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ABSTRACT 

This work presents a new integrated multi-stage and stochastic mathematical model, which is 
developed to support the decision-making process related to the expansion planning of 
distribution network systems (DNS) for integrating large-scale distributed “clean” energy 
sources. The developed model, formulated from the distribution system operator’s point of 
view, determines the optimal sizing, time and placement of distributed energy technologies 
(renewables, in particular) as well as that of energy storage systems (ESS) and compensators 
in distribution networks. The ultimate goal of this optimization work is to maximize the size 
of distributed generation (DG) power absorbed by the system while maintaining the power 
quality and stability at the required/standard levels at a minimum cost possible. The model, 
formulated as a mixed integer linear programming (MILP) optimization, employs a linearized 
alternating current (AC) network model which captures well the inherent characteristics of 
power network systems, and balances accuracy with computational burden. The standard 
IEEE 41-bus distribution system is used to test the developed model and carry out the 
required analysis from the standpoint of the objectives set.  

The results of the case study show that the integration of ESS and compensators helps to 
significantly increase the size of variable generation (wind and solar) in the system. For the 
case study, a total of 10 MW demand wind and solar power has been added to the system. 
One can put this into perspective with the peak load 4.635 MW in the system. This means it 
has been possible to integrate RES power more than twice the peak demand in the base case. 
It has been demonstrated that the joint planning of DGs, compensators and ESS, proposed in 
this work, brings about significant improvements to the system such as reduction of losses, 
cost of electricity and emissions, voltage support and many more others.  

The expansion planning model proposed here can be considered as a major leap forward 
towards developing controllable grids, which support large-scale integration of RESs (as 
opposed to the conventional “fit and forget” approach). It can also be a handy tool to speed 
up the integration of more RESs until smart grids are materialized in the future. 

1. INTRODUCTION 

Nowadays, the issue of integrating DGs (RESs, in particular) is globally gaining momentum 
because of several techno-economic and environmental factors. Since recent years, the size of 
DGs integrated into distribution systems has been increasing. And, this trend is more likely to 
continue in the years to come because it is now widely accepted that DGs bring wide-range 
benefits to the system, in general. However, given the current set-up of distribution networks 
(which are generally passive), large-scale DG integration is not technically possible because 
this brings about tremendous challenges to the system operation, especially in undermining 
the power system quality and stability. Such challenges/ limitations are expected to be 
alleviated when distribution networks undergo the anticipated evolutionary process from 
passive to active networks or smart grids. This transition is expected to result in a system that 
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is adequately equipped with appropriate technologies, state-of-the-art solutions and a new 
operational philosophy that is totally different from the current ‘fit and forget’ approach. 
And, this is expected to offer sufficient flexibility and control mechanism in the system. 
Nevertheless, the process is not straightforward as it demands exceptionally huge investments 
in smart-grid technologies and concepts to fully automate the system, and this should be 
accompanied by a new operational philosophy. Therefore, if not impossible, the whole 
transformation process i.e. the transformation of current distribution systems to full-scale 
smart-grids might be very slow, and its realization might take several decades.  

However, given the techno-economic factors and global concerns about environmental issues, 
the integration of RESs cannot be postponed. It is likely that the integration of DGs in 
distribution systems will go ahead along with smart-grid enabling technologies that have the 
capability to alleviate the negative consequences of large-scale integration of DGs. In other 
words, in order to facilitate (speed up) the much-needed transformation of conventional 
(passive) DNSs and support large-scale RES integration, different smart-grid enabling 
technologies such as reactive power compensators, advanced switching and storage devices 
are expected to be massively deployed in the near term. To this end, developing strategies, 
methods and tools to maximize the penetration level of DGs (particularly, RESs) has become 
very crucial to guide such a complex decision-making process. In this respect, this work 
focuses on the development of multi-stage mathematical models to determine the optimal 
sizing, time and placement of energy storage systems and compensators as well as that of 
RESs in distribution networks. The ultimate goal of this optimization work is to maximize the 
DG power absorbed by the system at a minimum cost while maintaining the power quality 
and stability at the required/standard levels.  

2. STATE-OF-THE-ART LITERATURE REVIEW 

Reducing fossil fuel dependence and mitigating climate change has led to increased pressure 
to change the current generation paradigm. It is expected that CO2 emissions will increase 
from approximately 31 billion metric tons to 36 billion metric tons in 2020, reaching 45 
billion metric tons by mid-2040 [1], an increase of 46%. Other associated concerns are an 
increase in global average temperature from 1 to 5 ºC by the year 2100, increasing the 
average level of the sea water [2]. Global population will also increase, expected to be 9.6 
billion in 2050, along with an increase in energy consumption by 56% between 2010 and 
2040 [1]. The compounded effect of all these problems and challenges is triggering a policy 
shift all over the world, especially when it comes to energy production. Integration of 
distributed generation (DG), particularly, renewable energy sources (RESs), in electric 
distribution network systems is gaining momentum. It is highly expected that large-scale DG 
integration will be one of the solutions capable of mitigating the aforementioned problems 
and overcoming the challenges. Because of this, Governments of various nations have 
introduced targets to achieve large-scale integration of DGs. In particular, in the European 
Union (EU), which strongly advocates the importance of integrating DGs (especially, 
renewables), that is expected to grow by 20% until 2020 and 50% of energy consumption by 
2050. 
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Power distribution networks form a critical base to system reliability, power quality and also 
energy cost [3,4]. One way of making the distribution system "less critical", is through the 
integration of DG systems that are small power sources connected near the end users. DG 
offers a more environmentally friendly option through great opportunities with renewable-
enabling technologies such as wind, photovoltaic, biomass, etc. RESs are abundant in nature, 
which leads to the attraction of the large-scale power generation sector. Nevertheless, there is 
no rule or partial rule on the DG unit’s connection; typically, these are connected at the end 
of radial feeder systems or nodes with greater load on the distribution system. The size of DG 
can vary from a few kW to several MW depending also on the voltage system level to which 
they are connected. The optimal planning of the DG unit’s placement and sizing will become 
extremely important for energy producers, consumers and network operators in technical and 
economic terms in the near future. There are many studies in the literature on this topic, yet 
most of them only consider the optimal location of a single DG unit or do not consider 
simultaneously positioning and sizing units, mainly due to the high dispatch unpredictability 
of these. The increase in DGs penetration increases the uncertainty and the fluctuations of the 
system production. If the placement and proper sizing is not taken into account, the benefits 
of DG integration can be lost in efficiency losses, increasing the electricity cost and leading 
to energy losses.  

Another major concern with the wide DG penetration is system reliability. In this paradigm, 
the use of ESS has been seen as one of the viable options to mitigate the aforementioned 
concerns. The penetration of distributed systems can result in the degradation of power 
quality, particularly in cases of slightly meshed networks [5] or microgrids. Electricity 
production fluctuations can create voltage oscillations in a frequency range between 1–10 Hz. 
One possible approach for reducing voltage fluctuations in microgrids or slightly meshed 
networks is through a specific frequency damping; yet the use of ESS is required for a range 
of frequencies. Several ESS technologies are emerging, especially for demanding cases of 
charge and quick dispatch cycles. However, the smooth integration of energy storage systems 
in the grid requires power electronics based interfaces. Normally, the ESS is connected at the 
renewable energy source coupling point. To perform energy smoothing, a comparison 
between the attenuation of fast power variation and regulation of the state of charge should be 
made. The latter is necessary to maximize the ability to deliver energy [6]. 

The DG allocation and sizing subject have received special interest from researchers in recent 
years as shown in [7], a review on the subject until 2013. In [7] and [8],  an analysis of 
several innovative techniques used on the DG impact investigation in the electrical system is 
presented. Most of these techniques analyze the distribution system to determine rules that 
can be used for DG integration [9–13]. Important issues related to the connection of DG units 
are the network topology, DG capacity and suitable location; because, each bus in the system 
has an optimal level of DG integration. And, if the value surpasses this level, system losses 
can increase [14], [15]. There are many ways proposed to formulate and analyze the optimal 
allocation of multiple DG units in a radial or meshed network. 

Recently, several methods have been proposed for planning and operation or in some cases 
for both location and sizing of DGs in the distribution system. In general, these methods can 
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be classified as heuristic based [16–31], numerical based [32–39] and analytical based [40], 
[41] methods. 

