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Abstract– The chapter develops a dynamic bi-objective model for the generation 

expansion planning together with the transmission system expansion planning. A 

virtual database supported non-dominated sorting genetic algorithm, known as “VDS-

NSGA-II”, is designed to tackle the multi-year multi-objective dynamic generation 

and transmission expansion planning (MMDGTEP) framework. The MMDGTEP is 

formulated as a bi-objective optimization problem in this chapter, while the objective 

functions are defined as total cost minimization and also minimizing the expected 

energy not supplied (EENS) at the hierarchy level II, known as EENSHL-II. The first 

objective function is comprised of the investment and operating costs. The proposed 

hybrid model is decomposed into two programming problems: master problem and 

slave problem. In the first level, i.e. the master level, a virtual mapping procedure is 

incorporated in the VDS-NSGA-II to evaluate the contrast of each capacity additions 

in the planning horizon. In the second level, i.e. the slave problem, a linear 

programming approach is employed to assess the objectives of the problem. The 

virtual database helps reduce the computational burden. By avoiding the monotonous 

calculation in the proposed framework, the convergence time is reduced, 

appropriately. After obtaining the optimal Pareto set, the VIKOR decision maker is 

used to pick the most desired Pareto optimal solution. The presented long-term 
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planning model is simulated on a test power system to verify the effectiveness and 

efficiency of the framework. 

Keywords: Generation system expansion; dynamic long-term planning; transmission 

system expansion; hybrid optimization algorithm; non-dominated sorting genetic 

algorithm.  

Nomenclature 
Variables  
PG Power generated by generation units 
PL Power transmitted throughout transmission lines 
PVG Virtual power generation (curtailed load) 
f Objective function 
Gn Generation unit's decision variable 
Ln Transmission line's decision variable 
Z Transmission switching status 
δ Bus voltage angle 
TOC Total Operational cost of generation units 
EENSHL-II Expected energy not supplied in composite the generation and transmission level 

Sets  
b Index for load bus  
y Index for planning year 
i Index for generation bus 
j Index for transmission line 
k Index for candidate unit 
C Index for candidate assets 
E Index for existing assets 
NB Number of load buses 
NY Planning horizon  
NCU Number of candidate units 
NCL Number of candidate lines 
 NG Number of generation buses 
 
Parameters 

 

d Annual discount rate 
DT Duration of load blocks 
GI Generation unit's investment cost 
TI Transmission line's investment cost 
MTGI Minimum time required for the generation unit installation 
MTTI Minimum time required for the transmission line installation 
TGC Maximum annual budget for the generation units' investment 
TGI Total number of new generation units can be installed for each year 
TTC Maximum annual budget for the transmission lines' investment 
TTI Total number of new transmission lines can be installed for each year 
Max Upper bound for variables 
Min Lower bound for variable 
PD Demand power  
OC Operational Cost  
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B Susceptance matrix of power grid 
 

17.1  Introduction 

Steady-state problems of power systems are generally studied in four time 

horizons as real-time studies, short-term studies, mid-term studies, as well as long-

term studies. In this respect, short-term and real-time horizons usually relate to the 

operation of electric power systems, while the mid-term horizon is usually devoted to 

maintenance scheduling and fuel allocation. Long-term horizon, which is usually 

defined from one year to 10-20 years, mainly includes the expansion planning 

problems, among which the three problems known as generation expansion planning 

or “GEP”, transmission expansion planning or “TEP”, besides the substation 

expansion planning or “SEP” are well-known. The power system expansion planning 

models can be generally tackled by using centralized models, decentralized models, or 

even semi-decentralized models. The modeling strategy mainly relies on the economic 

priorities and aspects as well as the market conditions. In this respect, Ref. [1] 

includes a broad review of the planning problems in the regulated environment.      

The problem of power system planning is proposed and solved to decide on the 

capacity, type, time, and site of new assets in power systems. An optimal planning 

model would guarantee the desired performance of the system [2]. The methods 

presented so far to tackle the mentioned problem may be generally divided into two 

main groups. The first group is based on the mathematical optimization and includes 

methods such as linear programming, Lagrangian relaxation, and branch-and-bond [3–

6]. The second group is comprised of heuristic methods such as genetic algorithm, 



