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This chapter investigates the distributed energy resources (DER) integration to local energy 

systems and brings new solutions to improve the flexibility of the entire network. The main concept 

of the local energy system, including diverse multi-carrier energy systems, is to supply the 

consumer’s energy demands, i.e. electricity, heating and cooling loads. In order to enhance the 

flexibility of the local energy system, an energy management framework is suggested in this 

chapter to tackle the DER’s uncertainties and enhancing the flexibility of the entire network by 

adopting the effects of demand response (DR) programs, as well as the effects of electrical energy 

storage (EES) devices. The flexibility can be provided by electrical and non-electrical energy 

providers. However, the effectiveness of the electrical flexibility provision is much more important 

than the others. Since the electrical load balance must be met instantaneously, and there is no 

interruption allowed, the efforts will be concentrated on the electricity flexibility provision. 

However, considering the flexibility of a non-electrical system, like thermal loads in a multi-carrier 

energy system, can improve the net flexibly provisions by the electrical system. Therefore, in the 

model, developed in this book chapter, the flexibility provision from the whole energy system 
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would be studied. The main contribution of this chapter is introducing a centralized framework for 

determining the operating points of the multi-carrier energy system and improving the flexibility 

of the local energy systems, considering the price-based DR programs. The mentioned centralized 

framework can provide the desired solution for the energy vector system and energy communities, 

considering the flexibility from the consumer engagement in the DR programs. Moreover, the 

flexibility can be provided by the electrical energy storage devices to the local energy systems.  

 

Nomenclature 

Indices  
t Time index 
s Season index 
em Index of emission  
k Index of energy hub number 
i Index of energy hub type 
  
Abbreviations  
CHP Combined heat and power 
EH Electrical heater 
EHP Electrical heat pump 
AC Absorbed chiller 
EES Electrical energy storage 
TES Thermal energy storage 
  
Scalars  

T  Transformer electricity efficiency 
CHP
P / CHP

H  CHP electrical/ heating efficiency 
Boiler  Boiler efficiency 
EH  EH efficiency 
EHP
H / EHP

C  EHP heating/cooling efficiency 
EES

Ch / EES
Dis  EES charging/discharging  efficiency 

AC  AC efficiency 

em  Emission cost 
EES  EES operation cost 
TES  TES operation cost 

, .,EES Ch MaxP / , .,EES Dis MaxP  Max charging/discharging rate of EES 
, .,TES Ch MaxP / , .,TES Dis MaxP  Max charging/discharging rate of TES 
,Min CHPP / ,Max CHPP  Min/Max electrical power of CHP 
,Min CHPH / ,Max CHPH  Min/Max Heating power of CHP 



,Min BoilerCap / ,Max BoilerCap  Min/Max capacity of Boiler  
,Min EHCap / ,Max EHCap  Min/Max EH capacity 
,Min EHPCap / ,Max EHPCap  Min/Max capacity of EHP  
,Min ACCap / ,Max ACCap  Min/Max capacity of AC  
,Min EESCap / ,Max EESCap  Min/Max capacity of EES  
,Min CHPCap / ,Max CHPCap  Min/Max capacity of CHP  

0
aG  Irradiation of sun at the standard condition 

,0
M

MaxP  Max power of solar panel at the standard condition 

maxP  Thermal sensitivity of the solar panel 
NOCT  The normal operating temperature of the solar panel 

,0MT  solar panel temperature at the standard condition 

rp  Wind turbine nominal power 

civ / cov / rv  Cut-in/Cut-out and rated speed of wind turbine 
, ,e sh upLPF / , ,e do upLPF  Load participation factor of shift up/shift down power by Shiftable DR 

( , , ), ,e h c tr upLPF / ( , , ), ,e h c tr doLPF  Load participation factor of shift up/shift down power by Transferable IDR 
( , , ), ,e h c cu upLPF / 
( , , ), ,e h c cu doLPF  

Load participation factor of shift up/shift down power by Curtailable IDR 

1 / 2 / 3  Rebounded load factors 
,maxFlow

lP / ,maxFlow
lQ  Maximum rate of active/reactive power flow 

max
iV  Maximum rate of voltage magnitude at each bus 
max
i  Maximum rate of voltage angle at each bus 

  
Parameters  

, ,i

Buy
k s t  Electricity purchase price 

, ,i

Sell
k s t  Electricity sell price 
Re

, ,i

f
k s t  Reference tariff 

,i

DR
k s  Operation cost of DR programs 

,i

ENS
k s  Penalty price of ENS 

, ,i

Gas
k s t  Gas price 

G
emEF  Emission factor for up-stream grid 
CHP

emEF  Emission factor for CHP 
B

emEF  Emission factor for Boiler 

, ,
a
sc s tG  Irradiation of sun 

i

initial
k  Initial energy factor of EES/TES 

, ,
a

sc s tT  Temperature 

,
w
s tv  Wind speed 

  
Variables  
TOC  Total operation cost 



, ,i

G H
k s tP   Transferred power from up-stream grid to energy hub 

, ,i

M H
k s tP  / , ,i

H M
k s tP   Transferred power between energy hubs 

, ,i

H G
k s tP   Transferred power from energy hub to up-stream grid 

, ,i

CHP
k s tf  CHP Fuel cost 

, ,i

Boiler
k s tf  Boiler Fuel cost 

, ,i

EES
k s tf  EES operation cost 

, ,i

TES
k s tf  TES operation cost 

, , ,i

ENS
k sc s tP  Energy not served 

, ,i

CHP
k s tP  Electrical power of CHP 

, ,i

CHP
k s tH  Heating power of CHP 

, ,i

Boiler
k s tH  Heating power of Boiler 

, .
, ,i

EES Ch
k s tP / , .