Heuristic based methods apply advanced artificial intelligence algorithms, such as Genetic 
Algorithms (GA) [16–19], Particle Swarm Optimization (PSO) [20–24], Harmony Search 
(HS) [25], [26] and Big Bang Crunch (BBC) [27–29]. In [16], GA is used to solve the 
expansion planning problem considering DG, uncertainties and reliability in normal operating 
conditions. Another approach widely used with GA is the non-dominated sorting genetic 
algorithm (NSGA-II) [17]. Another work that also uses the NSGA-II is [18], where multi-
objective integration approach of DG and ESS in distribution systems. In [19] is presented a 
comparison between Mixed-Integer Programming (MIP) and GA Methods for DG Planning. 
PSO is another method used, whether in its original version or an improved version such as 
multi-objective particle swarm optimization (MPSO) [20] or hybrid multi-objective particle 
swarm optimization (HMOPSO) [21]. In [22], a PSO algorithm was used to solve a 
distribution system expansion planning problem, considering ESSs and DG systems. The 
work presented in [23] investigated the impact of ESSs in the distribution system multistage 
expansion planning problem, being formulated as an optimization problem and solved using 
PSO. This work indicates a positive impact of the ESS on the performance and costs 
associated with the network. A multi-objective particle swarm optimization (MOPSO) 
approach is proposed in [21], to minimize the power system cost and to improve the system 
voltage profiles by searching siting and sizing of storage units under consideration of 
uncertainties in wind power production. Authors in [24] presented a new approach to 
optimize the allocation and sizing of several DG units based on the maximization of loading 
systems using hybrid particle swarm optimization (HPSO). HS is another heuristic based 
methodology widely used, as in [25], which minimizes energy losses by distribution systems 
reconfiguration in the presence of DG. Another work that uses HS is [26] where an Improved 
Multi-Objective Harmony Search (IMOHS) is used in order to obtain the optimal location of 
DGs in the distribution system. One method that has been commonly used is the Big Bang 
Crunch (BBC), which is a method based on the evolution of the universe that has been 
applied to solving the problems of DG placement and sizing in the distribution system. In 
particular, [27], where the Hybrid Big Bang (HBBC), is used for reconfiguration and optimal 
allocation of DG in the distribution system. The work in [28] proposes an algorithm for 
modelling stochastically renewable based DGs with the purpose of planning an unbalanced 
distribution network; the BBC algorithm is used to perform optimal DG placement. Authors 
in [29] use a modified BBC method to deal with the optimization problems incorporating 
multiple distributed generators for the sake of power, as well as energy loss minimization in 
balanced/unbalanced distribution systems. Two other algorithms that also have been used are 
Water Drop (WD) and Fireworks Algorithm (FW). The intelligent algorithm WD [30] is used 
for the DG allocation and sizing, with the goal of minimizing energy losses and improving 
the voltage profile. In [31], authors present DG optimal allocation and distribution system 
reconfiguration, in order to minimize energy losses and voltage stability using FW. 

Numerical methods are algorithms that seek numerical results for different problems in 
particular to the problem in question. Some of the most recently works use nonlinear mixed 
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integer programming (MINLP) [32–34], mixed integer linear programming (MILP) [35], 
[36], quadratic programming (QP) [37] and optimal power flow (OPF) [38]. Reference [32] 
shows the allocation of DG using a decision made by the system approach planner (DMSP) 
based on the utilities and customer aspects under a deregulated environment; the problem 
uses OPFs formulation and is solved with MINLP. In [33], one MINLP algorithm is 
presented to solve the optimal placement and sizing of DG with the goal of improving the 
voltage stability margin in the distribution system. A planning MINLP algorithm on a 
statistical basis is proposed in [34] to determine the optimal generation mix of different 
renewable DG unit types in an annual base to minimizing the energy losses in the distribution 
system. One other approach within the numerical methods is through MILP algorithms. The 
authors of [35] focus on the problem in the optimal configuration/design of distributed 
resources, produced outside of buildings and sent to these through the distribution networks. 
The model provides the simultaneous optimal locations (i.e. the place of production) as well 
as synthesizes (type, capacity and number of equipment) and operational strategies for the 
entire system through a MILP model. A MILP algorithm is also used in [36], in a two-stage 
stochastic model multi-period. The work in [37] presents a simultaneous optimization of ESS 
and DG in microgrids, and is solved by a not sequential quadratic programming algorithm. 
The optimum installation of DG technologies to minimize energy losses in the distribution 
system is presented in [38], using an efficient analytical (EA) algorithm integrated with OPF 
algorithm, a new method EA/OPF. The DG unit planning in the distribution system is 
presented in [39] using a hierarchical agglomerative clustering algorithm (HACA). 

The exhaustive search methods are based on the search for the optimal DG location for a 
given DG size under different load models. Therefore, these methods fail to represent 
accurately the DG optimization problem behavior involving two continuous variables, both 
for optimum DG size and optimal DG location. In [40], authors present one technique with a 
probabilistic basis for determining the capacity and optimal placement of wind DG units to 
minimize energy loss in the distribution system. A sensitivity algorithm is presented in [41] 
for DG placement and sizing in the network. 

Despite the many studies in the literature on areas related to DG placement and sizing 
problem, most of them only consider the optimal location of a single DG unit, mostly of 
conventional DGs. The simultaneous consideration of the placement, timing and sizing of DG 
units (especially RESs), along with the placement, timing and sizing of smart-grid enabling 
technologies, seems to be far from being addressed in the literature. The increase in RES-
based DG penetration increases the uncertainty and the fluctuations of the system production. 
If the placement and proper sizing is not taken into account, the benefits of DG integration 
may not be exploited; instead, this may result in the degradation of system efficiency, 
increased cost of electricity and energy losses. Another major concern with the wide-range 
DG penetration is system reliability. However, the simultaneous investment planning of DGs, 
ESSs and compensators is expected to significantly alleviate these challenges and increase 
the penetration level of RES-based DGs. 

3. OBJECTIVES 
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The main objectives of this work are: 

 To develop a new joint multi-stage mathematical optimization model considering 
smart-grid enabling technologies such as ESS, compensators, and network switching 
and/or expansion to support DG integration. 

 To determine the optimal sizing, time and placement of energy storage systems and 
compensators as well as that of RESs in distribution networks. The ultimate goal of 
this optimization work is to maximize the DG power absorbed by the system at a 
minimum cost while maintaining the power quality and stability at the 
required/standard levels. 

 To carry out case studies and test the developed model. 
To analyze simulation results and disseminate research outcomes. 
 

4. MATHEMATICAL FORMULATION OF THE PROBLEM 
4.1. Introduction  

As mentioned earlier, the work here develops an integrated optimization model that 
simultaneously finds the optimal locations and sizes of installed DG power (particularly, 
focusing on wind and solar), energy storage systems and capacitor banks. The optimal 
deployment of the aforementioned enabling technologies should inherently meet the goal of 
maximizing the renewable power integrated/absorbed into the system. The entire model is 
formulated as a stochastic mixed integer linear programming (SMILP) optimization. In 
addition, instead of the customary DC network models, a linearized AC model is used in the 
formulation to better capture the inherent characteristics of the network system. 

4.2. Objective Function 

As mentioned earlier, the objective of this work is to maximize RES integration in DNS from 
the system perspective (or, from the Distribution System Operators’ point of view) by 
optimally deploying different smart-grid enabling technologies at a minimum cost. Here, it is 
assumed that the DSO owns some generation sources and ESSs.  

The resulting problem is formulated as a multi-objective stochastic MILP with two 
objectives: maximization of integrated RES energy as in (1a) and overall cost minimization 
(1b). The problem can be considered as a minimax optimization. However, the first objective 
can be considered to be redundant if the cost of RES energy (tariff) is very small or the RESs 
is prioritized when carrying out the dispatch in the system (as it is the case in most power 
systems). This is because, in such cases, the generated RES power will be fully integrated as 
far as this maintains the power quality and stability at the required/standard levels. In this 
work, only (1b) is considered. The objective function in (1b) is composed of Net Present 
Value (NPV) of five cost terms each weighted by a certain relevance factor ߙ;∀݆ ∈
{1,2, … ,5}. Note that, in this work, all cost terms are assumed to be equally important; hence, 
these factors are set to 1. However, depending on the relative importance of the considered 
costs, different weights can be adopted in the objective function. The first term in (1b), 
 represents the total investment costs under the assumption of perpetual planning ,ܥݒ݊ܫܶ
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horizon [42]. In other words, “the investment cost is amortized in annual installments 
throughout the lifetime of the installed component”, as is done in [43]. Here, the total 
investment cost is the sum of investment costs of new and existing DGs, feeders, energy 
storage system and capacitor banks, as in (2).  

The second term, ܶܥܯ, in (1b) denotes the total maintenance costs, which is given by the sum 
of individual maintenance costs of new and existing DGs, feeders, energy storage system and 
capacitor banks in the system at each stage and the corresponding costs incurred after the last 
planning stage, as in (3). Note that the latter costs depend on the maintenance costs of the last 
planning stage. Here, a perpetual planning horizon is assumed. The third term ܶܥܧ in (1b) 
refers to the total cost of energy in the system, which is the sum of the cost of power 
produced by new and existing DGs, purchased from upstream and supplied by energy storage 
system at each stage as in (4). Equation (4) also includes the total energy costs incurred after 
the last planning stage under a perpetual planning horizon. These depend on the energy costs 
of the last planning stage. The fourth term ܶܥܵܰܧ represents the total cost of unserved power 
in the system and is calculated as in (5). The last term ܶܥ݅݉ܫ gathers the total emission costs 
in the system, given by the sum of emission costs for the existing and new DGs as well that 
of power purchased from the grid at the substations.   