 4

known as GA and particle swarm optimization, known as “PSO” [7,8]. Ref. [9] 

investigates the coordination of GEP and TEP problems. Ref. [10] used a game theory 

based method to characterize the relationship between the generation sector 

investment and transmission sector investments. It is noteworthy that the capacity 

expansion of the system is done economically in line with the future requirements of 

the system, while guaranteeing the system’s desired reliability level [11–13]. In this 

regard, there are too many documents available thus far, investigating the system 

reliability at HL-II [14–16]. As the research paper in [2] emphasized, any long-term 

planning problem of power systems would be comprised of three main sections as 

follows: the input data, the modeling and computations, and results analysis. The 

amount of load demand, the techno-economic data of power plants, the location of 

assets as well as climate conditions forecasts, are categorized into input data of the 

problem. The second section itself includes other sub-sections as the cost due to power 

system operation, the cost due to the new assets’ investment, which form the planning 

model. Usually, tackling the mentioned problem as a coordinated expansion planning 

problem would face various difficulties due to the lack of enough information and 

solution intractability [16]. The problem is also aimed at minimizing the total cost, 

including the operating and investment costs, neglecting construction sites of plants, 

i.e. all load centers and units are placed at the same bus. However, by introducing the 

power system deregulation, the fundamentals of integrated planning were significantly 

changed. A distributed expansion planning model has been proposed in Ref. [17] 

where a hybrid centralized and decentralized decision maker has been used. It is 

noteworthy that the uncertainties due to the load demand and price have also been 
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taken into account. A coordinated expansion planning framework has been presented 

in [18], taking into consideration market conditions. In this regard, different players 

submit their expansion plans to the planning entity, while seeking to maximize their 

profits. The best plan would then be selected by taking into consideration system 

expansion planning priorities, such as reliability constraints and stability indexes. 

Nevertheless, it should be noted that excessively increasing the number of players 

would balance the price across the power system which in turn reduces profit of the 

players [19]. Ref. [20] proposes an environmental-friendly technique for the 

composite dynamic expansion planning problem to expand the transmission and 

generation systems’ capacity. Moreover, a clustering model based on a bi-level 

technique and objective-based scenario choice was proposed in Ref. [21]. The 

clustering variables include the variables, relating to the investment stage and power 

flow problem. Moreover, a k-means clustering technique was deployed in Ref. [22] 

within a two-stage planning model, where the clusters are the decisions of the wind 

power investment stage. An optimal model has been suggested in [23] to address 

generation companies’ (GenCos’) profit through bilateral as well as multilateral 

contracts to trade electricity and for haggling as a function of price [12]. Ref. [24] 

presented an optimal long-term planning model for the markets which are not fully 

competitive. In this regard, the equilibrium would be obtained by iteratively 

maximizing profit. A game theory-based dynamic multi-objective optimization 

framework has been developed in Ref. [25] for the distributed generation expansion 

planning problem, ensuring the profits of prevalent power plants within the 

restructured environment. A coordinated micro-grids (MGs) expansion model has 
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been designed in Ref. [26] while addressing the impacts of wind power and storage 

devices.   

The integrated GEP and TEP problem is solved to determine the most desired 

generation units and transmission lines to be installed and added to the power system 

over the planning horizon, generally intended to minimize the total cost and ensuring 

the system’s reliability. The existing restructured power systems have given rise to 

several challenges caused by the impact of transmission systems on the reliability 

issues [27,28]. In this regard, concurrently solving both GEP and TEP would be a very 

difficult task. As a result, first the GEP problem is tackled and the units to be installed 

are specified. Then, the problem of TEP is solved to determine the lines to be added to 

the transmission system [29]. The Deterministic N-1 and N-2 contingency analyses are 

carried out and deterministic load balance constraint is considered to alleviate the 

computational effort of the problem [27].   

Since the TEP is highly non-convex, weighted sum approaches could not ensure 

Pareto optimal solutions. Accordingly, this chapter shows the use of a posterior 

approach, named “non-dominated sorting genetic algorithm II (NSGA II)” [9] to 

derive the Pareto set, which effectively exploit previously provided knowledge. 

Afterward, the most appropriate solution is selected by using the fuzzy decision maker 

[30]. The presented planning framework is comprised of two stages: a master problem 

(MP), and a slave problem composed by two sub-problems. The MP is devoted to 

producing the binary decision variables by NSGA-II which show the status of 

candidate assets. The reliability index and the total cost of the future system are 

determined by applying an iterative mixed-integer linear programming (MILP) using 
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the enumeration approach. Furthermore, a virtual database is applied along with the 

NSGA-II to reduce the calculation effort, significantly boosting the rate of 

convergence of the optimization method.  

The main characteristic of this procedure is a novel point of view to the reliability-

oriented integrated GEP and TEP problem. The developed framework makes the 

independent system operator (ISO) able to measure the composite reliability issues of 

the existing and future configurations of the power system.. The novelties of this 

chapter are listed below: 

1) Developing a dynamic multi-objective optimization framework for the 

integrated GEP and TEP problem with the capability to be utilized by the ISO 

for the optimal system expansion; 

2) Presenting a virtual database as an asset to boost the convergence rate of the 

NSGA-II by mitigating the computational effort. 

                     

3) Developing a dynamic multi-objective optimization framework for the 

composite GEP & TEP problem with the capability to be utilized by the ISO for 

the optimal system expansion.   

4) Presenting a virtual database as an asset to boost the convergence speed of the 

NSGA-II by mitigating the computational load of the problem. 

