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Abstract

In this paper we analyze a class of multi-parametric quadratic program (mpQP) with parameters in the objective

function. Except for parameters in coefficients associated with the linear term, the coefficient of the quadratic term,

which is a positive definite matrix, is multiplied by a scalar parameter, while the quadratic coefficient of a standard

mpQP is deterministic. We reveal the optimal solution is a linear fractional function in the parameters, and the

critical regions remain polyhedral. The discussed mpQP can be reformulated as a standard mpQP via variable and

parameter transformations. The proposed method is used to evaluate the economic operation of a residential energy

system under time-and-level-of-use electricity pricing, highlighting the potential application in practical problems.
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1. Introduction

We considering the following multi-parametric quadratic program (mpQP):

min
1

2
σx>Qx+ c(θ)>x

s.t. Ax ≤ b

Θ =

(σ, θ) ∈ Rp+1

∣∣∣∣∣∣ σl ≤ σ ≤ σmθl ≤ θ ≤ θm


(1)

where x ∈ Rn is the vector of decision variables; θ ∈ Rp is the vector of parameters; c ∈ Rn is the coefficient vector

associated with the linear term, and its elements are linear functions in θ, i.e., c(θ) = c0 + Cθ, where c0 ∈ Rn

and C ∈ Rn×p are constants; Q � 0 is an n × n positive definite matrix; without loss of generality, we assume Q

is symmetric; otherwise, because x>Qx = x>Q>x, we can always replace Q by (Q + Q>)/2 without changing the

objective function, while the latter matrix is symmetric; σ ∈ R+ is a non-negative scalar parameter corresponding

to the quadratic term. Θ is the set of admissble parameters, which is assumed to be a hypercube defined by lower

bound σl/θl and upper bound σm/θm; in more general cases, Θ could be a full-dimensional polyhedron. A ∈ Rm×n

and b ∈ Rm are constant coefficients of linear inequality constraints. Equality constraints can be eliminated via

expressing some variables using remaining ones and substituting them into inequalities. Notice that replacing an

equality with two opposite inequalities may not be a good choice, because the coefficients of the two constraints are

linearly dependent, and they become active at the same time, which may ruin the linear independence constraint

qualification. Variable elimination overcomes this potential pitfall, and also reduces problem size.
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When σ > 0 is fixed, the coefficient of the quadratic term is deterministic. In such a circumstance, problem (1) is

a standard mpQP which has been well-studied in the existing literature, such as in Tøndel et al. (2003a); Bemporad

(2015); Dua et al. (2002); Pistikopoulos et al. (2007); Gupta et al. (2011). In a standard mpQP, the parameter θ

may appear in the constraint right-hand side and coefficients of the linear term in the objective function. It is known

that the optimal solution of a standard mpQP is piecewise affine in θ, and hence the optimal value is a piecewise

quadratic function in θ. When σ = 0, mpQP (1) comes down to a multi-parametric linear program with objective

uncertainty, which has been studied in Hadigheh & Terlaky (2006) and more generally in Charitopoulos et al. (2017).

For any given θ, the dual of the linear program in (1) is

min b>µ

s.t. A>µ = c(θ)

µ ≤ 0

(2)

where µ is the vector of dual variables. Consider all θ ∈ Θ, the optimal value is a function of θ, and problem (2)

appears to be a standard multi-parametric linear program and can be solved by the method in Borrelli et al. (2003);

Hlad́ık (2010). In the rest of this paper, we only consider strictly positive parameter σ in the quadratic term, and

thus the quadratic program is strictly convex.