, ,i

EES Dis
k s tP  Charging/Discharging power of EES 

, .
, ,i

TES Ch
k s tP / , .

, ,i

TES Dis
k s tP  Charging/Discharging power of TES 

, ,i

EH
k s tP / , ,i

EH
k s tH  Electrical /Heating power of EH 

, ,i

EHP
k s tP / , ,i

EHP
k s tH / , ,i

EHP
k s tC  Electrical /Heating/Cooling power of EHP 

, ,i

AC
k s tH / , ,i

A C
k s tC  Heating /Cooling power of AC 

, ,i

EES
k s tE  Stored Energy in EES 

, ,i

TES
k s tE  Stored Energy in TES 

, ,i

PV
k s tP  Available photovoltaic power 

, ,i

W ind
k s tP  Available Wind power 

, ,
, ,i

e sh up
k s tP / , ,

, ,i

e sh do
k s tP  Shift-up/shift-down power by shiftable DR program 

, ,
, ,i

e pb up
k s tP / , ,

, ,i

e pb do
k s tP  Shift-up/shift-down power by TOU DR program 

Line
lG / Line

lB  Susceptance/conductance of network branches 

, ,
Flow

s l tP / , ,
Flow
s l tQ  Active/ reactive power flow of network branches 

, ,s i tV  Voltage magnitude at each bus 

, ,s i t  Voltage angel at each bus 
( , , ), ,

, ,i x

e h c tr up
k s t NP  / ( , , ), ,

, ,i

e h c tr do
k s tP  Shifted-up/shifted-down power by transferable IDR program 

( , , ), ,
, ,i

e h c cu up
k s tP / ( , , ), ,

, ,i

e h c cu do
k s tP  

Shifted-up/shifted-down power by curtailable IDR program 

  
Decision Variables  

, ,i

CHP
k s tI  Binary variable of CHP operation 

, ,i

Boiler
k s tI  Binary variable of Boiler operation 

, ,i

EH
k s tI  Binary variable of EH operation 

,
, ,i

EHP C
k s tI / ,

, ,i

EHP H
k s tI  Binary variable of EHP operation in cooling/heating mode 



, ,i

AC
k s tI  Binary variable of AC operation  

, .
, ,i

EES Ch
k s tI / , .

, ,i

EES Dis
k s tI  Binary variable of EES operation in charging/discharging mode 

, .
, ,i

TES Ch
k s tI / , .

, ,i

TES Dis
k s tI  Binary variable of TES operation in charging/discharging mode 

, ,
, ,i

e sh up
k s tI / , ,

, ,i

e sh do
k s tI  Binary variable of shift up/shift down power by shiftable DR program 

, ,
, ,i

e pb up
k s tI / , ,

, ,i

e pb do
k s tI  Binary variable of shift up/shift down power by TOU DR program 

( , , ), ,
, ,i

e h c tr up
k s tI / ( , , ), ,

, ,i

e h c tr do
k s tI  Binary variable of shift up/shift down power by Transferrable IDR program 

 

9.1. Introduction 

The role of consumers has been significantly changed over the past two decades with the power 

system restructuring. Thus, local energy systems as one of the key components of distribution 

systems can highly impact the electricity market, system reliability, and policies[1]. Besides, the 

natural gas (NG) consumption has substantially increased since 2007, specifically after introducing 

the integrated NG and power systems operation [2,3]. NG is accounted for the cleanest fossil fuel 

which is easily available in most parts. It is also a fast-response energy carrier for the power plant 

operation. Accordingly, the integrated operation of NG and power system has captured attention 

recently. This is important, particularly due to the fact that not only it leads to increased flexibility 

and efficiency, but also helps to supply different types of load demand, such as cooling and heating 

loads[4,5]. However, the integrated operation of such systems is associated with severe challenges 

as the constraints of each system operation would affect the other one. Moreover, converting 

different energy carriers to other types involves some difficulties as the combined generation of 

heating, cooling and electrical power is accompanied by uncertainties. Furthermore, the concern 

on emission policies and reliability issues has increased [6,7]. One effective solution to system 

reliability issues is to change the system flexibility. The flexibility can be increased by using the 

integrated operation of different energy systems, demand response (DR) programs, electrical 

energy storage (EES) systems, and model predictive control tools along with renewable energies 



[8]. In this respect, this chapter investigates the role of DR programs and their effects on distributed 

energy resources (DERs), EES systems, and the operation of multi-carrier energy systems. 

There are many research works, devoted so far to investigate the impacts of DR programs on the 

operating costs, emission, and load demand curve of the system. In this regard, Ref. [9] presents a 

comprehensive model for the optimal planning and operation of the energy hub considering the 

uncertainties of generation and consumption. A price-based demand response program is 

considered in the model and the impacts of this program on equipment’ capacity and operating 

costs are fully investigated. Examination of the results proves that applying the DR program 

reduces the capacity of equipment and thus the cost of investment. The results also show that the 

DR program modifies the load demand curve by transferring part of the load from peak hours to 

off-peak hours.  

The authors present a MILP optimization model with the aim of increasing the flexibility   of multi-

energy communities in [10]. In the mentioned model, all flexible equipment such as CHP, EHP, 

EB, TES and BES are considered. Finally, the simulation results prove the effectiveness of the 

model.  In Ref. [11], in order to improve the flexibility of electromechanical heating systems using 

demand response programs, a hierarchical optimization algorithm is presented. 