The remainder of this chapter has been prepared as follows: Section 17.2 gives a 

comprehensive review of the mathematical formulation of the studied problem. The 

fundamentals of the multi-objective optimization and the descriptions of the NSGA-II 

algorithm, together with the descriptions of VIKOR decision maker are given in 
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Sections 17.3 and 17.4. The results, obtained from simulating the proposed problem 

on a 6-bus test system are included in Section 17.4, and Section 17.5 draws some 

relevant conclusions.  

  

17.2  Problem Formulation 

The main objective of the multi-year multi-objective dynamic generation and 

transmission expansion planning (MMDGTEP) problem is minimizing the total cost 

and total expected energy not supplied (EENS) while meeting all constraints of the 

system. The first objective covers the cost due to the investment in new capacity 

additions plus the system operating cost. The second objective is introduced to 

minimize the composite generation and transmission risk index, i.e. the EENS at the 

hierarchy level II, EENSHL-II. As mentioned in the Introduction, the MMDGTEP 

problem is formulated as a hybrid two-level optimization model. The MP deals with 

the problem of adding new capacities to the system. In other words, the assessment of 

first-level decision variables is done in the MP from the economic perspective. In the 

slave problem, the operating cost and reliability assessment of the proposed plans are 

evaluated. The solution obtained from the described problem specifies the capacity, 

the site, and the time new assets should be added to the system, i.e., new generation 

and transmission assets, in an economic and secure manner. In this respect, the 

forecasted load demand according to the predicted growth rate should be supplied and 

the reliability of the system should be at a desired level.  
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17.2.1 Master Problem 

The MP’s objective is set as minimizing the investment cost associated with new 

capacity additions in the generation and transmission sectors. The MP is modeled as 

(17-1), subject to the planning constraints: 

 

(17-1) ( 1) ( 1)
1 1

1 1 1 1 1

( ) ( )
(1 ) (1 )

NY NG NCU NY NCL
kiy kiy ki y jy jy j y

y y
y i k y j

Min MP
GI Gn Gn TI Ln Ln

d d
 

 
    


 


    

Total cost TC comprises the investment cost plus the system operating cost. In the 

MP, the optimal plan would be determined, provided that the sub-problems have been 

optimally solved. In other words, the MP determines the investment cost while the 

sub-problems of the slave problem deal with the operating cost. The capital 

investment costs in the generation and transmission sectors in a year are constrained 

as (17.2)-(17.3). Besides, the predicted capacity in a year in the generation and 

transmission sectors is constrained as (17.4)-(17.5), and the construction time of the 

candidate investment in the generation and transmission sectors are applied by (17.6) 

and (17.7) respectively. Constraints (17.6) and (17.7) also specify that once an asset is 

added to the power system, its investment status remains “1” until the end of the 

horizon. 

(17-2) ( 1)
1 1

( )
NG NU

kiy kiy ki y y
i k

GI Gn Gn TGI
 

   

(17-3) ( 1)
1

( )
NL

jy jy j y y
j

TI Ln Ln TTI


 
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(17-4) max,
( 1)

1 1

( )
NG NU

C
ki kiy ki y y

i k

PG Gn Gn TGC
 

   

(17-5) max,
( 1)

1
( )

NL
C

jy jy j y y
j

PL Ln Ln TTC


 
 

(17-6) ( 1) , 0ki y kiy kiy kiGn Gn Gn if y MTGI     

(17-7) ( 1) , 0j y jy jy jLn Ln Ln if y MTTI     

17.2.2 Slave Problem 

The slave problem includes two sub-problems: one minimizes the operating cost 

and the other minimizes the EENS. The objective function of the first problem is 

associated with the operating cost of the given plan and installed assets on the basis of 

the optimal power flow (OPF). An annual load duration curve (LDC) is exploited to 

calculate the yearly operating cost. The objective of the second sub-problem 

represents the reliability index of the prospective expansion plans EENSHL-II.  

The investment plan determined by the MP is given to the associated sub-problems. 

The investment cost of the prospective plan is integrated in the first objective while 

the investment plans and the status of capacity additions are assigned to the second 

sub-problem. The next section provides the mathematical modeling of the two sub-

problems. 

 

17.2.3 Total Cost Assessment Objective of the MMDGTEP Problem 

The first sub-problem considers the operational constraints, such as the power 

balance at each bus and the maximum power that can be transmitted in the lines and 
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transformers, while addressing the annual operating limitations, and finds the 

minimum total operation cost over the planning years by using a DC-OPF technique.  