ݕ݃ݎ݁݊ܧ_ܵܧܴ ݈ܽݐܶ ݁ݖ݅݉݅ݔܽܯ = ∑ ∑ ௦ߩ ∑ ௪ߨ ∑ ∑ ( ܲ,,௦,௪,௧
ே

ఢஐఢஐೃಶೄ௪ఢஐೢ )௦ఢஐೞ௧ఢஐ  (1a) 

ܥܶ ݁ݖ݅݉݅݊݅ܯ = ଵߙ ∗ ܥݒ݊ܫܶ + ଶߙ ∗ ܥܯܶ + ଷߙ ∗ ܥܧܶ + ସߙ ∗ ܥܵܰܧܶ ହߙ + ∗  (1b)  ܥ݅݉ܫܶ

ܥݒ݊ܫܶ = ∑ (ଵା)ష

௧ఢஐ ௧ீܥݒ݊ܫ) + ௧ேܥݒ݊ܫ + ௧ாௌܥݒ݊ܫ + ௧)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥܥݒ݊ܫ
ே    ௩௦௧௧  ௦௧

    (2) 

ܥܯܶ = ∑ (1 + ௧௧ఢஐି(ݎ ௧ீܥܯ)  ௧ேܥܯ+ ௧ாௌܥܯ+ ௧ܥܯ+
)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ே    ௧  ௦௧௦

+

                                                            (ଵା)ష


ீ்ܥܯ) + ே்ܥܯ + ாௌ்ܥܯ + ்ܥܯ

)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ே ௧ ௦௧௦ ௨ௗ ௧ ௦௧ ் 

          (3) 

ܥܧܶ = ∑ (1 + ௧௧ఢஐି(ݎ ௧ீܥܧ)  + ௧ாௌܥܧ + ௧ௌௌ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥܥܧ
ே    ௧ ௦௧௦

+ (ଵା)ష


ீ்ܥܧ) + ாௌ்ܥܧ + ௌௌ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ்ܥܧ

ே ௧ ௦௧௦ ௨ௗ  ௧ ௦௧ ் 

   (4) 

ܥܵܰܧܶ = ∑ (1 + ௧௧ఢஐି(ݎ ௧ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥܥܵܰܧ 
ே     ௧௬ ௦௧௦

+ (ଵା)ష


ᇣᇧᇧᇧᇤᇧᇧᇧᇥ்ܥܵܰܧ

ே  ௧௬ ௦௧௦ ௨ௗ ௧ ௦௧ ் 

      (5) 

ܥ݅݉ܧܶ = ∑ (1 + ௧௧ఢஐି(ݎ ௧ீܥ݅݉ܧ)  + ௧ௌௌ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥܥ݅݉ܧ
ே ௦௦ ௦௧௦

+ (ଵା)ష


ீ்ܥ݅݉ܧ) + ௌௌ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ்ܥ݅݉ܧ

ே  ௦௦ ௦௧௦ ௨ௗ ௧ ௦௧ ்

    (6) 

The individual cost components in (2)—(6) are computed by the following expressions. 
Equations (7)—(10) represent the investment costs of DGs, feeders, energy storage system 
and capacitor banks, respectively. Notice that all investment costs are weighted by the capital 

recovery factor, (ଵା)ಽ

(ଵା)ಽିଵ
. The formulations in (7)—(10) ensure that the investment cost of 

each component added to the system is considered only once in the summation. For example, 
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suppose an investment in a particular feeder ݇ is made in the second year of a three-year 
planning horizon. This means that the feeder should be available for utilization after the 
second year. Hence, the binary variable associated to this feeder will be 1 after the second 
year while zero otherwise i.e. ݔ,௧ = {0,1,1}. In this particular case, only the difference (ݔ,ଶ −
 ,ଵ) equals 1, implying that the investment cost is considered only once. It should be notedݔ
that this works regardless of the type of the investment variables. Suppose instead of only 
binary, ݔ,௧ is allowed to have integer values. Assume the optimal solution is ݔ,௧ = {0,1,2} . 
In this case, the corresponding difference (ݔ,௧ −  ,௧ିଵ) becomes {0,1,1}, indicating that theݔ
investment costs of only those components added at each stage are considered in the 
summation. Equation (11) stands for the maintenance costs of new and existing DGs at each 
time stage. The maintenance cost of a new/existing feeder is included only when its 
corresponding investment/utilization variable is different from zero. Similarly, the 
maintenance costs of new and existing feeders at each stage are given by equation (12). 
Equations (13) and (14) are related to the maintenance costs at each stage of energy storage 
and capacitor banks, respectively. 

௧ீܥݒ݊ܫ = ∑ ∑ (ଵା)ಽ

(ଵା)ಽିଵ
,,௧ݔ),ܥܫ − ,,௧ିଵ)ఢஐఢஐݔ ,,ݔ ݁ݎℎ݁ݓ;  = 0  (7) 

௧ேܥݒ݊ܫ = ∑ (ଵା)ಽೖ
(ଵା)ಽೖିଵ

,௧ݔ)ܥܫ − ,௧ିଵఢஐℓݔ ) ; ,ݔ ݁ݎℎ݁ݓ  = 0    (8) 

௧ாௌܥݒ݊ܫ = ∑ ∑ (ଵା)ಽೞ
(ଵା)ಽೞିଵ

௦,,௧ݔ)௦ܥܫ − ௦,,௧ିଵఢஐ௦ఢஐೞݔ ௦,,ݔ ݁ݎℎ݁ݓ;  ( = 0  (9) 

௧ܥݒ݊ܫ = ∑ ∑ (ଵା)ಽ
(ଵା)ಽିଵ

,,௧ݔ)ܥܫ − ,,௧ିଵ)ఢஐఢஐݔ ,,ݔ ݁ݎℎ݁ݓ;  = 0   (10) 

௧ீܥܯ = ∑ ∑ ேఢஐఢஐܥܯ ,,௧ݔ +∑ ∑ ாఢஐఢஐܥܯ  ,,௧    (11)ݑ

௧ேܥܯ = ∑ ாఢஐℓܥܯ ,௧ݑ +∑ ,௧ఢஐℓݔேܥܯ        (12) 

௧ாௌܥܯ = ∑ ∑ ௦,,௧ఢஐ௦ఢஐೞݔ௦ܥܯ        (13) 

௧ܥܯ
 = ∑ ∑ ,,௧ఢஐఢஐݔܥܯ        (14) 

The total cost of power produced by new and existing DGs is given by equation (15). Note 
that these costs depend on the amount of power generated at each scenario, snapshot and 
stage. Therefore, these costs represent the expected costs of operation. Similarly, equations 
(16) and (17) respectively account for the expected costs of energy supplied by the energy 
storage system, and that purchased from upstream (i.e. transmission grid). The penalty for the 
unserved power, given by (18), is also dependent on the scenarios, snapshots and time stages. 
Equation (18) therefore gives the expected cost of unserved energy in the system. The 
expected emission costs of power generated by new and existing DGs are given by (19)-(21), 
and that of energy purchased from the grid is calculated using (22). Note that, for the sake of 
simplicity, a linear emission cost function is assumed here. In reality, the emission cost 
function is highly nonlinear and nonconvex, as in [44]. 

௧ீܥܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ ∑ ,,௦,௪,௧ܥܱ)
ே

ܲ,,௦,௪,௧
ே

ఢஐఢஐ + ,,௦,௪,௧ܥܱ
ா

௪ఢஐೢ ܲ,,௦,௪,௧
ா )௦ఢஐೞ   (15) 
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௧ாௌܥܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ ∑ ௦ߛ ,,௦,௪,௧
ௗ

ܲ௦,,௦,௪,௧
ௗ

ఢஐఢஐ௪ఢஐೢ௦ఢஐೞ    (16) 

௧ௌௌܥܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ చ,௦,௪,௧ߪ చܲ,௦,௪,௧
ௌௌ

చ,ஐഒ௪ఢஐೢ௦ఢஐೞ       (17) 

௧ܥܵܰܧ = ∑ ௦ߩ ∑ ∑ ,௦,௪,௧ఢஐ௪ఢஐೢ௦ఢஐೞߜ௪߭௦,௪,௧ߨ      (18) 

௧ீܥ݅݉ܧ = ௧ேܥ݅݉ܧ +  ௧ா         (19)ܥ݅݉ܧ

௧ேܥ݅݉ܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ ∑ ௦,௪,௧ߣ
ைమܧ ܴ

ே
ܲ,,௦,௪,௧
ே

ఢஐఢஐ௪ఢஐೢ௦ఢஐೞ    (20) 

௧ாܥ݅݉ܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ ∑ ௦,௪,௧ߣ
ைమܧ ܴ

ா
ܲ,,௦,௪,௧
ா

ఢஐఢஐ௪ఢஐೢ௦ఢஐೞ    (21) 

௧ௌௌܥ݅݉ܧ = ∑ ௦ߩ ∑ ௪ߨ ∑ ௦,௪,௧ߣ
ைమܴܧచௌௌ చܲ,௦,௪,௧

ௌௌ
చఢஐഒ௪ఢஐೢ௦ఢஐೞ     (22) 

4.3. Constraints 
3.3.1. Kirchhoff’s voltage law 

The customary AC power flow equations, given by (23) and (24), are highly non-linear and 
non-convex. Understandably, using these flow expressions in power system planning 
applications is increasingly difficult. Because of this, Equations (23) and (24) are often 
linearized by considering two practical assumptions. The first assumption is concerning the 
bus voltage magnitudes, which in distribution systems are expected to be close to the nominal 
value ܸ. The second assumption is in relation to the voltage angle difference ߠ  across a 
line which is practically small, leading to the trigonometric approximations ߠ݊݅ݏ ≈ ߠ  and 
ߠݏܿ ≈ 1. Note that this assumption is valid in distribution systems, where the active power 
flow dominates the total apparent power in lines. Furthermore, the voltage magnitude at bus ݅ 
can be expressed as the sum of the nominal voltage and a small deviation ∆ ܸ, as in (25). 