A new management model for the optimal scheduling of a multi-carrier energy hub has been 

introduced in [12]. In the proposed hub, three types of assets have been considered: dispersed 

generating systems (DGs) such as micro combined heat and power (mCHP) units, storage devices 

such as battery-based ESSs, and heating/cooling devices such as electrical heater, heat-pumps and 

absorption chillers. The optimal scheduling and management of the examined energy hub assets 

in line with electrical transactions with distribution network has been modeled as a mixed-integer 

non-linear optimization problem. In this regard, optimal operating points of DG units as well as 



ESSs are calculated based on a cost-effective strategy. Ref. [13] developed a scenario-based 

stochastic multi-objective framework to minimize the operating cost and emission of three 

interconnected energy hubs. The impact of price-based DR program has been studied and the 

epsilon-constraint technique is used to solve the problem. The results derived from the simulation 

show that the DR program is capable of effectively reducing the operating cost and the dependency 

on the upstream network. A robust optimization model has been used in Ref. [14] to address the 

market price uncertainties in the context of optimal scheduling of an energy hub. The studied 

energy hub is equipped with TES and ESS systems while taking into consideration TOU-based 

and real-time pricing (RTP) based DR programs. The model addresses environmental issues and 

it is formulated as a MILP problem, and investigated through three different case studies. The 

simulation results show that RTP mechanism is associated with a more desired performance. 

Renewable energies are known as the most famous DERs and they have been largely integrated 

with local energy systems. Although renewable energies involve negligible operating cost and 

emission, they can bring serve challenges to power systems due to their intermittent power 

generation [15]. A conditional value-at-risk model with integrated DRPs has been proposed in Ref. 

[16] for the optimal operation of a resourced energy hub with a wind turbine and compressed-air 

energy storage (CAES) systems. It is noteworthy that the uncertainties of the problem are 

characterized using a scenario-based optimization technique and an efficient scenario reduction 

method is used to alleviate the number of primary scenarios. The simulation results show that the 

CAES system can effectively compensate for the volatile renewable power generation and improve 

flexibility. Besides, applying DRPs to electrical and heating load demand has successfully resulted 

in lowering the operating cost of the system. Ref. [17] introduced a design and operation model 

for an energy hub, taking into consideration shifting-load DR programs and uncertainties, relating 



to the load demand and wind power generation. A scenario-based stochastic programming 

approach along with an effective scenario reduction method in GAMS – SCENRED has been 

employed to tackle the uncertainties. The results obtained revealed that the uncertainties cause the 

capacity of assets to rise which in turn leads to increased capital costs. On the contrary, applying 

DR programs effectively reduces the need for higher assets capacities and consequently, decreases 

the total cost. Ref. [18] develops an energy management model for the microgrids in the presence 

of renewable energies and DR programs. The studied microgrid is comprised of active loads, 

besides micro combined heat and power (CHP) unit, an auxiliary boiler and an EES system to 

supply electrical and heating load demands. The DR program is based on shifting the load demand, 

and a scenario-based stochastic framework has been deployed to handle the impacts of the 

uncertainties arisen by the load demand, market price, and renewable power generation. According 

to the results, it can be deduced that the DR program is capable of mitigating the operating cost 

both in grid-connected and islanded operation modes. Ref. [19] utilizes a robust optimization 

framework for the optimal operation of a local energy system, including CHP unit, TES, and a 

boiler. The mentioned model takes into account the uncertainties and a TOU-based DR program 

is used which results in mitigating the operating cost of the system by modifying the consumption 

pattern of the consumer. System flexibility is accounted as one of the most important issues in 

local energy systems, where it is influenced by several direct and indirect factors. Thus, it has 

captured attention during recent years. In this regard, Ref. [20] presents a MILP-based scheduling 

model for an energy hub, considering the uncertainties caused by load demand, renewable power 

generation, and market price. The energy hub is resourced with a CHP unit, a wind turbine, an 

EES system, as well as a power-to-gas (P2G) storage system. A shifting-load DR has also been 

applied. The simulation results show that the P2G storage system, besides the DR program would 



lead to reducing the operating costs and enhancing the system flexibility. A day-ahead scheduling 

model has been developed for a multi-carrier energy system, aimed at minimizing the energy 

supply cost. The studied system comprises a photovoltaic (PV) system and a wind turbine along 

with EES and ETS systems. A shiftable and curtailable (interruptible) loads based DR program 

has also been considered. The problem has been formatted as a mixed-integer non-linear 

programming (MINLP) model, solved using DICOPT solver in GAMS. The results obtained 

indicate that the DR program would impact the elastic loads which in turn leads to increased system 

flexibility and reduced operating cost.   

Ref. [21] proposes a DR-oriented operational model for a multi-carrier energy system, including 

EES and TES systems. The objective function of the problem is a quadratic function and the 

problem is tackled using the genetic algorithm (GA) to optimize the operating cost. The roles of 

storage systems and DR program in enhancing the system flexibility and operating cost have been 

studied. Ref. [22] uses a two-stage model to implement the price-based residential DR programs 

in multi-carrier energy systems. The first stage is solved to derive the received price signals. The 

system operator uses the results obtained from the first stage to minimize energy losses. The 

consumers are ensured that they would not tolerate a higher cost in the second stage than that of 

obtained in the first stage to motivate them to participate in the DR program. The results reported 

by the simulation show that the mentioned model can successfully mitigate the energy losses and 

enhance the operational indexes. 

Ref. [23] presents a stochastic optimization model for the participation of a local energy system in 

the electricity market. In this model, flexible loads are also considered. The problem is modeled 

as a MILP problem and the objective function is to maximize the aggregator’s profit. Finally, the 

simulation results show that the proposed model is able to find the bidding curves. 



Ref. [24] proposes a scheduling framework for a prosumer microgrid, taking into account DR 

programs and an EES system. Besides, the studied microgrid is equipped with solar PV panels. 

The problem has been modeled as a linear programming (LP) problem solved using MATLAB. 