The model of the first sub-problem is: 

(17-8) 
1

1
1 1 1 1

. .
(1 )

NY NB NG NU
by kiby kiby

y
y b i k

Min f TOC
DT OC PG

TOC
d 

   






 

  Subject to: 

(17-9) 
1 1 1 1 1 1

0
NG NEU NG NCU NEL NCL

E C E C
kiby kiby lby jby jby

i k i k j j
PG PG PD PL PL

     

         

(17-10) max,0 E E E
kiby ki kibyPG PG IG   

(17-11) max,0 C C C
kiby ki kiy kibyPG PG Gn IG   

(17-12) ( )E E E
jby j mby nbyPL B     

(17-13) max, max,E E E
j jby jPL PL PL    

(17-14) ( ) (1 ) 0C C C C
jby j mby nby j jyPL B M Ln       

(17-15) ( ) (1 ) 0C C C C
jby j mby nby j jyPL B M Ln       

(17-16) max, max,C C C
j jy jby j jyPL Ln PL PL Ln    

(17-17) 0ref   

The power balance at bus l is modeled as (17.9), in which superscript E show the 

existing assets and superscript C denote the candidate assets. It should be noted that 

the status of each candidate asset is given by the solution of the MP and the selection 

procedure is not done here. In this stage, the generation level of the generation units, 

and transmission lines flow are the decision variables. Set j is comprised of the lines 

which are connected to bus l and labeled by “to bus” or “from bus”. The constraints 

represent the capacity of the existing and candidate generation units (17.10)-(17.11), 
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the line flows of existing transmission lines (17.12)-(17.13), the line flows of 

candidate lines (17.14)-(17.16), and the phase angle of the slack bus (17.17).  

 

17.2.4 EENSHL-II Evaluation Procedure of the MMDGTEP Problem   

The annualized value of EENS at HL-I is derived utilizing the reduced scenarios as: 

1
.

N

HL I k k
k

EENS E P


  (17-18) 

where the EENS at the hierarchical level I, that includes the generation sector only, 

is denoted by EENSHL-I. In this regard, it is supposed that all generation units are at 

one bus. The probability of contingency k and the corresponding energy curtail are 

indicated by Pk and Ek, respectively. Moreover, the annualized value of EENSHL-II 

which is defined as the energy curtailed at each bus is obtained as [31]:  

( , )
. .

j jk k k j
j x y

EENS L D F


   (17-19) 

1

NL

HL II k
k

EENS EENS


  (17-20) 

 

The load curtailed at bus k for the sake of mitigating the overload as a result of 

contingency j is denoted by
jkL . Besides, the duration of the curtailment and the 

occurrence frequency of this contingency are represented by 
jkD and jF  respectively. 

The amount of load curtailment is evaluated by incorporating a virtual generator at 

each load bus by using an incidence matrix based DCOPF (IM-DCOPF) method 
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[32,33], considering the non-interconnectivity feature of distant generation units in the 

case of line outages. 

The second sub-problem aims at minimizing the total annual EENS of the 

associated prospective network: 

2
1

NY
y

HL II
y

Min

f EENS 


      (17-21)  

A probabilistic index using the enumeration technique along with a minimum cost 

evaluation model has been employed as described in the following five steps: 

1. First, the multi-stage annual load model should be produced, omitting the 

chronology and aggregating the load states by means of the data of the hourly 

load. This curve would be obtained from the annual load duration curve.    

2. The second step is to choose the system states at the load level utilizing the 

mentioned enumeration technique. Generation units are usually modeled, 

utilizing multi-state random variables, comprising the up, down, and derated 

states. On the other hand, transmission assets are modeled by means of two-state 

variables, comprising only the up and down states and the derated state has been 

neglected to more simplify the model. It is noted that transmission lines are 

assumed 100% reliable, which is case-dependent. The transmission system 

constraints must be considered as the generation capacity may be limited by the 

transmission system topology.  

3. The solution of a cost minimization problem described in the subsequent section 

allocates the generation, determines the associate cost and the amount of load 

curtailed together with the associated cost at each bus. With respect to the fact 
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that the objective is to specify the amount of the load curtailed, and afterward, 

specify the “EENS”, the identical value for the significance weighting factor of 

the load bus, and the identical unit generation cost are used to avoid the merit 

order of commitment of generation units. 

4. Iteration of the second and the third steps until convergence is reached for every 

load level. 

5. The corresponding probabilities are used to weight the obtained results for each 

load level to determine the annual indices of the expected cost of generation and 

risk.  

Resuming, the conceptual model of the mentioned procedure is illustrated in Figure 

17.1, that shows the master and slave problems and their associated decision variables 

and outputs.  

Master Problem 
Min. Investment Cost 
S. t.: (17-1) – (17-7) 

Slave Problem 

Min. f1  
S. t.: (17-8) – (17-17) 

Min. f2  
S. t.: (17-18) – (17-21) 

O
pt

im
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ck

 Feasibility C
heck E

E
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L
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I 

O
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 C
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t  TEP & GEP 

 

 Figure 17.1 The proposed expansion planning framework. 
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17.3  Multi-objective Optimization Principle 

In case the optimization problem is aimed at optimizing more than one objective 

functions with conflicting nature, multi-objective optimization tools should be used. 