2. Critical Regions and the Optimal Value

Suppose problem (1) is solved for given parameters σ > 0 and θ. Let matrix Ā and b̄ denote the rows of A and

b associated with active constraints, and Â and b̂ correspond to the coefficients of remaining constraints which are

inactive. µ̄ and µ̂ are dual variables corresponding to active and inactive constraints, respectively. Since problem

(1) is strictly convex, the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for optimality, and the

primal and dual variables must satisfy

σQx+ c(θ) + Ā>µ̄ = 0 (3a)

Āx = b̄ (3b)

Âx < b̂ (3c)

µ̄ ≥ 0 (3d)

µ̂ = 0 (3e)

Then the primal optimal solution can be solved from (3a) as

x = −σ−1Q−1
[
c(θ) + Ā>µ̄

]
(4)

Substituting (4) into equality (3b), we have

ĀQ−1
[
c(θ) + Ā>µ̄

]
= −b̄σ (5)

If Ā has full-rank in its rows, then matrix ĀQ−1Ā> � 0 and hence invertible. So the dual optimal solution can be

solved as

µ̄ = −Q−1
Ā

[
ĀQ−1c(θ) + b̄σ

]
(6)

where QĀ = ĀQ−1Ā>. Further substituting (6) in (4) gives the primal optimal solution

x = −σ−1Q−1M̄c(θ) +Q−1N̄ (7)
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where M̄ = I − Ā>Q−1
Ā
ĀQ−1, N̄ = Ā>Q−1

Ā
b̄.

From (6) and (7), although the dual optimal solution is a linear function in parameters (σ, θ) in some certain

region, the primal solution is nonlinear in σ, so is the optimal value. More precisely, x is a linear fractional function in

σ and θ, and the denominator is σ. This is a generalization of standard mpQPs with deterministic σ, whose optimizer

is an affine function of θ in each critical region.

As long as the set of active constraints does not change, the optimal primal solution x and dual solution µ

can be expressed by (7) and (6), respectively, regardless of the values of parameters. The set of (σ, θ) for x in (7)

being optimal is called the critical region. To obtain the critical region, substituting (6) and (7) in (3d) and (3c),

respectively, the pair of parameters (σ, θ) must satisfy

−Q−1
Ā

[
ĀQ−1c(θ) + b̄σ

]
≥ 0

Â
(
−σ−1Q−1M̄c(θ) +Q−1N̄

)
< b̂

(8)

So the critical region is

CR =

(σ, θ)

∣∣∣∣∣∣
−Q−1

Ā

[
ĀQ−1c(θ) + b̄σ

]
≥ 0(

ÂQ−1N̄ − b̂
)
σ < ÂQ−1M̄c(θ)

 (9)

Clearly, the closure of a critical region is polyhedral. Any parameter in a certain critical region yields the same set

of active constraints at optimum. Once a critical region has been identified, (7) is an analytical expression of the

optimal solution. Moreover, if Θ is divided into the union of critical regions, solving quadratic program in (1) boils

down to a lookup table of matching the parameter with critical regions.

3. Using an mpQP solver via Transformation

Given the expression in (9), critical regions can be drawn by visiting different values of θ ∈ Θ. In case that they

are overlapping, the parameter set partitioning method in Tøndel et al. (2003b); Borrelli et al. (2003) can be applied.

Nonetheless, several mature solvers for multi-parametric programming problems have been developed, such as the

multi-parametric toolbox (MPT) Kvasnica et al. (2004) and the parametric optimization toolbox (POP) Oberdieck

et al. (2016). In this section, we discuss a variable and parameter transformation method. It reformulates problem

(1) as a standard mpQP which can be processed by existing mpQP solvers.

Consider the following mpQP

min
1

2
x>Qx+

c(θ)>x

σ
+
c(θ)>Q−1c(θ)

2σ2

s.t. Ax ≤ b, (σ, θ) ∈ Θ

(10)

where Q−1 is the inverse of Q. Problems (10) and (1) share the same solution, as an affine mapping of the objective

function does not affect the optimal solution. Define a new variable z via transformation

x = z − Q−1c(θ)

σ
(11)

Problem (10) comes down to a new mpQP

min
1

2
z>Qz

s.t. Az ≤ b+
AQ−1c(θ)

σ

(σ, θ) ∈ Θ

(12)

via the new variable z.
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Furthermore, define a parameter transformation

σ′ =
1

σ
∈ R++, θ′ =

θ

σ
∈ Rp (13)

Then the new parameter set becomes

Θ′ =

(σ′, θ′)

∣∣∣∣∣∣ σ−1
m ≤ σ′ ≤ σ−1

l

θl/σm ≤ θ′ ≤ θm/σl

 (14)