The simulation results verify the effective role of the coordinated operation of the DR program 

and EES system in decreasing the cost and improving the system flexibility. A tri-objective 

optimization model has been developed in Ref. [25] to minimize the operating cost, the expected 

energy not supplied (EENS), and the mismatch between the load curve and renewable power 

generation profile. The DR program has been included in the model and the resulted multi-

objective problem has been solved using the epsilon-constraint technique. Recently and along with 

the substantial penetration of multi-carrier energy systems in distribution networks, DR programs 

have also been applied to heating and cooling load demands, known as the integrated demand 

response (IDR). Ref. [26] provides a comprehensive review of the IDR programs, and future 

aspects. An integrated model has been used in Ref. [27] for the operation of a multi-carrier energy 

system, including electricity, NG, and heat and equipped with IDR programs, P2G systems, and 

energy storage systems. A coordinated operation model has been suggested for the flexible loads 

together with other assets. Finally, the model has been simulated on two test systems and the results 

show that the operation of storage systems would be useful, but highly constrained by the physical 

limitations. On the other hand, the IDR programs are not directly impacted by technical constraints 

but limited by the consumer discomfort index. Ref. [28] presents a two-stage MILP model for the 

planning of a multi-carrier energy system considering the IDR program. The proposed model uses 

a matrix structure in which operation constraints are expressed in detail. Also, the effect of using 

the IDR program on equipment capacity, total cost and load demand curve has been thoroughly 

investigated. 



Ref. [29] has carried out optimal day-ahead scheduling of a hydrogen-based smart energy system 

using a robust optimization model, taking into account IDR programs and market price uncertainty. 

The IDR programs are applied to both electrical and heating loads. The hydrogen storage system 

is used to convert the surplus renewable power to hydrogen to supply the required hydrogen of the 

hydrogen-based assets. The objective function of the problem is the total cost minimization where 

the integrated operation of IDR programs and the hydrogen storage system would help reduce the 

operating costs by 7.8% and raise the system robustness against market price uncertainty by 30%.  

The impacts of pumped-storage units for increasing the operational flexibility of power systems 

have been examined in [30]  . Ref. [31] developed an integrated planning model for multi-carrier 

energy systems where the energy hub’s interconnection and IDR programs have been considered. 

The problem is solved, aimed at minimizing the load supply cost. The results obtained indicate 

that the presented model is capable of reducing the installed capacity of the assets and planning 

cost. A multi-stage LP model has been used in Ref. [32] for the operation of a multi-carrier energy 

system, taking into consideration renewable energies, storage systems and IDR programs. It is 

noteworthy that IDR programs have been applied to all types of load demands. In this respect, 

first, the nodes arrangement and virtual nodes insertion are used to transform the complex energy 

hub into some simple energy hubs. Then, the coupling matrix of each simple hub is obtained. Such 

a technique linearizes the primary non-linear optimization problem and significantly alleviates the 

computational burden. The simulation results verify that the integrated operation model can reduce 

the operating cost and enhance the operation robustness.  

This chapter first reviews the DR programs and their roles in local energy systems, particularly 

multi-carrier energy systems. Afterward, an operation model is proposed to evaluate the impacts 

of DRPs, distributed generation (DG) units, and storage systems on the system scheduling and 



flexibility. Moreover, the impact of each item on the operating and emission costs would be 

discussed. 

 

9.2. Demand response programs for local energy systems.               

Local energy systems had always been passive elements in power systems before introducing DR 

programs. Besides, they were deprived of having the chance to reduce their costs. After the power 

system restructuring and adding DR programs to such systems, local energy systems can actively 

participate in electricity markets to mitigate their costs or provide the system with ancillary 

services. In this respect, they would help enhance reliability and mitigate the fluctuations, which 

in turn results in reduced energy bills [33]. Thus, DR programs have been widely accepted in many 

countries. 

 

9.2.1 Comprehensive assessment of DR programs 

DR programs are essential for the sustainable development of electricity markets, as the interaction 

between the generation and demand can lead to a more competitive environment. In addition, 

deploying the potential of consumers to change their consumption pattern results in a more 

efficient market. Therefore, DR-based policies are always supported by decision-making entities. 

The resulting equilibrium would be required for dynamic markets and providing consumers with 

diverse power options. In general, DR programs can be defined as the response of end-user to 

market prices. The response of the end-user would be controlling the asset’s load demand, reducing 

the load demand, and partially/fully interrupting the lead demand. The entities that may ask for 

DR programs are independent system operator (ISO), service-providing entities, and distribution 



companies. Price response also includes RTP, dynamic pricing, critical peak pricing (CPP), TOU 

pricing. Demand response can be described more accurately as modifying the power consumption 

with respect to the usual consumption, in response to the market price or incentive to motivate the 

consumer to change the consumption pattern. This happens during the periods at which the energy 

prices are high or the system reliability is vulnerable. Overall, DR programs would be interpreted 

as reducing the consumption over the critical peak periods. The critical periods are those with high 

wholesale market prices over the day or those at which the system’s reserve is not sufficient due 

to any failure or extreme weather conditions. A DR program is considered a complementary action 

to increase system efficiency. Seven major benefits of DR programs are: enhanced system 

reliability, reduced operating cost, increased market efficiency, risk management, reduced 

environmental emissions, mitigated market power, and improved services to consumers. 

According to the research conducted by the electric power research institute (EPRI), DR programs 

reduce the peak-load demand of the US by 45,000 MW, i.e. 6% of the peak demand. The main 

challenge in properly implementing DR programs is to select the best program with respect to the 

type of the load and system conditions. Fig. 1 shows different types of DR program. As this figure 

depicts, DR programs are categorized into price-based end incentive-based ones. 



 

Fig. 1. DR programs classification [34]. 

9.2.1.1 Price-based Demand Response Programs 



A price-based DRP leads to substantial modifications in the power consumption patterns in 

response to the market price variations. These DRPs are categorized into TOU mechanism, RTP, 

and CPP. If the variations in the market price over different time intervals of the day are 

considerable, consumers would react to price signals and reduce their bill [35].  