Unlike single-objective optimization problems, solving a problem with multiple 

objectives would give more than one optimal solution, known as Pareto set. It is noted 

that all the solutions obtained are non-dominant and a better value of each objective in 

each Pareto optimal solution cannot be derived except at the cost of deteriorating the 

values of other objectives [34–36]. Expression (17.22) shows a typical multi-objective 

optimization problem, subject to different constraints.  

( ) 1,2,...,

( ) 0 1,2,...,
( ) 0 1,2,...,

i obj

k

l

Minimize f x i N

g x k K
Subject to

h x l L



 
  

 (17-22) 

The objective function i and a decision vector are denoted by fi and x, respectively. 

It should be noted that all solutions are optimal and the most adequate solution should 

be specified by the planning entity taking into account the preferences of the problem. 

Various optimization methods have been applied to cope with the multi-objective 

optimization problem [36–39], among which weighted sum method, epsilon-constraint 

method, and goal programming transform the primary multi-objective problem into a 

single-objective one and then, solve the problem. The main drawback of these 

methods relates to generating non-optimal solutions in the Pareto set [39], while 

needing relatively complete information of the problem and a relatively high number 

of runs [32]. However, some well-established approaches are already available to 

solve multi-objective problems, utilizing the concept of non-dominancy with respect 
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to all objectives [32]. NSGA-II, presented in the next section, is known as an effective 

algorithm, with the capability to tackle non-convex and mixed-integer problems [40].  

17.4  Non-Dominated Sorting Genetic Algorithm-II 

17.4.1 Computational Flow of NSGA-II 

This section investigates the computational procedure of the NSGA-II together with a 

flowchart, showing the detail. In general, the following stages are taken by the NSGA-

II [39]: 

 (Step 1) Initialization: first, a parent population with size NP is randomly 

generated.  

  (Step 2) Non-dominated sorting of parent population: this stage sorts the 

generated population with respect to the non-domination level. In this 

regard, every population would be given a rank, showing its non-

domination level or front number in a way that “1” shows the most 

desired level and “2” is the next desired one, etc. The crowding 

distance of populations at every non-domination level is determined 

and the population is put in order in a declining manner on the basis of 

the crowding distance.    

  (Step 3) Choosing tournament: two members are picked randomly and their 

front number and crowding distance are compared. The more desired 

one would be picked and copied to the mating pool. 
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  (Step 4) Crossover and mutation: the simulated binary crossover (SBX) and 

polynomial mutation are adopted in the procedure described in this 

chapter. 

 (Step 5) Merging the parent and child populations with the size 2NP. 

  (Step 6) Non-dominated sorting of the merged population: the non-domination 

and crowding distance indices are used to sort the new merged 

population. In this regard, elitism would be guaranteed as all members 

of the two populations are used. The population of the most superior 

non-dominated set, shown by F1 within the new merged population, 

would be highlighted among all other members. In case NP is larger 

than F1, the entire population F1 would be selected to be used in the 

new population, while the other members will be selected from the 

next non-dominated fronts according to their ranks. Hence, F2 would 

be subsequently selected and followed by the solution from F3, etc. It is 

noteworthy that this process would be carried out up to the time it is 

not possible to accommodate any set. Assume F1 shows the last non-

dominated set, after which it would not be possible to accommodate 

any other sets. Generally, the count of solutions within the whole sets 

will be greater than NP.      

 (Step 7) Termination criterion: the procedure will be terminated following a 

given number of generations, or at the time no considerable 

enhancement in the solution is observed. The NSGA-II would be run 

for a given number of generations in this chapter. Step 8 would be 
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taken, provided that the termination criterion is met; otherwise, a new 

population is copied to the parent population and the third step is 

processed.    

  (Step 8) Choose the first member of the population of the first front. 

 (Step 9) Termination. 

The conceptual flowchart of the presented NSGA-II is depicted in Figure 17.2.  

 

Set no of population =Np and gen = 0 gen = gen+1 Front = 1 

Is population classified ? 
No 

Yes 

Identify non-dominated individuals Calculate crowding distance  of each individual 

Sort individuals according to descending order of crowding distance Front = Front+ 1 

Tournament selection Crossover and Mutation Is child feasible ? 
No 

Yes 

Population filled ? 
No Yes 

Combine parent population and child population Front = 1 

Identify non-dominated individuals 

Is combined 

population classified ? 

Calculate crowding distance of each individual Sort individuals according to descending order of crowding distance Front = Front+ 1 

Yes 

No 

Select Np population members from non-dominated fronts in order of their ranking Is gen < max_gen? 

No 

Yes 

Stop 

Start 

Select the first member of the first front  

Figure 17.2 Computational flowchart of NSGA-II. 