ܲ = ܸ
ଶ݃ − ܸ ܸ(݃ܿߠݏ + ܾߠ݊݅ݏ)   (23) 

ܳ = − ܸ
ଶܾ + ܸ ܸ(ܾܿߠݏ − ݃ߠ݊݅ݏ)    (24) 

ܸ = ܸ + ∆ ܸ , ܸ∆ ݁ݎℎ݁ݓ ≤ ∆ ܸ ≤ ∆ܸ௫   (25) 

Note that the voltage deviations at each node ∆ ܸ are expected to be very small. Substituting 
(25) in (23) and (24) and neglecting higher order terms, we get:  

ܲ ≈ ( ܸ
ଶ + 2 ܸ∆ ܸ)݃ − ( ܸ

ଶ + ܸ∆ ܸ + ܸ∆ ܸ)(݃ + ܾߠ)   (26) 

ܳ ≈ −( ܸ
ଶ + 2 ܸ∆ ܸ)ܾ + ( ܸ

ଶ + ܸ∆ ܸ + ܸ∆ ܸ)(ܾ − ݃ߠ)  (27) 

Note that equations (26) and (27) still contain nonlinearities because of the products of two 
continuous variables—voltage deviations and angle differences. However, since these 
variables (∆ ܸ, ∆ ܸ and ߠ) are very small, their products can be neglected. Hence, the above 
flow equations become: 

ܲ ≈ ܸ൫∆ ܸ − ∆ ܸ൯݃ − ܸ
ଶ ܾߠ    (28) 

ܳ ≈ − ܸ൫∆ ܸ − ∆ ܸ൯ܾ − ܸ
ଶ ݃ߠ   (29) 
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The linear planning model proposed here is based on the above linearized flow equations. 
This linearization approach was first introduced in [45] in the context of transmission 
expansion planning problem.  

When the investment planning includes switching and expansion of the distribution network 
system, equations (28) and (29) must be multiplied by the corresponding binary variables as 
in (30)-(33). This is to make sure the flow through an existing/a new feeder is zero when its 
switching/investment variable is zero; otherwise, the flow in that feeder should obey the 
Kirchhoff’s Voltage Law.   

ܲ ≈ }ݐ,ݑ ܸ൫∆ ܸ − ∆ ܸ൯݃ − ܸ
ଶ ܾߠ}    (30) 

ܳ ≈ −}ݐ,ݑ ܸ൫∆ ܸ − ∆ ܸ൯ܾ − ܸ
ଶ ݃ߠ}    (31) 

ܲ ≈ }ݐ,ݔ ܸ൫∆ ܸ − ∆ ܸ൯݃ − ܸ
ଶ ܾߠ}    (32) 

ܳ ≈ −}ݐ,ݔ ܸ൫∆ ܸ − ∆ ܸ൯ܾ − ܸ
ଶ ݃ߠ}    (33) 

The bilinear products, involving binary with voltage deviation and angle difference variables, 
introduces undesirable nonlinearity to the problem. This nonlinearity can be avoided using 
the big-M formulation i.e. by reformulating the above equations into their respective 
disjunctive equivalents as in (34)-(37). As a rule-of-thumb, the big-M parameter often set to 
the maximum transfer capacity in the system.   

ܯ ܲ൫ݑ,ݐ − 1൯ ≤ ܲ,ݐ,ݓ,ݏ − { ܸ൫∆ ܸ,ݐ,ݓ,ݏ − ∆ ܸ,ݐ,ݓ,ݏ൯݃ − ܸ
ଶ ܾߠ,ݐ,ݓ,ݏ )} ≤ ܯ ܲ൫1−  ൯    (34)ݐ,ݑ

,௧ݑ൫ܳܯ − 1൯ ≤ ܳ,ݐ,ݓ,ݏ − {− ܸ൫∆ ܸ,ݐ,ݓ,ݏ − ∆ ܸ,ݐ,ݓ,ݏ൯ܾ − ܸ
ଶ ݃ߠ,ݐ,ݓ,ݏ}  ≤ −൫1ܳܯ  ,௧൯(35)ݑ

ܯ ܲ൫ݔ,௧ − 1൯ ≤ ܲ,ݐ,ݓ,ݏ − { ܸ൫∆ ܸ,ݐ,ݓ,ݏ − ∆ ܸ,ݐ,ݓ,ݏ൯݃ − ܸ
ଶ ܾߠ,ݐ,ݓ,ݏ} ≤ ܯ ܲ൫1−  ,௧൯   (36)ݔ

,௧ݔ൫ܳܯ − 1൯ ≤ ܳ,ݐ,ݓ,ݏ − {− ܸ൫∆ ܸ,ݐ,ݓ,ݏ − ∆ ܸ,ݐ,ݓ,ݏ൯ܾ − ܸ
ଶ ݃ߠ,ݐ,ݓ,ݏ} ≤ −൫1ܳܯ  ,௧൯ (37)ݔ

3.3.2. Flow limits 

The apparent power flow through a line ܵis given by ට ܲ
ଶ + ܳଶ and this has to be less than or 

equal to the rated value which is denoted as: 

ܲ
ଶ + ܳଶ ≤ (ܵ௫)ଶ      (38) 

Considering line switching and investment, equation (38) can be rewritten as: 

ܲ,௦,௪,௧
ଶ + ܳ,௦,௪,௧

ଶ ≤  ,௧(ܵ௫)ଶ   (39)ݑ

ܲ,௦,௪,௧
ଶ + ܳ,௦,௪,௧

ଶ ≤  ,௧(ܵ௫)ଶ   (40)ݔ

The quadratic expressions of active and reactive power flows in (39) through (40) can be 
easily linearized using piecewise linearization, considering a sufficiently large number of 
linear segments, ܮ. There are a number of ways of linearizing such functions such as 



 

13 | P a g e  
 

incremental, multiple choice, convex combination and other approaches in the literature [46]. 
Here, the first approach (which is based on first-order approximation of the nonlinear curve) 
is used because of its relatively simple formulation. To this end, two non-negative auxiliary 
variables are introduced for each of the flows ܲ   and ܳ such that ܲ = ܲ

ା − ܲ
ି and ܳ =

ܳା −ܳି. Note that these auxiliary variables (i.e. ܲ
ା , ܲ

ି, ܳା and ܳି) represent the positive 
and negative flows of ܲ and ܳ, respectively. This helps one to consider only the positive 
quadrant of the nonlinear curve, resulting in a significant reduction in the mathematical 
complexity, and by implication the computational burden.  In this case, the associated linear 
constraints are:  

ܲ,௦,௪,௧
ଶ ≈ ∑ ,௦,௪,௧,,ߙ


ୀଵ    (37) 

ܳ,௦,௪,௧
ଶ ≈ ∑ ,௦,௪,௧,ݍ,ߚ


ୀଵ    (38) 

ܲ,௦,௪,௧
ା + ܲ,௦,௪,௧

ି = ∑ ,௦,௪,௧,

ୀଵ   (39) 

ܳ,௦,௪,௧
ା + ܳ,௦,௪,௧

ି = ∑ ,௦,௪,௧,ݍ

ୀଵ   (40) 

where ,ݐ,ݓ,ݏ, ≤
ೖ
ೌೣ


 and ݍ,ݐ,ݓ,ݏ, ≤ ܳ௫/ܮ. 

3.3.3. Line losses 

The active and reactive power losses in line ݇ can be approximated as follows: 

ܮܲ = ܲ, + ܲ, ≈ 2 ܸ
ଶ ݃(1− (ߠݏܿ ≈ ܸ

ଶ ݃ߠଶ  (41) 

ܮܳ = ܳ, + ܳ, ≈ −2 ܸ
ଶ ܾ(1− (ߠݏܿ ≈ −ܾ ܸ

ଶ  ଶ  (42)ߠ

Clearly, Equations (41) and (42) are nonlinear and nonconvex functions, making the problem 
more complex to solve. This can be overcome by having the quadratic angle differences 
piecewise-linearized, as it is done for the quadratic flows in the above. However, instead of 
doing this, the expressions in (41) and (42) can be expressed in terms of the active and the 
reactive power flows respectively by substituting ߠfrom (7) and (8) in Equations (41) and 
(42) and neglecting higher order terms. This leads to (43) and (44).  

,௦,௪,௧ܮܲ = ݃൛ ܲ,௦,௪,௧
ଶ − 2 ܲ,௦,௪,௧ ܸ൫∆ ܸ,௦,௪,௧ − ∆ ܸ,௦,௪,௧൯݃ൟ/( ܸܾ)ଶ  (43) 

ܮܳ ,௦,௪,௧ = −ܾ൛ܳ,௦,௪,௧
ଶ + 2ܳ,௦,௪,௧ ܸ൫∆ ܸ,௦,௪,௧ − ∆ ܸ,௦,௪,௧൯ܾൟ/( ܸ݃)ଶ  (44) 

Note that expressing the losses as a function of flows has two advantages.  First, doing so 
reduces the number of nonlinear terms that has to be linearized, which in turn results in a 
model with a reduced number of equations and variables. For example, if equations (41) and 
(42) are used instead, in addition to the quadratic power flow terms ܲ

ଶ and ܳଶ, the quadratic 
angle differences ߠଶ should also be linearized to make the problem linear and convex. On the 
contrary, if equations (43) and (44) are used, we are only required to linearize ܲ

ଶ and ܳଶ. 
Second, it avoids unnecessary constraints on the angle differences when a line between two 
nodes is not connected or remains not selected for investment. In fact, this is often avoided by 



 

14 | P a g e  
 

introducing binary variables and using a so-called big-M formulation [45]. However, this 
adds extra complexity to the problem. 