 

 Time-of-use Pricing 

TOU pricing is the most used mechanism all over the world. By using this mechanism, the 24 

hours of the day are divided into three or four periods as: peak, off-peak, and valley periods. Each 

of these periods is associated with a fixed price. These prices may vary for different hours of the 

day, different days of the week, or seasons of the year. The differences in the prices are the 

incentive for consumers to reduce their consumption or shift their leads to other periods. These 

programs are mandatory and arbitrary programs. Consumers are able to participate in arbitrary 

programs and give up after the agreed period. Mandatory programs are designed for all consumers 

and they have to participate. Once the consumer tends to reduce the consumption over the peak 

periods and shift the peak load to off-peak hours, the load factor improves, and prices would drop 

in most cases. The main point in implementing such a program is to precisely measure the 

consumption, issuance of electricity bills, and training consumers. Hence, advanced energy meters 

are required for each consumer. These meters need smart systems and advanced calculations to 

issue the electricity bill. Recently, the way priced-based DR programs are implemented has 

substantially changed with the recent advances in internet technology. Accordingly, advanced 

digital meters with advanced communication systems, providing the consumers with the several 

capabilities to observe their consumption and decide on shifting their load demand, will be 

installed and used [36]. 



 Real-time Pricing 

RTP is another price-based DRP, with hourly-varying pricing. The type of this DR program is 

arbitrary. Once the consumers enter this program, they should continue with the contract for a 

given period. The more substantial the variations of the market prices, the more the load shifting 

of consumers will be [37,38]. 

 

 Critical peak Pricing 

The CPP is a combination of the TOU and RTP mechanisms. CPP is associated with a pre-

determined high price designed by distribution companies to apply over peak intervals. These 

tariffs are called for a limited number of days or hours of the day with relatively short cautions. 

The consumers will receive a price discount over off-peak hours in this mechanism. It is worth 

mentioning that these tariffs are not yet common and used only in some regions [39]. 

 

9.2.1.2 Incentive-based Demand Response Programs 

These programs are planned by distribution companies, service-providing entities, and local 

system operators with respect to the price consideration and the specific features of generators and 

the system. These programs offer some incentives to consumers to reduce or shift their load 

demand. Such incentives may be constant or variable in time. Once, the system reliability is 

vulnerable or market prices are too high, the load demand should be reduced. It is noteworthy that 

the consumers that are not able to commit to their contracts, would be penalized. Incentive-based 

DR programs provide the system operator with different options to solve the market problems of 

a region. These programs would help solve the system reliability issues. For instance, centralized 



loads would be mitigated to reduce transmission system congestion. These DR programs include 

direct load control (DLC), interruptible/curtailable services, Demand Bidding/buyback programs, 

emergency DRPs, capacity market programs, and ancillary service market programs [40]. 

 

 Direct load Control 

 The consumers having assets with the capability to turn off or be used for a shorter period of time 

can participate in DLC programs. Some of these assets are residential central air conditioning 

systems, boilers, electric pumps and electric heaters (EHs). In this respect, consumers should be 

equipped with a telecommunication receiver/transmitter to be able to participate in this program. 

It is noteworthy that once consumers opt to participate in the DLC program, they cannot quit the 

program. 

 

 Interruptible/curtailable services 

Interruptible services can be utilized by ISOs in the cases where there is not sufficient operating 

reserve in restructured power systems. In these programs, consumers make a contract with the 

service provider to change the power consumption with previously-provided information. 

 

 Demand Bidding/Buyback programs 

Demand bidding/buyback programs can be used when a consumer decides to give up consuming 

electricity with a pre-determined price. Such programs are arbitrary as the consumer is able to 

determine the amount and the time at which he/she tends to participate. These programs were 

introduced in 1993 and they are available as a DR program. By using this mechanism, if consumers 



make a contract with the service provider and determine the amount of their load to reduce, they 

can make a higher profit, compared to the case without these programs. From the economic point 

of view, it can be said that the profit made by reducing the load demand is higher than the cost of 

energy purchased from generation companies (GENCOs) with high prices. 

 

 Emergency Demand Response programs 

Once the system’s reserve decreases, some consumers reduce their load demand and receive 

incentives instead. These consumers are end-users and load aggregators. The end-users usually 

include large industrial and commercial units that can reduce their load demand for at least 100 

kW during emergency cases. These programs are deployed for cases with vulnerable reliability. 

These programs are similar to DLC programs in terms of the communication systems and actions 

taken to reduce the load demand. The consumer receives the incentive immediately after 

verification of the action taken. 

 

 Capacity market programs 

Consumers offer the load curtailment as the capacity of the system to replace the conventional 

generation. In this respect, consumers provide a pre-specified interruptible load to deal with 

contingent events and fluctuations. If they commit to their contracts when it is needed, they receive 

incentives; otherwise, they will be penalized. 

 

 Ancillary service Market Programs 



As it is obvious, consumers offer their interruptible or shiftable load in the ancillary service market 

as the operating reserve. In case they have to interrupt or reduce their load demand, they will be 

paid by the ISO according to the spot market price. In the past, PJM ISO and other ISOs relied 

only upon generation units to provide the required ancillary services. However, today there are 

numerous reliable sources other than generation units to provide the system with fast response 

services. 

 

 Integrated Demand Response Programs for Multi-Carrier Energy Systems 

IDR programs are used in multi-carrier energy systems, planned to simultaneously supply 

electrical, heating and cooling load demands [41]. The operation of these systems involves more 

constraints while some of them are inter-related. Thus, it is of high significance to prevent the 

coincidence of their peak loads for the sake of having am efficient operation. Accordingly, IDR 

programs are used and applied to all the three mentioned types of load demands simultaneously. 