 

17.4.2  VDS-NSGA-II 
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The VDS-NSGA-II is developed and utilized in this chapter to avoid the 

monotonous cases in determining the reliability, which uses the enumeration 

technique. In this respect, the total number of cases to be used for calculating 

EENSHLII will be significantly mitigated by only accepting the cases associated with a 

probability greater than a predetermined threshold. It should be noted that the number 

of solutions that must be exploited in the enumeration technique is of very high order, 

particularly once a heuristic method such as NSGA-II is used. Since the total number 

of assets, both existing and new ones, are determined by the ISO, and EENS has been 

calculated for some of the cases, the database can be used to restore those states and 

recalculating the system risk again would be redundant. For a particular case, the 

EENS would not vary. Accordingly, utilizing a virtual database for the presented 

expansion planning problem, including binary decision variables, can substantially 

help enhance the search capability and search speed of the NSGA-II.     

     

17.4.3 Methodology 

This section describes the implementation of VDS-NSGA-II in the MMDGTEP 

problem. Since the problem of MMDGTEP is a dynamic mixed-integer programming 

problem of a very large size, a virtual mapping procedure, VMP, is taken into account 

together with the proposed VDS-NSGA-II to improve the effectiveness of 

aforementioned soft computing algorithm. In the proposed MMDGTEP problem, 

transforming the combination of candidate units’ and lines' statuses into a dummy 

variable for every stage of MMDGTEP allows to use the virtual database.  

The three stages of the VMP are described as below. 
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(i) Form the prospective plan using the corresponding integer decision 

vector. As mentioned above, the investment status of an asset changes to 

“1” immediately after it is installed and remains unchanged to the end of 

the horizon.  

(ii) Extract the annually available assets for the planning horizon. 

(iii) Represent the status of each combination as a decimal number in order to 

submit the plan number to the associated objective functions.  

Hence, a multivariable decision vector would be mapped to a single variable one for 

each year. The proposed VDS-NSGA-II incorporates the aforementioned VMP to 

manage the address cell of the virtual database in both operating cost and EENSHL-II 

objective functions. Figure 17.3 illustrates the proposed procedure. 

As mentioned above, the single variable decision vector, so-called “decision 

address”, has been considered for each year. By considering this fact that the proposed 

expansion planning framework is a dynamic one, decomposition of the problem into 

the associated planning year and considering the dynamic feature of the expansion 

planning accelerates the simulation process. 

G.4 G.5 G.6 G.7 T.8 T.9 T.10 T.11

Year 0 7 6 0 7 0 9 4
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1
6 0 0 1 0 0 0 0 1
7 0 1 1 0 1 0 0 1
8 0 1 1 0 1 0 0 1
9 0 1 1 0 1 0 1 1

10 0 1 1 0 1 0 1 1

Generation Expansion Planning Transmission Expansion Planning

Decision Vector

 

Figure 17.3 The Virtual Mapping Procedure Technique Adopted in VDS-NSGA-II 
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For example, if the commitment of transmission line “T.8” is postponed from the 7th 

year to the 8th one, recalculation of entire cases in the objective functions is avoided. 

Since the yearly calculations have been carried out in the previous stages, it is only 

needed to evaluate the recent 7th year plan. It means that the first six years and also 

last three years calculations are available from the database and only the evaluation of 

the recent expansion plan should be carried out. Figure 17.4 illustrates this procedure.   

G.4 G.5 G.6 G.7 T.8 T.9 T.10 T.11

Year 0 7 6 0 8 0 9 4
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1
6 0 0 1 0 0 0 0 1
7 0 1 1 0 0 0 0 1
8 0 1 1 0 1 0 0 1
9 0 1 1 0 1 0 1 1

10 0 1 1 0 1 0 1 1

Generation Expansion Planning Transmission Expansion Planning

Decision Vector

 

Figure 17.4 Illustrative framework of eliminating the repetitive calculations  

 

The proposed virtual database in line with the virtual mapping procedure is depicted 

in Fig. 17.5. As it is shown in the flowchart, an annual virtual database is considered 

for each objective function. It means that the numbers of virtual databases are k×Y, in 

which k and Y denote the number of objective functions and planning horizon, 

respectively. 
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Figure 17.5 Virtual Database Implemented in NSGA-II. 

 

17.4.4  VIKOR Decision making 

The VIKOR decision maker was first developed by Oprikovic in 1998 [30] and it 

performs on the basis of allocating positive ideal values and negative ideal values to 

effectively specify the relative interval between every solution and Pareto optimal 

solution. Afterwards, the significance of all Pareto solutions would be specified 

through a ranking, indicated by xj, where j stands for the members of Pareto set and it 

is up to P [42]: 

1- Using fij, showing the rating functions, computing the value, pertaining to 

criterion i for the solution xj. After that, the best value of the objective function, 
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indicated by if   and the worst value of that objective function, indicated by if  , 

would be determined by using relationships (17.23) and (17.24).       

max ( ) | 1,2,...,i ijf f j m      (17.23) 

min ( ) | 1,2,...,i ijf f j m      (17.24) 

2- Specifying the value of group utility measure, shown by Sj and the value of 

individual regret measure, shown by Rj by employing relationships (17.25) and 

(17.26). 