Note that, in addition to the quadratic flow, equations (43) and (44) contain products of two 
continuous variables –flow and voltage magnitude deviations, which make the function non-
separable. However, these products can be neglected because, in reality, the voltage deviation 
variables are expected to be very small, leading to the simplified equations (45) and (46) each 
having only the quadratic flow expressions.  

,௦,௪,௧ܮܲ = ݃ ܲ,௦,௪,௧
ଶ /( ܸܾ)ଶ   (45) 

ܮܳ ,௦,௪,௧ = −ܾܳ,௦,௪,௧
ଶ /( ܸ݃)ଶ   (46) 

3.3.4. Kirchhoff’s current law (Active and reactive load balances) 

Load balance should be respected all the time at each node i.e. the sum of all injections 
should be equal to the sum of all withdrawals at each node. This is enforced by adding the 
following two constraints:  

∑ ൫ ܲ,,௦,௪,௧
ா + ܲ,,௦,௪,௧

ே ൯ఢஐವಸ + ∑ ൫ ܲ௦,,௦,௪,௧
ௗ − ܲ௦,,௦,௪,௧

 ൯௦ఢஐೞ + చܲ,௦,௪,௧
ௌௌ + ∑ ܲ,௦,௪,௧,ఢ −

∑ ܲ,௦,௪,௧௨௧,ఢ ,௦,௪,௧ߜ + = ,௦,௪,௧ܦ + చ,௦,௪,௧ܮܲ + ∑ భ
మܲܮ,௦,௪,௧ఢ  ;  ∀߫,∀߫߳݅       (47) 

∑ (ܳ,,௦,௪,௧
ா + ܳ,,௦,௪,௧

ே )ఢஐವಸ +∑ ܳ,,௦,௪,௧ఢஐ + ܳచ,௦,௪,௧
ௌௌ + ∑ ܳ,௦,௪,௧,ఢ −∑ ܳ,௦,௪,௧௨௧,ఢ =

ܳ,௦,௪,௧ + చ,௦,௪,௧ܮܳ + ∑ భ
మܳܮ ,௦,௪,௧,ఢ +∑ భ

మܳܮ ,௦,௪,௧௨௧,ఢ  ;  ∀߫,∀߫߳݅       (48) 

Equations (47) and (48) stand for the active and the reactive power balances at each node, 
respectively. 

3.3.5. Bulk Energy Storage Model Constraints 

The generic bulk Energy Storage (ES) is modeled by equations (49)-(57).  

0 ≤ ܲ௦,,௦,௪,௧
 ≤ ௦ܫ ,,௦,௪,௧

 ௦,,௧ݔ ܲ௦,
,௫    (49) 

0 ≤ ܲ௦,,௦,௪,௧
ௗ ≤ ௦ܫ ,,௦,௪,௧

ௗ ௦,,௧ݔ ܲ௦,
ௗ,௫    (50) 

௦ܫ ,,௦,௪,௧
 + ௦,,௦,௪,௧ܫ

ௗ ≤ 1     (51) 

௦,,௦,௪,௧ܧ = ௦,,௦,௪ିଵ,௧ܧ + ,௦ߟ ܲ௦,,௦,௪,௧
 − ௗ,௦ߟ ܲ௦,,௦,௪,௧

ௗ  (52) 

௦,ܧ
ݔ௦,,௧ ≤ ௦,,௦,௪,௧ܧ ≤ ௦,ܧ௦,,௧ݔ

௫    (53) 

௦,,௦,௪బ,்ଵܧ = ௦,ܧ௦,,்ଵݔ௦ߤ
௫     (54) 

௦,,௦,௪భ,௧ାଵܧ = ௦,,௦,ௐ,௧ܧ      (55) 

The limits on the capacity of ES while being charged and discharged are considered in 
equations (49) and (50), respectively. Inequality (51) prevents simultaneous charging and 
discharging operation of ES at the same operational time ݓ. The amount of stored energy 
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within the reservoir of bulk ES at the operational time ݓ as a function of energy stored until 
ݓ − 1 is given by (52). The maximum and minimum levels of storages in operational time ݓ 
are also considered through inequality (53). Equations (54) shows the initial level of stored 
energy in the bulk ES as a function of its maximum reservoir capacity. In a multi-stage 
planning approach, Equation (55) ensures that the initial level of energy in the bulk ES at a 
given year is equal to the final level of energy in the ES in the preceding year. Here, ߟௗ,௦is 
assumed to be 1/ߟ,௦. 

Notice that inequalities (49) and (50) involve products of charging/discharging binary 
variables and investment variable. In order to linearize this, new continuous positive variables 
௦,,௦,௪,௧ݖ
 , and ݖ௦,,௦,௪,௧

ௗ , which replaces the bilinear products in each constraint, is introduced 
such that the set of linear constraints in (56) and (57) hold. For instance, the product 
௦ܫ ,,௦,௪,௧
ௗ ௦,,௦,௪,௧ݖ ௦,,௧ is replaced by the positive variableݔ

ௗ . Then, the bilinear product is 
decoupled by introducing the set of constraints in (56) [47]. 

௦,,௦,௪,௧ݖ
ௗ ≤ ௦,,௦,௪,௧ܫ௦௫ݔ

ௗ ௦,,௦,௪,௧ݖ ; 
ௗ ≤ ௦,,௧ݔ  ; ௦,,௦,௪,௧ݖ

ௗ ≥ ௦,,௧ݔ − ൫1 − ௦ܫ ,,௦,௪,௧
ௗ ൯ݔ௦௫  (56) 

Similarly, the product ܫ௦,,௦,௪,௧
  ௦,,௧is decoupled by including the following set ofݔ

constraints: 

௦,,௦,௪,௧ݖ
 ≤ ௦,,௦,௪,௧ܫ௦௫ݔ

 ௦,,௦,௪,௧ݖ ; 
 ≤ ௦,,௧ݔ  ; ௦,,௦,௪,௧ݖ

 ≥ ௦,,௧ݔ − ൫1 − ௦ܫ ,,௦,௪,௧
 ൯ݔ௦௫  (57) 

3.3.6. Active and reactive power limits of DGs 

The active and reactive capacity limits of existing generators are given by (58) and (59), 
respectively. In the case of candidate generators, the corresponding constraints are (60) and 
(61). Note that the binary variables also appear here and multiply the minimum and the 
maximum generation capacities of a given generator. This is to make sure that the power 
generation variable is zero when the generator remains either unutilized or unselected for 
investment. 

ܲ,
ா,ݑ,,௧ ≤ ܲ,,௦,௪,௧

ா ≤ ܲ,
ா,௫ݑ,,௧    (58) 

ܳ,
ா,ݑ,,௧ ≤ ܳ,,௦,௪,௧

ா ≤ ܳ,
ா,௫ݑ,,௧   (59) 

ܲ,
ே,ݔ,,௧ ≤ ܲ,,௦,௪,௧

ே ≤ ܲ,
ே,௫ݔ,,௧    (60) 

ܳ,
ே,ݔ,,௧ ≤ ܳ,,௦,௪,௧

ே ≤ ܳ,
ே,௫ݔ,,௧   (61) 

3.3.7. Reactive power limit of capacitor banks 

Inequality (62) ensures that the reactive power produced by the capacitor banks is bounded 
between zero and the maximum capacity. 

0 ≤ ܳ,,௦,௪,௧ ≤  ,,௧ܳ     (62)ݔ

3.3.8. Active and reactive power limits of power purchased 
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For technical reasons, the power that can be purchased from the transmission grid could have 
minimum and maximum limits, which is enforced by (63) and (64). However, it is 
understood that setting the maximum and minimum limits is difficult. These constraints are 
included here for the sake of completeness. In this work, these limits are set to 1.5 times the 
minimum and maximum levels of total load in the system. Note that the multiplier is higher 
than one because the system has losses, which needs to be covered by generating extra 
power. 

చܲ,௦,௪,௧
ௌௌ, ≤ చܲ,௦,௪,௧

ௌௌ ≤ చܲ,௦,௪,௧
ௌௌ,௫    (63) 

ܳచ,௦,௪,௧
ௌௌ, ≤ ܳచ,௦,௪,௧

ௌௌ ≤ ܳచ,௦,௪,௧
ௌௌ,௫    (64) 

3.3.9. Logical constraints 

The following logical constraints ensure that an investment decision cannot be reversed i.e. 
an investment already made cannot be divested. 

,௧ݔ ≥  ,௧ିଵ     (65)ݔ

,,௧ݔ ≥  ,,௧ିଵ     (66)ݔ

௦,,௧ݔ ≥  ௦,,௧ିଵ    (67)ݔ

,,௧ݔ ≥  ,,௧ିଵ     (68)ݔ

3.3.10. Radiality constraints 

There are two conditions that must be fulfilled in order a distribution network system (DNS) 
to be radial. First, the solution must have ܰ − ௌܰௌ circuits. Second, the final topology should 
be connected. Equation (69) represents the first necessary condition for maintaining the radial 
topology of DNs. 