Substituting c(θ) = c0 + Cθ in (12) and replacing parameters σ and θ with new ones in (13), we have the following

mpQP with a solver-compatible form:

min
1

2
z>Qz

s.t. Az ≤ b+AQ−1[c0, C]

σ′
θ′


(σ′, θ′) ∈ Θ′

(15)

According to the theory of mpQP, the critical regions of (15) is polyhedral, for example

D

σ′
θ′

 ≤ d (16)

Apply inverse parameter transformation, the critical regions in the original parameters is

dσ −Drθ ≥ D1 (17)

where D1 is the first column of D, and Dr is the remaining part of D except D1. It remains a polyhedron, which

is consistent with the analysis in Section 2. The optimal solution z in a certain critical region is a linear function

in (σ′, θ′). Applying variable and parameter transformations in (11) and (13), we can express x as piecewise linear

fractional functions in (σ, θ); consequently, the optimal value function can be obtained.

Remark: When mapped back to the original parameter space, the image of the new parameter set Θ′ is larger

than the original parameter set Θ. Alternatively, because

σ =
1

σ′
, θ = θ′σ =

θ′

σ′
(18)

the new parameter set can be defined as

Θ′ =

(σ′, θ′)

∣∣∣∣∣∣ σ
−1
m ≤ σ′ ≤ σ−1

l

σ′θl ≤ θ′ ≤ σ′θm

 (19)

It is no longer a hypercube, but the intersection of a cone and a slab, and thus remains polyhedral. Its image on the

original parameter space is Θ. Therefore, the exploration of unnecessary region in the new parameter space can be

circumvented.

4. Economic Assessment of a Residential Energy System

We consider a residential energy system with an ideal energy storage which is lossless. System configuration is

shown in Fig. 1. The solar panel output, storage charging and discharging power, grid power supply and load in

periods t = 0, 1, · · · , 23 are denoted by pVt , pct , p
d
t ,pnt and lt, respectively. Load and solar power forecasts are used in
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Figure 1: Configuration of the Residential Energy System
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Figure 2: Curves of Load and Solar Power Output

the model, so PV
t and lt are input data, which have been provided in Fig. 2; pct , p

d
t , and pnt are to be determined by

the energy management system.

According to the energy flows in Fig. 1, balancing condition

lt = pnt + pVt + pdt ,∀t (20)

holds in period t; the total power bought from the power grid is

pet = pct + pnt ,∀t (21)

The time-and-level-of-use electricity price Duarte et al. (2020) is an affine function in the power consumption

λt = λ̃t + kpet/2, (22)

The base price is

λ̃t =

5.0 cent/kWh, t ∈ TL

λh cent/kWh, t ∈ TH
(23)

where TH represents peak periods which last from 10:00 a.m. to 9.00 p.m., and TL includes the remaining periods

of the day. k and λh are parameters and their impact on the total cost will be investigated. The power-dependent

term in (22) can prevent rebounds peak when the based price drops down.

The operation of energy storage unit satisfies

0 ≤ pct ≤ pm, 0 ≤ pdt ≤ pm,∀t (24a)

Et+1 = Et + (pct − pdt )∆t,∀t (24b)

0.2Em ≤ Et ≤ Em, E0 = 0.2Em,∀t (24c)

where pm = 5kW is the maximum charging/discharging power; Em = 30kWh is the capacity of the storage unit.

The default duration of each period is ∆t = 1. (24a) restricts the maximum charging and discharging power; (24b)
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describes the dynamics of state-of-charge (SoC); since the storage is ideal, the efficiency is equal to 1, and the loss

during charging/discharging is neglected; (24c) stipulates the energy capacity and initial SoC; a lower bound is also

imposed on the storage SoC, preventing a deep discharge which may injure the storage facility.

Eliminating pnt from (20) and (21) we have

pet = pct − pdt + lt − pVt ,∀t (25)

Define a new variable pst = pct − pdt for the energy storage, (25) can be written as

pst = pet + pVt − lt,∀t (26)

and (24b) becomes

Et+1 = Et + (pet + pVt − lt)∆t,∀t (27)

Finally, eliminating Et and equality constraint (27) yields

0.2Em ≤ E0 +

t∑
j=1

(pej + pVj − lj)∆j ≤ Em,∀t (28)

Now, all constraints become linear inequalities.