1

( )
( )

n
i ij

j i
i i i

f f
S w

f f



 





  (17.25) 

( )
max

( )
i ij

j i i
i i

f f
R w

f f



 

 
  

  
 (17.26) 

Where, wi shows the weight of each objective so that the sum would be equal to 1 

[43]. Qj is also computed based on the relationship (17.27): 

(1 )j j
j j j

S S R R
Q w w

S S R R

 

   

    
     

       
 (17.27) 

where, 

( ) | 1,2,...,jS Min S j m      (17.28) 

( ) | 1,2,...,jS Max S j m      (17.29) 

( ) | 1,2,...,jR Min R j m      (17.30) 

( ) | 1,2,...,jR Max R j m      (17.31) 
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3- Ranking the Pareto set with respect to the values of the group utility measure, the 

individual regret measure and also Qj in an ascending order where the solution with 

the least value of Qj would be picked as the most preferred optimal solution [44].  

17.5 Simulation Results  

This chapter uses a six-bus test system to evaluate the performance of the developed 

optimization framework to solve the MMDGTEP problem. Fig. 17.6 demonstrates the 

studied system, [41], which is comprised of six nodes and seven transmission lines.  

G3 

BUS 6 BUS 5 BUS 4 

L3 L2 

BUS 3 BUS 2 BUS 1 

G2 L1 G1 

 

Figure 17.6 The studied six-bus system. 

 

Table 17.1 and Table 17.2 represent the data of the studied system, including the 

generating units and transmission system [41]. In this regard, four candidate 

transmission lines and four candidate generation units will be taken into consideration. 

It is assumed that the time, required to construct a generation unit is three years, while 

a transmission line can be installed within a year. The problem is solved for a planning 

horizon of ten years, while Fig. 17.7 indicates the annual peak load demand. The 

shares of buses 3, 4, and 5 in the load demand are 40%, 30%, and 30% respectively. 
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The load duration of each year has been divided into four blocks as shown in Fig. 17.8 

for the sake of more simplification. It should be noted that no constraint has been 

considered for the annual investments or the number of assets to be installed. Besides, 

the discount rate has been assigned to the model zero [41].   

 

Table 17.1 Data of generation units.  

Unit G.1 G.2 G.3 G.4 G.5 G.6 G.7 

Node 1 2 6 1 2 2 3 

Size 
(MW) 100 100 50 100 80 60 20 

Operating Cost 
($/MWh) 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

200 270 
250 250 

Investment Cost 
($/kW) 60 72 92 60 84 96 96 

 

 

Table 17.2 Installed and candidate transmission lines’ data [41]. 

Line T.1 T.2 T.3 T.4 T.5 T.6 T.7 T.8 T.9 T.10 T.11 

F_bus 1 2 1 2 4 5 3 1 2 1 5 

To_bus 2 3 4 4 5 6 6 2 3 4 6 

Reactance 

(p.u.) 
0.170 0.037 0.258 0.197 0.037 0.140 0.018 0.170 0.037 0.258 0.140 

Capacity 

(MW) 
80 70 140 100 50 140 130 80 70 140 140 

Investment 

cost ($/kW) 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

In
st

al
le

d 

80 96 120 56 
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Figure 17.7 Yearly peak load forecast of six-bus test system. 
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Figure 17.8 Load blocks in the first year. 

 

The results of the MMDGTEP problem are shown in Table 17.3. All 25 reported 

plans are non-dominated plans of the MMDGTEP problem in the six-bus test system.  

The load demand during the first year of the horizon is supplied using the existing 

generation units and the power flow of lines is feasible. In this respect, the generation 
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units, associated with lower costs, i.e. G.1 and G.2 are scheduled to operate at their 

maximum power and G.3 is supposed to meet the remaining load demand. 

Nonetheless, it is noted that T.2 will be congested and it prevents G.2 from operating 

at its rated capacity. Thus, G.3 as a more costly unit would operate at a higher level 

that in turn leads to an increased operating cost. Therefore, the candidate transmission 

line T.9 is added at the first year in all non-dominated plans, resulting in raising the 

transmission capacity between nodes 2 and 3. This increased transmission capacity 

enables G.2 to operate at a higher generation level over the following years. 

Consequently, the overall load will be smaller than the overall installed generation 

capacity over the first 4 years of the planning horizon. Taking into account the zero 

value of the discount rate and the minimum time to install a generation unit, a new 

generation unit will be added to the system in year 3. Thus, G.4 would be installed at 

bus 2 as higher power can be transferred by installing line T.9 in all prospective plans. 