∑ ,௧ݔ)ܴܱ ݑ, ,௧)∈ஐೕ = ܰ − ௌܰௌ   ;∀(69)    ݐ 

Note that the above equation assumes line investment is possible in all corridors. Hence, in a 
given corridor, we can have either an existing branch or a new one, or both connected in 
parallel, depending on the economic benefits of the final setup (solution) brings about to the 
system. The radiality constraint in (69) then has to accommodate this condition. One way to 
do this is using the Boolean logic operation, as in (69). Unfortunately, this introduces 
nonlinearity. We show how this logic can be linearized using an additional auxiliary variable 
 ,,௧ݔ ,௧ andݑ .,௧ and the binary variables associated to existing and new branches i.eݖ
respectively. Given ݖ,௧: = ,௧ݔ)ܴܱ  ,  ,௧), this Boolean operation can be expressed using theݑ
following set of linear constraints: 

,௧ݖ ≤ ,௧ݔ + ݑ ,௧; ݖ,௧ ≥ ݖ ;,௧ݔ ,௧ ≥ ;,௧ݑ 0 ≤ ,௧ݖ ≤  (70)   ݐ∀;   1

Note that the auxiliary variable ݖ,௧ is automatically constrained to be binary. Hence, it is not 
necessary to explicitly define ݖ,௧ as a binary variable; instead, defining it as a continuous 
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positive variable is sufficient. Alternatively, if ݖ,௧ is defined to be binary variable from the 
outset, then, equation (69) can be converted into a single range constraint as: 

0 ≤ ,௧ݖ2 − ,௧ݔ − ,௧ݑ ≤  (71)     ݐ∀;     1

Then, the radiality constraints in (69) can be reformulated using the ݖ,௧ variables as: 

∑ ,௧∈ఆೕݖ = ܰ − ௌܰௌ       ;∀(72)     ݐ 

When all loads in the DNS are only fed by power from substations, the final solution 
obtained automatically satisfies the two aforementioned conditions; hence, no additional 
constraints are required i.e. (70) or (71) along with (72) are sufficient to guarantee radiality. 
However, it should be noted that in the presence of DGs and reactive power sources, these 
constraints alone may not ensure the radiality of the distribution network, as pointed out in 
[48] and further discussed in [49]. This is however out of the scope of this work. If this is 
indeed found out to be a critical issue, additional constraints need to be added to guarantee 
that all buses are linked, as proposed in [43], [49–51]. 

5. UNCERTAINTY AND VARIABILITY MANAGEMENT 

There are various sources of uncertainty and variability in a distribution systems planning 
problem, particularly with intermittent renewable sources. These are related to the variability 
in time and the randomness of operational situations [52]. In addition, there are other 
uncertainties mostly related to the long-term electricity, carbon and fuel prices, rules, 
regulations and policies, etc. Exhaustive modeling of all sources of uncertainty and variability 
is out of the scope of this work. However, variabilities due to intermittent DG power outputs 
(mainly, wind and solar) and demand are captured by considering a sufficiently large number 
of operational states, also known as here “snapshots”. To ensure tractability, a standard 
clustering technique (k-means) is used to reduce the number of snapshots to 200. Here, each 
cluster represents a group of similar operational situations. A representative snapshot, the 
medoid in this case, is then selected from each cluster. And, a weight is assigned to each 
representative snapshot, which is proportional to the number of operational situations in its 
group. 

The hourly demand at each node (which is largely predictable) is assumed to be available. 
Here, an hourly demand series of a real-life distribution network is considered. Wind speed is 
assumed to follow a Weibull probability distribution. A total of 8760 samples (corresponding 
to the number of hours in a year) are generated randomly from this probability distribution. 
Similarly, the hourly solar radiation is assumed to follow beta probability distribution, and 
the same number of samples is generated accordingly. Note that these generated random 
samples cannot be used as they are in the planning process. They should be readjusted to 
reflect the temporal correlations that naturally exist among demand, solar radiation and wind 
speed series. To this end, the correlation between wind and solar sources is considered to be  
-0.3 while that of wind and demand is 0.28, which is in line with the results in [53]. A 
correlation of 0.5 is assumed between solar and demand, according to [54]. Using these 
correlations and the demand series as a reference, the wind speed and solar radiation time 
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series are readjusted by making use of Cholesky Factorization, which can easily be 
implemented in MATLAB™. This way, new wind speed and solar radiation series are 
obtained that meet the mentioned inter-correlations. Then, the hourly wind and solar power 
output are determined by plugging in these readjusted series into their corresponding power 
curves given by equations (73) and (74). 

௪ܲௗ, =

⎩
⎨

⎧
0                        ; 0 ≤ ݒ ≤ ݒ
ܲ൫ܣ + ; ଷ൯ݒܤ ݒ  ≤ ݒ ≤ ݒ
ܲ                    ; ݒ  ≤ ݒ ≤ ݒ

0                              ; ݒ  ≤ ݒ

   (73) 

In the above equation, A and B are parameters represented by the expressions in [55] and 
[56]. Similarly, the hourly solar power output ௦ܲ , is determined by plugging in the hourly 
solar radiation levels in the solar power output expression given in 
Erro! A origem da referência não foi encontrada., [57]. 

௦ܲ, =

⎩
⎪
⎨

⎪
⎧ ೝோ

మ

ோೞ∗ோ
       ; 0 ≤ ܴ ≤ ܴ

ೝோ
ோೞ

           ;ܴ ≤ ܴ ≤ ܴ௦௧ௗ
ܲ       ;ܴ ≥ ܴ௦௧ௗ 

    (74) 

6. CASE STUDY 
6.1. System data and assumptions 

The distribution network system, shown in Figure 1, is used to test the developed planning 
model. Information regarding network and maximum demand data is provided in Table A. 1 
(Appendix A,) [58]. The total active and reactive loads in the system are 4.635 MW and 3.25 
MVAr, respectively. The nominal voltage of the system is 12.66 kV. The following 
assumptions are made when carrying out the simulation: 

 A 3-year planning horizon is considered, which is divided into yearly decision stages. 
 Interest rate is set to 7%. 
 For the sake of simplicity, maintenance costs are taken to be 2% of the corresponding 

investment costs. 
 The lifetime of capacitor banks and energy storage systems is assumed to be 15 years, 

while that of DGs and feeders is 25. 
 A 5% voltage deviation is considered to be the maximum allowable deviation in the 

system. 
 The power transfer capacity of all feeders is assumed to be 6.986 MVA. 
 All big-M parameters are set to 10, which is higher than the power transfer capacity of 

all feeders. 
 The number of piecewise linear segments is limited to 5. This balances well accuracy 

with computation burden, as concluded in [59]. 
 The efficiency of the bulk ES is assumed to be 90%. 
 The unit cost of capacitor banks is assumed to be €25/kVAr. 
 The size of the minimum deployable capacitor bank is considered to be 0.1 MVAr. 
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 The investment cost of a 1.0 MW bulk ES, whose energy reservoir is 5 MWh, is 
considered to be 1.0 M€. 

 The emission rate of power purchased is arbitrarily set to 0.4 tCO2e/MWh. 
 The investment cost of a given feeder is assumed to be directly proportional to its 

impedance i.e. ܥ = ݐ݊ܽݐݏ݊ܿ ∗ ܼ where the proportionality constant is 10,000 €/Ω. 
 Wind and solar type DGs, each with 1 MW installed capacity, are considered as 

potential candidates to be deployed in the system. The investment costs of these 
generators is assumed to be 2.64 M€ and 3 M€, respectively. 

 Yearly demand growths of 5%, 10% and 15% are assumed for the planning stages. 
 The emission prices in the first, second and third stages are set to 25, 45 and  

60 €/ tCO2e, respectively. 
 Variable power generation sources (wind and solar, in particular) are assumed to be 

available in every node. This assumption emanates from the fact that distribution 
networks span over a small geographical area. Hence, the distribution of resources in 
this area can be considered to be the same. 

 The substation node (node 1) is considered as a reference; hence, its voltage 
magnitude and angle are set to 1.02 ∗  .and 0, respectivelyܸ݉݊

 The cost of unserved energy is set to 3000 €/MWh. 

 
Figure  1. Single-line diagram of the IEEE 41-bus distribution network system. 

6.2. Results and Discussion 

Intermittent power generation sources such as wind and solar PV type DGs normally operate 
with a fixed leading power factor [60]. In other words, such generators absorb reactive 
power, instead of producing and contributing to the voltage regulation in the system (also 
known as reactive power support). In power systems, voltage regulation has been 
traditionally supported by conventional (synchronous) generators. However, this is likely to 
change in the near future given the upward trend of integrating such resources in power 
systems. These generators will be equipped with reactive power support devices, which are 
predominantly based on power electronics, to enhance their capability to provide reactive 
power when it is needed in the system. Here, we have carried out the system expansion 
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considering without reactive power support, and the results of the simulation are discussed as 
follows.  

The power factor of wind and solar PV type DGs is set to 0.95 leading [60]. This means such 
DGs consume reactive power all the time. The system is expanded considering this case, and 
the expansion results are discussed below. 

The optimal solution for capacitor banks, DGs and bulk ES in the system are shown in Tables 
1 through 3, respectively. In general, majority of the investments are made in the first stage. 
This is because the NPV of operation and emission costs are higher in the first stage than 
those in any of the subsequent stages. This makes it attractive to invest more in renewables in 
the first stage than in the other stages so that these costs are drastically reduced.  

As we can see in Table 1, the optimal location of capacitor banks mostly coincide with high 
load connection points (nodes) as well as with those closer to the end nodes. This is expected 
from the system operation point of view because capacitor banks are required at such nodes 
to meet the reactive power requirements and thus keep the corresponding voltages within 
allowable operational limits. Otherwise, the voltages are expected to drop at these nodes 
without a compensation mechanism put in place. As shown in Figure 2, the total size of 
investment in capacitor banks required throughout the planning horizon is 4.0 MVAr, out of 
which investments in 3.4, 0.1 and 0.5 MVAr are made in the first, second and third stages, 
respectively. 

