 
 
 
 
 

 
Fig. 8.10. Simple and partial autocorrelation functions of wind speed. 
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Fig. 8.11. Hourly profile of wind speed per season. 
 
 
 
 

 
Fig. 8.12. Evolution of the implemented GA. 
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Fig. 8.13. PV generator output power during one year. 
 
 
 
 

 
Fig. 8.14. State of charge of battery bank during the first 4 years. 
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Fig. 8.15. State of charge of battery bank during 10 days of January of the 3rd year. 
 
 
 
 

 
Fig. 8.16. Normalized capacity of battery bank. 
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Fig. 8.17. Number of bad charges. 
 
 
 
 

 
Fig. 8.18. Number of weighted cycles. 
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