In this respect, they are applied to each load demand separately through the power balance 

equations. It is worth noting that participating in IDR programs is associated with more limitations 

compared to the case with DR programs. Thus, different methods are used to implement these 

programs. Load-based IDR programs would be more desired than price-based IDR programs, as 

they may cause some other problems. For instance, if the three types of load demands are 

simultaneously shifted to another time interval, a new peak load would be created. The consumer 

will receive an incentive using this mechanism from the system operator. Generally, there are three 

types of load-based IDR programs, utilized according to the application and the consumer’s 

behavior. These three load-based IDR programs are as follows: 

 



 Shiftable IDR 

Consumers shift their peak-load demand to off-peak hours through this program and receive an 

incentive. The mechanism of this program is similar to that of shiftable DR while it is used for all 

load demand types. It should be noted that the total amount of load demand would remain 

unchanged and only a fraction of the load demand is shifted. 

 

 Transferable IDR 

The load demand is shifted to other intervals using the transferable IDR programs. In this respect, 

the time interval between these shifts remains fixed, i.e. the load demand reduces in a time interval 

and after a specific period, it increases by the reduced amount (e.g. 8 hours). Consequently, the 

load demand would be transformed from peak intervals to valley intervals. It is noted that the 

maximum transferable load is different for each type. 

 

 Curtailable IDR  

The load demand can be curtailed at a specific time using this program and it will be rebounded 

over the subsequent time intervals (e.g. 3 hours), immediately after the load curtailment. For 

example, if the load is curtailed at hour 18, it will be rebounded at hours 19, 20, and 21. The 

percentage of the load rebounded would be logically estimated. For instance, if a consumer curtails 

a fraction of the load demand at hour 18, the most probable hour to rebound the load demand is 

hour 19. Then, the remaining load demand will be rebounded over hours 20 and 21. As mentioned 

above, each of the three IDR programs can be employed. However, shiftable IDR programs are 

the most prevalent ones. 



 

9.3.Flexibility Assessment of Local Energy Systems in The Presence of Energy Storage 

Systems and DR programs 

System flexibility is accounted as one of the most important issues in local energy systems, 

impacted by some factors both directly and indirectly. The most influencing factors are the 

uncertainties in the load demand and generation, DG units and energy storage systems. Moreover, 

the connection between the local energy systems and IDR programs highly affects the system 

flexibility. The negative impacts of renewable energies’ uncertainties on system flexibility can be 

effectively addressed by storage systems, P2G converters, and model predictive control methods. 

TES, EES, and cooling thermal energy storage systems can be utilized in local energy systems. 

These devices would help enhance the system flexibility. CAES system has also been widely used 

to provide the system with efficient electromechanical energy storage. These devices store the 

compressed air by consuming electricity and discharge the compressed air to produce electricity 

when it is needed. In general, the principle of storage systems operation is on the basis of absorbing 

electricity to charge over off-peak and valley periods and discharge over peak periods to improve 

the system reliability by load flattening. P2G converters have also been used to use the surplus 

power generation, particularly surplus renewable power generation, to produce gas and improve 

the system efficiency and flexibility. DR programs can also be applied to upgrade the system 

flexibility by shifting the peak load demand to other periods and reducing the total operating cost. 

Such programs would also help stabilize the voltage at the connection point of consumers and 

improve the reliability by alleviating the peak load demand. If DR programs are applied to other 

types of load demand rather than only electrical loads, their impact on the system flexibility would 

be more highlighted.  



 

9.4. Energy Management Framework for DER Integrated Distribution Networks 

This section presents an energy management system (EMS) for multiple local energy systems, 

connected to a 33-bus distribution network. These local energy systems include three residential, 

industrial, and commercial energy hubs with transactive energy trading capability. In this respect, 

each hub is equipped with a CHP unit to evaluate the impacts of DERs on the system, besides 

RES’s scheduling and flexibility. Moreover, the residential and commercial hubs include PV 

panels and the industrial hub includes a wind turbine. Furthermore, TES and EES systems have 

been used to investigate their roles in the optimal operation of energy hubs. The impacts of DR 

programs on the system scheduling & flexibility have been studied through considering five 

different programs. In this respect, two conventional DR programs, applied to electrical loads and 

three IDR programs, applied to heating and cooling loads, have been used in this chapter. It is 

noteworthy that the network constraints and power flow of lines have been modeled to avoid any 

unreal power transaction among the energy hubs. Fig.2 illustrates the conceptual model of the 

energy hubs in this study including industrial, commercial and residential energy hubs.  

 

 



 

Fig. 2. Conceptual model of energy hubs in this study 



The presented problem has been modeled as a single-objective optimization problem as follows: 

 Objective function 

The objective function of the problem is expressed in (1a), comprised of the operating costs of 

generation and storage assets, The first and second items of this function state the energy purchase 

cost and profit of each hub, made by selling energy relating to each hub respectively. , , ,i

CHP
k sc s tf , 

, , ,i

Boiler
k sc s tf ,   , , ,i

EES
k sc s tf   , and show the operating costs of CHP units, boiler, EES, and TES systems  , , ,i

TES
k sc s tf   

respectively. , , ,i

ENS
k sc s tP  and ,i

ENS
k s  are the amount of energy not supplied (ENS) and its corresponding 

cost respectively. The last part of the objective function also shows the cost due to emission, 

propagated by the CHP unit and boiler, and also the cost due to transacting power with the 

upstream grid. SO2, CO2, and NO2 emissions have been taken into account in this chapter.  
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 (1a) 

 Operating cost of energy hubs’ assets 

Eqs. (1b)-(1e) indicate the operating cost of CHP units, boiler, EES, and TES systems respectively. 