Table 2 shows that more investments are made in wind than in solar PV type DGs. This is 
because of the higher capacity factor of potential wind power generators compared to solar 
PV ones. In general, the total MW of DG power installed at each node and stage in the 
system is shown in Figure 2. Here, the optimal size of DGs integrated in the system is 8 and 2 
MW in the first and the third stages, respectively. 

Table 1. Optimal investment solution for capacitor banks at each stage 

Location 
(Bus) 

Time stages 
T1 T2 T3 

 ,,௧ݔ
7 1 1 1 
8 4 4 4 
14 4 4 4 
24 0 0 2 
25 1 1 3 
29 1 1 1 
30 8 9 9 
31 1 1 1 
32 2 2 2 
37 1 1 1 
38 8 8 9 
39 1 1 1 
40 2 2 2 
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Table 2. Optimal investment solution for DGs at each stage 

 Location 
(Bus) 

Time stages 

DG type T1 T2 T3 
 ,,௧ݔ

Solar 30 1 1 1 
Wind 7 0 0 1 
Wind 14 2 2 2 
Wind 18 1 1 1 
Wind 30 1 1 1 
Wind 31 1 1 1 
Wind 37 1 1 2 
Wind 38 1 1 1 

 

Table 3. Optimal investment solution for bulk energy storage at each stage 

Location 
(Bus) 

Time stages 
T1 T2 T3 

௦,ݔ ,௧ 
14 2 2 2 
30 1 1 1 
39 2 2 2 

 

Figure 2. Optimal location and size of capacitor banks at each stage 

The results in Tables 1 through 3 (also conveniently shown in Figure 3) demonstrate the 
strong complementarity of variable generation, energy storage systems and compensators.  
Based on the results here, the bulk ES systems and DGs in particular are optimally located 
close to one another. 
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Figure 3. Optimal size of energy storage, installed solar and wind power at each node 
throughout the planning horizon. 

It is well known that bulk ES can bring significant benefits such as load following, power 
stability improvements, and enhancing the dispatchability of RESs from the system 
operator’s point of view according to their operation modes. Likewise, the optimal 
deployment of capacitor banks also brings substantial benefits to system. The combination of 
all these entirely helps one to dramatically increase the size of RESs that can be integrated 
into the system without violating system constraints. The optimal size of RESs would, 
otherwise, be limited to only 3 MW. It is interesting to see here that the integration of ESs 
and capacitor banks has such a dramatic impact on the level of DG integration. This is due to 
the fact that ESSs and capacitor banks bring about significant flexibility and control 
mechanism to the system. Substantial improvements in voltage controllability are also clearly 
visible in Figures 4 and 5. These figures show the voltage deviation profiles at each node 
with the selected operational situations (which can alternatively be understood as “long 
hours”) without and with system expansion, respectively. In the base case (shown in Figure 
4), one can see that some of the node voltage deviations (especially those at the extreme 
nodes) tend to be very close to the minimum allowable limit. On the contrary, all node 
voltages largely stay very close to the nominal one (with an average deviation of 
approximately 1.5%), leaving significant margins to the operational limits. Alternatively, 
Figure 6 conveniently shows the variance of the voltage deviations at each node. It is also 
evident to see here that the variance of most of the deviations is very low. The highest 
variances at nodes 20 to 22 are due to high impedance of feeder connected between nodes 19 
and 20 (see Table A. 1 in Appendix A). The same reasoning explains the relatively high 
variances in nodal voltage deviations between nodes 13 and 18. However, these variances are 
negligible when put in perspective with the square of maximum deviation, i.e. (∆ܸ݉ܽݔ)ଶ, 
which in this case is approximately (0.05 ∗ 12.66ܸ݇)ଶ ≈ 400000 ܸଶ. In general, such a 
substantial improvement in voltage controllability has come from the combined effect of 
expansion decisions in DG, ES and capacitor banks. 
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Figure 4. Profiles of voltage deviations without system expansion in the first stage. 

 

Figure 5. Profiles of voltage deviations at each node after expansion in the first stage 

Other important aspects in this expansion analysis are related to the impact of system 
expansion on the network losses and investments. Figure 7 shows a comparison of the 
network losses in the base case and with expansion for every operational state. We can see a 
significant reduction in network losses (by nearly 50% on average) in the system after the 
expansion planning is carried out. This is one of the major benefits of integrating DGs in the 
system. Concerning investments in lines, in this particular case study, not a single feeder is 
selected for reinforcements. This clearly indicates line investments are deferred when DGs 
are integrated in the system. 
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Figure 6. Variance of voltage deviations at each node as a result of variations in system 
operational states 

  

Figure 7. Network losses with and without system expansion (first stage). 

For this particular case study, the total NPV investment costs for the three stages are 30.427, 
0.003 and 5.294 M€, respectively, bringing the total investment costs to 37.724 M€. And, the 
NPV cost of energy, emissions, maintenance and unserved power throughout the planning 
horizon for the corresponding stages are 27.105, 8.089, 9.442 and 0.868 M€, respectively. 
The overall NPV cost in this case is 83.228 M€. 

6.3. A strategy for reducing combinatorial search space 

In the case study presented above, all nodes in the system are assumed to be candidates for 
the placement of DGs, ESS and capacitor banks. However, this is not possible when the 
planning work is carried out on large-scale DNSs because the size of the problem becomes 
huge as a result of combinatorial explosion, rendering difficulty in solving the problem to 
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optimality. Owing to this fact, the potential candidate nodes are often predetermined either 
arbitrarily or using some criteria for the selection such as the level of load, availability of 
resources, etc. For example, the possible connection points of RES-based DGs are often 
known a priori based on the availability of primary energy sources (such as wind speed and 
solar radiation). In fact, the variation in the availability of wind speed and solar radiation 
among the connection points in the DNS is not expected to be significant because it normally 
spans over a geographically small area.  

 

Figure 8. Decision variable for ESS at each node (last stage). 

Here, we show how the combinatorial search space can be substantially reduced using a 
simple heuristic method. The method is based on solving a relaxed version of the original 
problem. This is done by treating all (normally integer) investment variables except the line 
reinforcement variables as continuous ones. This effectively means fractional investment 
decisions are allowed. The method here works by first establishing a threshold for each 
fractional investment solution (i.e. corresponding to DGs, ESS and capacitor banks). Then, 
those nodes whose corresponding values of investment solutions are lower than the preset 
thresholds are neglected. For instance, consider the investment solution of the relaxed 
problem corresponding to ESS at each node, as shown in Figure 8. In this case, the threshold 
is set to 0.15. As we can see, for most of the nodes, the investment values corresponding to 
ESS fall below this threshold. Only those values at the following nodes are significant: 
{14, 18, 29, 30, 31, 32, 37, 38, 39, 40}. This set of nodes is hence considered as the most likely 
locations in the system for ESS placements in the “brute force” planning model (i.e. the full 
MILP version). It should be noted that such a reduction in possible connection points (from 
41 to 10) results in a substantial reduction of the combinatorial search space, by implication 
the computational burden. Note that the procedure/criterion for setting the threshold is an 
open question. 

Similarly, the reduced set of nodes for possible capacitor and DG connections are obtained by 
using 1 and 0.2 as thresholds, respectively, as shown in Figure 9 and 10. In this case, 
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{7, 8, 14, 24, 25, 29, 30, 31, 32, 37, 38, 39, 40} is the reduced set of nodes for capacitor bank 
connections, and that of DGs is {7, 8, 14, 18, 25, 29, 30, 31, 32, 37, 38, 39, 40}. 

  

Figure 9. Investment solution for capacitor banks at each node (last stage). 

  

Figure 10. Investment solution for DGs at each node (last stage). 

The heuristic method, proposed here, has been applied in the case study, and the results are 
compared with that of the “brute force” model. The investment decisions remain the same in 
both cases but the computational requirements substantially differ from one another. This 
heuristic method has significantly reduced the combinatorial solution search space and thus 
the computational effort by more than sevenfold. 

7. CONCLUSIONS 

This work has developed a new joint multi-stage mathematical optimization model 
considering smart-grid enabling technologies such as ESS, compensators, and network 
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switching and/or expansion to support large-scale DG integration. The integrated planning 
model simultaneously determines the optimal sizing, time and placement of ESSs and 
compensators as well as that of RESs in distribution networks. The ultimate goal of this 
optimization work is to maximize the RES power absorbed by the system while maintaining 
the power quality and stability at the required/standard levels at a minimum cost possible. 
The model, formulated as a MILP optimization, employs a linearized AC network model 
which better captures the inherent characteristics of power network systems and balances 
accuracy with computational burden. The standard IEEE 41-bus distribution system is used to 
test the developed model and carry out the required analysis from the standpoint of the 
objectives set in this work.  

The results of the case study show that the integration of energy storage systems and 
compensators helps to significantly increase the size of variable generation (wind and solar) 
in the system. For the case study, a total of 10 MW demand wind and solar power has been 
added to the system One can put this into perspective with the peak load 4.635 MW in the 
system. This means it has been possible to integrate RES power more than twice the peak 
demand in the base case. It has been demonstrated that the joint planning of DGs, 
compensators and ES systems, proposed in this work, brings about significant improvements 
to the system such as reduction of losses, cost of electricity and emissions, voltage support 
and many more others.  

The expansion planning model proposed here can be considered as a major leap forward 
towards developing controllable grids, which support large-scale integration of RESs (as 
opposed to the conventional “fit and forget” approach). It can also be a handy tool to speed 
up the integration of more RESs until smart grids are realized in the future. 