These expansion plans are seen in all non-dominated plans. However, the system 

reliability enforces the installation of more capacity. 

 

Table 17.3 The obtained Pareto set and VIKOR decision-maker’s results.   

 f1 f2 R S Q 
Plan Total Cost ($*) EENSHL-II (MWh* 
P01 675147127 40.32226 0.31615 0.3668 0.40268 
P02 669940319 58.05954 0.5 0.5 0.98622 
P03 691339254.8 26.08278 0.20817 0.37672 0.25361 
P04 685147127 27.57412 0.18401 0.33194 0.11702 
P05 689565449.6 26.88526 0.19091 0.36778 0.20667 
P06 689479422 27.01624 0.19007 0.3683 0.20649 
P07 689388147.8 27.15902 0.18919 0.3689 0.20638 
P08 689292676 27.3114 0.18826 0.36955 0.20634 
P09 689194157.8 27.44924 0.1873 0.37002 0.20586 
P10 678521957.4 28.65292 0.19519 0.27868 0.017694 
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P11 689567526.2 26.49862 0.19093 0.36379 0.19794 
P12 691289391.6 26.4783 0.20768 0.38033 0.26078 
P13 705147127 14.134794 0.34249 0.3872 0.48916 
P14 706882643.4 14.127658 0.35937 0.40401 0.5528 
P15 721339254.8 9.821196 0.5 0.5 0.98622 
P16 715147127 11.41364 0.43976 0.45627 0.79483 
P17 719565449.6 10.882058 0.48274 0.49374 0.94516 
P18 719479422 11.009252 0.48191 0.49422 0.9449 
P19 719388147.8 11.145816 0.48102 0.49475 0.94465 
P20 719292676 11.291344 0.48009 0.49533 0.94445 
P21 708521957.4 12.574452 0.37532 0.40385 0.5777 
P22 719567526.2 10.497826 0.48276 0.48978 0.93649 
P23 712601668.8 12.57341 0.415 0.44353 0.72766 
P24 714930439.4 12.55631 0.43766 0.46601 0.81289 
P25 721289391.6 10.473336 0.49951 0.50627 0.99923 

* Calculated based on a 10-year horizon 
 

The sensitivity analysis based on different values of w for this test system are 

represented in Table 17.4. Based on the reported best and worst plans and the 

planner’s desired values for the objective functions, the final expansion plan would be 

extracted. For example, if the planner decides to avoid the risk, P14 is the best option. 

The best plans, {P1, P12, P14}, have the same transmission and generation 

investments, {G.4, T.8, T9, T10}. Due to zero discount rate and elimination of 

capacity and budget constraints, the aforementioned capacity additions would be 

considered the most efficient prospective projections. 

 

Table 17.4 Sensitivity analysis results for the VIKOR decision maker 

wcost wEENS Best Plan R S Q 
0.50 0.50 P10 0.19519 0.27868 0.017694 
0.20 0.80 P21 0.15013 0.19579 0.009903 
0.80 0.20 P01 0.12646 0.2075 0.006231 

 

Implementing the virtual database in line with the NSGA-II accelerates the 

convergence time and mitigates the computational load, particularly in next simulation 
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iterations. Since the number of elements in the search space is countable, the size of 

virtual database would be determined. By decomposing the dynamic framework to a 

static one in the proposed approach, the size of database reduces. Furthermore, by 

considering the construction time of generation units and transmission lines in the 

proposed decoding framework of decision vector in an annually manner, the size of 

virtual database is reduced. For example, as the construction time for generating units 

and transmission lines are considered three years and less then one year respectively, 

the maximum acceptable expansion plans for the first three years would be 16 ones. 

Thus, the size of database for the first three years is limited to 16 cells. The same 

analysis is carried out for the committed plans. It is noteworthy that the size of 

population and the upper bound of generations are assigned to the method as 5 and 

100 respectively. Moreover, the probabilities associated with the crossover and 

mutation are considered 0.8 and 0.2 respectively.  

 

17.6 Conclusion 

This chapter has described the implementation of a virtual database together with 

the use of heuristic optimization algorithms within the countable searching space of a 

mixed-integer optimization problem. The method is useful to reduce the 

computational effort. In particular, the VDS-NSGA-II soft computing algorithm is 

implemented to tackle the MMDGTEP problem, which is a dynamic and mixed-

integer optimization problem associated that includes the time-consuming procedure 

for the minimization of EENSHL-II.  



 30

This chapter also highlighted the requirements of considering the two conflicting 

objective functions, i.e. the investment cost and the risk.  

The results obtained for an illustrative case show the effectiveness and efficiency of 

the presented optimization framework. In this respect, the procedure provides diverse 

optimal expansion plans to the ISO as the decision maker. The VIKOR decision 

maker can be used to pick the most adequate plan.  
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