Eq. (1b) shows that the operating cost of the CHP units is a function of the heat and power 

generation, as well as the NG price. It is noted that , , ,i

CHP
k sc s tP  and , , ,i

CHP
k sc s tH  are the electrical power and 

heat generation of the CHP units respectively, while their associated efficiencies are stated by CHP
P

and CHP
H  respectively. The operating cost of the boiler is expressed as the product of the NG 



consumption and the NG price. The heat generation of the boiler, its efficiency, and the NG price 

are denoted by , , ,i

Boiler
k sc s tH , Boiler , and , ,i

Gas
k s t  respectively. As Eqs. (1d)-(1e) indicate, the operating costs 

of EES and TES systems depend upon the charging and discharging power and their operation 

duration.  
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EES
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 , . , .
, , , ,, , i ii

TES TES Ch TES Dis
k s t k s t

TES
k s t P Pf    (1e) 

 CHP model 

The CHP operation is characterized using the equalities and inequalities presented in (2a)-(2e). 

The combined heat and power generation is limited as expressed in (2a). Besides, the power and 

heat outputs are also constrained as (2b) and (2c) respectively. It is noted that , , ,i

CHP
k sc s tI  is a binary 

variable, specifying the turn off/on status of the CHP unit. Expression (2d) and (2e) show the 

power and heat flow of this asset.  
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CHP CHP HL CHP AC CHP TES
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 Boiler model 

The boiler model is characterized using (3a) and (3b) where the heat generation is constrained as 

shown in (3a) and the heat flow is stated in (3b). It should be noted that ,Max BoilerCap  and ,Min BoilerCap  

are the lower and upper bounds of the heat generation, where the minimum heat generation is 

assigned to model “zero” in this chapter. Besides, , , ,i

Boiler
k sc s tI  is a binary variable, determining the 

turn/off status of the boiler. As Eq. (3b) indicates, the heat generated by the boiler can be directly 

used by the consumer or indirectly used by the absorption chiller (AC) to supply the cooling power. 

Otherwise, it can be stored in the TES system.  

, ,
, , , , , ,i i i

Min Boiler Boiler Boiler Max Boiler Boiler
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, , , , , , , ,i i i i
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k s t k s t k s t k s tH H H H      (3b) 

 

 Electrical heater model 

The equalities and inequalities presented in (4a)-(4d) are used to model the electrical heater (EH) 

operation. The heat generated by the EH is limited as shown in (4a) while Eq. (4b) represents the 

heat generation equation of the EH as the product of electricity consumption and the respective 

efficiency. The power and heat flow equations of the EH are stated in (4c) and (4d) respectively. 

, ,
, , , , , ,i i i
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 Electric heat pump 

The heating power generation and cooling power generation equations of the electric heat pump 

(EHP) are represented in (5a) and (5b) respectively. It is noteworthy that the heating power and 

cooling power and their associated binary variables are denoted by , , ,i

EHP
k sc s tH  and , , ,i

EHP
k sc s tC , ,

, , ,i

EHP H
k sc s tI , 

and ,
, , ,i

EHP C
k sc s tI  respectively. The EHP is capable of operating in one of the heating and cooling modes 

at a time. In this regard, the conflicting conditions have been avoided using (5c). The heating 

power and cooling power generation equations are the functions of the electricity consumption and 

respective efficiencies, as indicated in (5d) and (5e) respectively. The electrical power, heating 

power, and cooling power flow equations are expressed in (5f)-(5h) respectively.  

, , , ,
, , , , , ,i i i

Min EHP EHP H EHP Max EHP EHP H
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 Absorption chiller model  

The constraints and energy flow of the AC are stated in Eqs. (6a)-(6d). The minimum and 

maximum limits of the generation of the AC are represented in (6a). Eq. (6b) shows the cooling 

power generation of the AC, depending upon the input heating power and the associated efficiency. 



The input heating energy flow and the output cooling energy flow are shown in (6c) and (6d) 

respectively.  

, ,
, , , , , ,i i i

Min AC AC AC Max AC AC
k s t k s t k s tCap I C Cap I   (6a) 

, , , ,i i

AC AC AC
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AC AC CL
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 EES and TES model 

 The EES and TES systems are modeled using the constraints represented in (7a)-(7k). The energy 

stored in the EES system is limited as (7a). The energy balance of this device is expressed in (7b) 

which is the function of the energy available at time t-1 and the charging and discharging power. 

The charging power and discharging power of the EES system should be in the feasible operating 

interval of this device as shown in (7c) and (7d) respectively. As constraint (7e) emphasizes, the 

EES system is capable of operating in either charging or discharging modes at a time. The initial 

energy and final energy stored in the device are also limited as stated in (7f) and (7g) respectively. 

Eqs. (7h) and (7i) indicate the energy flows of the EES system in the charging and discharging 

modes respectively. The energy flows of the TES system are indicated in (7j) and (7k) respectively.  
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 Renewable energies model 

Eq. (8a) shows the power generation equation of the solar PV panels, in which , , ,i

PV
k sc s tP  is the power 

output of the panel. Besides, , ,
a
sc s tG , 0

aG , ,0
M

MaxP , , ,
a

sc s tT , NOCT , and ,0MT  are the hourly solar 

irradiance, standard solar irradiance, nominal capacity of the PV system, hourly temperature, 

normal operating cell temperature, and the standard temperature respectively. The power produced 

by the wind turbine follows the conditional equation presented in (8b). The renewable energy flow 

equations are shown in (8c) and (8d). 