Remark: Constraint (26) naturally suggests that if the solar output is larger than the load, the excessive power

is used to charge the storage unit, although such a connection is not explicitly shown in Fig. 1.

In summary, the economic operation of the residential energy system gives rise to the following mpQP:

min 5
∑
t∈TL

pet∆t + λh
∑
t∈TH

pet∆t +
k

2

∑
t

(pet )
2

∆t

s.t. − pm ≤ pet + pVt − lt ≤ pm,∀t

0.2Em ≤ E0 +

t∑
j=1

(pej + pVj − lj)∆j ≤ Em,∀t

Θ = {(k, λh) | 0.1 ≤ k ≤ 4, 8 ≤ λh ≤ 12}

(29)

In problem (29), decision variable is pet ; p
V
t and lt are retrieved from forecast; parameters k and λh correspond to the

quadratic term and the linear term, respectively. Problem (29) has the same form as the mpQP in (1).

4.1. Only k is uncertain

First, we consider the case in which λh = 10 cent is fixed. The analysis in Section 2 is used to compute the optimal

value function and critical regions, which are actually intervals in this case. Foremost, problem (29) is solved for

k = 0.1, and the active constraints are picked out. Then the corresponding critical interval and the optimal solution

in this interval can be computed via (9) and (7), respectively. Afterwards, problem (29) is solved again with a new

k outside the obtained interval, and a new critical interval and optimal solution can be retrieved. The procedure

continues until Θ are covered by critical intervals. Finally, Θ is divided into 4 critical intervals, and the optimal value

function is given by

v(k) =



258.31 + 110.62k, if 0.10 ≤ k ≤ 1.07

374.01 + 56.54k − 61.87/k, if 1.07 ≤ k ≤ 1.79

378.03 + 55.41k − 65.48/k, if 1.79 ≤ k ≤ 2.48

383.08 + 54.40k − 71.74/k, if 2.48 ≤ k ≤ 5.00

(30)
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Figure 3: Optimal value function
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Figure 4: Storage operation strategy under different k

Figure 5: Results of economic assessment on the residential energy system

The optimal value function is plotted in Fig. 3. To validate its accuracy, problem (29) is solved at discrete samples

of k with a step size of 0.1; the respective optimal values are marked in the same figure. It is observed that v(k)

offered by (30) exactly matches those obtained from solving problem (29) directly.

Storage operation strategies under k = 0.1 and k = 2 are compared in Fig. 4. With a larger value of k, the

electricity price grows more quickly with respect to load. Therefore, less power is purchased from the power grid

during valley periods to charge the energy storage unit. As a result, the consumer has to buy more power during

peak hours, leading to a higher daily operation cost.

4.2. Both k and λh are uncertain

Now, we solve problem (29) with both uncertain parameters. It is transformed to a traditional mpQP in the form

of (15), and then POP toolbox Oberdieck et al. (2016) is called. Results are shown in Fig. 5. Four critical regions in

R2 are found and portrayed with new parameters in Fig. 5a. The ranges of k′ and λ′h are defined by (19). Mapping

back to the original parameter space, the critical regions are displayed in Fig. 5b. From Fig. 5c we can see that k

affects the daily operation cost more significantly compared to λh. For a fixed k, the cost grows with the increase

of λh, and the growing rate becomes larger when the value of k increases. We also observe that even if k is allowed

to take values larger then 4, no more critical regions will be created, which means the set of active constraints will
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not change if k exceeds a certain value, so does the optimal operation strategy, as the marginal cost induced by the

quadratic term overwhelms the gap between the peak price and valley price.

5. Conclusions

In this paper, we discuss a class of mpQP with uncertain parameters in the objective function, where the quadratic

term is multiplied by a scalar parameter. The optimal solution is characterized by a linear fractional function in

parameters, and the critical region is shown to be polyhedral. The connection with standard mpQP is revealed via

variable and parameter transformation, which allows the use of off-the-shelf mpQP solvers.
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