APPENDIX A. INPUT DATA 

Table A. 1 Load and network data for the IEEE 41-bus distribution network system 

Demand data Network data 

Node 

Active 
power 
(kW) 

Reactive 
power 
(kVAr) From   node To node 

Resistance 
(Ω) 

Reactance 
(Ω) 

Capacity 
(MVA) 

Investment 
cost (x 
1000 €) 

2 100 60 1 2 0.0992 0.0470 6.9860 0.9920 
3 90 40 2 3 0.4930 0.2511 6.9860 4.9300 
4 120 80 3 4 0.3660 0.1864 6.9860 3.6600 
5 60 30 4 5 0.3811 0.1941 6.9860 3.8110 
6 60 20 5 6 0.8190 0.7070 6.9860 8.1900 
7 200 100 6 7 0.1872 0.6188 6.9860 1.8720 
8 200 100 7 8 0.7114 0.2351 6.9860 7.1140 
9 60 20 8 9 10.300 0.7400 6.9860 103.00 
10 60 20 9 10 10.440 0.7400 6.9860 104.40 
11 45 30 10 11 0.1966 0.0650 6.9860 1.9660 
12 60 35 11 12 0.3744 0.1238 6.9860 3.7440 
13 60 35 12 13 14.680 11.550 6.9860 146.80 
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14 120 80 13 14 0.5416 0.7129 6.9860 5.4160 
15 60 10 14 15 0.5910 0.5260 6.9860 5.9100 
16 60 20 15 16 0.7463 0.5450 6.9860 7.4630 
17 60 20 16 17 12.890 17.210 6.9860 128.90 
18 90 40 17 18 0.7320 0.5470 6.9860 7.3200 
19 90 40 2 19 0.1640 0.1565 6.9860 1.6400 
20 90 40 19 20 15.042 13.554 6.9860 150.42 
21 90 40 20 21 0.4095 0.4784 6.9860 4.0950 
22 90 40 21 22 0.7089 0.9373 6.9860 7.0890 
23 90 50 3 23 0.4512 0.3083 6.9860 4.5120 
24 420 200 23 24 0.8980 0.7091 6.9860 8.9800 
25 420 200 24 25 0.8960 0.7011 6.9860 8.9600 
26 60 25 6 26 0.2030 0.1034 6.9860 2.0300 
27 60 25 26 27 0.2842 0.1447 6.9860 2.8420 
28 60 20 27 28 10.590 0.9337 6.9860 105.90 
29 120 70 28 29 0.8042 0.7006 6.9860 8.0420 
30 200 600 29 30 0.5075 0.2585 6.9860 5.0750 
31 150 70 30 31 0.9744 0.9630 6.9860 9.7440 
32 210 100 31 32 0.3105 0.3619 6.9860 3.1050 
33 60 40 32 33 0.3410 0.5302 6.9860 3.4100 
34 60 25 10 34 0.2030 0.1034 6.9860 2.0300 
35 60 25 34 35 0.2842 0.1447 6.9860 2.8420 
36 60 20 35 36 10.590 0.9337 6.9860 105.90 
37 120 70 36 37 0.8042 0.7006 6.9860 8.0420 
38 200 600 37 38 0.5075 0.2585 6.9860 5.0750 
39 150 70 38 39 0.9744 0.9630 6.9860 9.7440 
40 210 100 39 40 0.3105 0.3619 6.9860 3.1050 
41 60 40 40 41 0.3410 0.5302 6.9860 3.4100 

 

NOMENCLATURE 

a) Sets/Indices 

 Ω௧ Index/set of time stages/ݐ
݃/Ω/ Ωீ Index/set of DGs 
݅/Ω Index/set of buses 
 Ω௦ Index/set of energy storages/ݏ݁
ܿ/Ω Index/set of capacitor banks 
 Ω௦ Index/set of scenarios/ݏ
 Ω௪ Index/set of snapshots/ݓ
߫/Ωచ Index/set of substations 
݇/Ωℓ    Index/set of branches 
ℎ    Index for hours 

b) Parameters 

 Interest rate ݎ
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௦,ܥܫ ,ܥܫ ,,ܥܫ ,  ,, Investment cost of DG, line, energy storage system and capacitor banksܥܫ
respectively  

ܮ ܶ ܮ, ܶ ܮ, ܶ௦,ܮ ܶ  Lifetimes of DG, line, energy storage system and capacitor banks, 
respectively 

 ா Maintenance costs of new and existing DGs per yearܥܯ,ேܥܯ
 ா Maintenance costs of new and existing branch k per yearܥܯ,ேܥܯ
 ௦ Maintenance cost of capacitor bank and energy storage system per yearܥܯ ,ܥܯ
௦ߩ  ௪ Probability of scenario s and weight (in hours) of snapshot group wߨ,
,ܥܱ ,௦,௪,௧

ே ,ܥܱ, ,௦,௪,௧
ா  Cost of unit energy production by new and existing DGs 

௦,,௦,௪,௧ߛ
ௗ  Cost of energy discharged from storage system 
చ,௦,௪,௧ߪ  Price of electricity purchased from upstream 

௦߭ ,௪,௧  Penalty for unserved power 
௦,௪,௧ߣ
ைమ Price of emissions (€/tons of CO2 equivalent—€/tCO2e) 
ேܴܧ ாܴܧ, -చௌௌ Emission rates of new and existing DGs, and energy purchased at subܴܧ,

stations, respectively 
݃, ܾ, ܵ௫ Conductance, susceptance and flow limit of branch k 
ܯ ܲ   Big-M parameters associated to active and reactive power flows through linkܳܯ,

k, respectively 
ߙ ߚ,  Slopes of linear segments 
 Total number of linear segments ܮ

ܲ௦,
,௫ , ܲ௦,

ௗ,௫ Charging and discharging power limits of a storage system 
,௦ߟ  ௗ,௦ Charging and discharging efficiencies of a storage systemߟ,
௦,ܧ
 ௦,ܧ,

௫ Energy storage limits 
ܳ Rating of minimum capacitor bank  
ܰ , ௌܰௌ Number of buses and substations, respectively 
௪ܲௗ, Hourly wind power output 
௦ܲ, Hourly solar PV output  
ܲ Rated power a DG unit  
  Observed/sampled hourly wind speedݒ
  Cut-in wind speedݒ
ݒ  Rated wind speed 
  Cut-out wind speedݒ
ܴ A certain radiation point (often taken to be 150 W/m2) 
ܴ௦௧ௗ Solar radiation in standard condition (usually set to 1000 W/m2) 
ܴ  Hourly solar radiation 
 
c) Variables  

,,௧ݔ ௦,,௧ݔ, ,ݔ, ,௧  ,௧ Investment variables for DG, energy storage system, capacitor banks andݔ,
distribution lines 

,௧ݑ ,,,௧ݑ  Utilization variables of existing DG and lines 

ܲ,,௦,௪,௧
ே , ܲ ,,௦,௪,௧

ா  Active power produced by new and existing DGs 
ܳ, ,௦,௪,௧
ே ,ܳ,,௦,௪,௧

ா   Reactive power produced by new and existing DGs 

చܲ ,௦,௪,௧
ௌௌ , ܳచ,௦,௪,௧

ௌௌ  Active and reactive power imported from grid (upstream)  
ܳ,,௦,௪,௧ Reactive power injected by capacitor bank at node i 
,௦,௪,௧ߜ  Unserved power at node i 
ܲ ,ܳ  , Active and reactive power flows, and voltage angle difference of link kߠ,

respectively. 
ܸ , ܸ    Voltage magnitudes at nodes i and j 
 ,௦,௪,௧, Step variables used in linearization of quadratic flowsݍ ,,௦,௪,௧,
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ܮܲ ܮܳ,  Active and reactive power losses, respectively 
ܲ௦,,௦,௪,௧
 , ܲ௦,,௦,௪,௧

ௗ  Power charged to and discharged from storage system 
 ,௦,௪,௧, ܳ,௦,௪,௧ Active and reactive power demand at node iܦ
చ,௦,௪,௧ܮܲ చ,௦,௪,௧ܮܳ,   Active and reactive losses at substation ߫ 
௦,,௦,௪,௧ܫ
 , ௦,,௦,௪,௧ܫ

ௗ  Charge-discharge indicator variables 
௦,ܧ ,௦,௪,௧   Stored energy  

d) Functions 

௧ீܥݒ݊ܫ ௧ீܥܯ,  ௧ீ NPV investment/maintenance/expected energy cost of DGs, respectivelyܥܧ,
௧ேܥݒ݊ܫ  ௧ே   NPV investment/maintenance cost of a distribution lineܥܯ,
௧ாௌܥܯ,௧ாௌܥݒ݊ܫ  ௧ாௌ NPV investment/maintenance/expected energy cost of an energy storageܥܧ,

system, respectively 
௧ܥݒ݊ܫ ௧ܥܯ,

  NPV investment/maintenance cost of capacitor banks 
 ௧ௌௌ    Expected cost of energy purchased from upstreamܥܧ
 ௧    Expected cost of unserved powerܥܵܰܧ
 ௧ீ   Expected emission cost of power production using DGܥ݅݉ܧ
 ௧ௌௌ   Expected emission cost of purchased powerܥ݅݉ܧ
௧ேܥ݅݉ܧ  ,௧ா Expected emission cost of power production using new and existing DGsܥ݅݉ܧ,

respectively 
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