, ,
, , , ,0 max , , , , ,0

0

20
800i

a
sc s tPV M a a

k sc s t Max P sc s t sc s t Ma

G NOCTP P T G T
G


         

 (8a) 

, ,

3

,
,

, ,

,

0                                              

                      

                                            

0          

i

w
sc s t ci

w
s t ci w

r ci s t rWind
k s t r ci

w
r r s t co

v v

v v
p v v v

P v v

p v v v



 
     
 

,                                    w
s t cov v








 

 (8b) 

, , , , , ,i i i

RES PV Wind
k s t k s t k s tP P P   (8c) 

, , , , , , , , , , , , , ,i i i i i i i

RES RES EL RES EES RES EHP RES EH RES M RES G
k s t k s t k s t k s t k s t k s t k s tP P P P P P P            (8d) 

 

 



 Energy transaction between hubs 

This section includes the power flow equations for the transactive energy trading between the three 

hubs. As Eqs. (9a)-(9c) show, the energy transaction of each hub would be determined with respect 

to other hubs. Moreover, the power received by each hub from other hubs can be specified using 

Eqs. (9d)-(9f). 
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 Demand response programs models 

This section provides the mathematical formulation of two conventional DR programs, including 

a price-based DR program and a transferrable load based DR program as well as three IDR 

programs. These IDR programs include shiftable, transferrable, and curtailable programs. It should 

be noted that the mentioned IDR programs are applied to electrical, heating, and cooling loads. 

Furthermore, the impact of each DR and IDR program would be individually studied. 

 Shiftable demand response program 

By using this mechanism, consumers receive an incentive and agree to shift their peak-load 

demand to off-peak hours. The mathematical relationships, given in (10a)-(10d) show the 

mechanism of this program. As (10a) indicates, the sum of the amount of reduced load and 

increased load demands over the scheduling period should be equal. Constraints (10b) and (10c) 



show the maximum hourly increase and decrease in the load demand. Constraint 10(d) state that 

the simultaneous increase and decrease in the load demand as a result of the DR program is 

impossible and should be avoided.  
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 Time-of-use demand response program 

The mechanism of the TOU program is stated in (11a)-(11f). Eq. (11a) emphasizes that the sum of 

the increased load demand and reduced load demand must be equal over the scheduling period. 

, , ,i

up
k sc s tD  and , , ,i

do
k sc s tD  denote the upward and downward load demand respectively, depending upon 

the hourly electricity price and load elasticity, modeled in (11b) and (11c). 
i

up
k  and 

i

do
k  indicate the 

upward and downward load demand elasticities respectively. Moreover, , ,i

Buy
k s t and ,i

ref
k s  are the 

hourly electricity price and off-peak electricity price respectively. Constraints (11d) and (11e) 

show the upper and lower bounds of the decrease in the load demand due to the DR program. 
i

up
kB  

and 
i

do
kB  are the maximum upward and downward load variation coefficients, stated in terms of a 

percentage of the electrical load demand. , , ,i

up
k sc s tI  and , , ,i

do
k sc s tI  are upward and downward load 

demand variation binary variables respectively, where the conflicting situation is avoided in 

constraints (11f). 
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 Shiftable Integrated demand response program 

The shiftable IDR program is modeled using the mathematical formulations presented in (12a)-

(12d). Eq. (12a) states that the load demand should remain constant over the scheduling period, 

i.e. the sum of increases and decreases should be equal. The hourly upward load demand and 

downward load demand have been characterized through (12b) and (12c) respectively, while 

constraint (12d) removes the conflicting situation. 
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 Transferrable integrated demand response program 

The mathematical relationships, proposed in (13a)-(13d) are employed to model the transferrable 

IDR program. In this respect, Eq. (13a) shows that this program should be applied with a 

determined pace, e.g. 8 hours in this chapter. In other words, if the load increases or decreases, the 



same amount should be compensated after 8 hours. This hourly upward and downward 

transferrable load demands are modeled using constraints (13b) and (13c). Furthermore, the 

conflicting situation is avoided using constraint (13d). 
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 Curtailable integrated demand response program 

 Constraint (14a) indicates the mechanism of implementing the curtailable IDR program. The load 

curtailed at each hour must be rebounded over the immediate subsequent three hours. In this 

regard, 1 , 2 , and 3  are the rebounded load demand in percent and their values are 60%, 30%, 

and 10% respectively. Constraints (14b) and (14c) indicate the upward and downward load 

demand at each hour. 
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As it was mentioned before, there is a limit for DR program implementation at the same time to 

show the effectiveness of each DR programs on operational results. Constraints (15a)-(15f) deal 

with this assumption to avoid multiple integrations of the DR programs at the same time.   
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 Power balance constraints 

Eqs. (16a)-(16c) show the balance equations for the electrical, heating, and cooling power 

respectively. As Eq.(16a) shows, the electrical load demand is supplied by transacting power with 

the upstream grid and other energy hubs, and also by the CHP units, EES system, and other RESs. 

Besides, the heating load demand is supplied using the CHP unit, boiler, EHP, EH, and TES 

system. The cooling load demand is also supplied using the AC and EHP.  
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 Power flow constraints 

Eqs. (17a)-(17i) state the linear formulation of the power flow constraints. Eq. (17a) relates to the 

susceptance and conductance calculations. The active and reactive power flow equations are 

represented in (17b) and (17c) respectively. Constraints (17d) and (17e) state the maximum active 

and reactive power flow of lines respectively. The constraints of the voltage magnitude and angle 

are applied using inequalities (17f) and (17g) respectively. The active and reactive power 

injections of each bus would be determined by employing Eqs. (18h) and (17i) respectively. 
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9.5. Simulation results 

This section is devoted to solving the proposed scheduling problem through simulating five 

different case studies, and the results, obtained are discussed. Table 1 provides the required 

information of the five case studies. The data of the energy hubs’ assets are available in Ref. [17]. 

Furthermore, the load demand data of each hub are presented in Table 2. 

 

Table 1. The studied five cases for DR program assessment. 

Case no. DR EES TES RER’s Coordinate Uncoordinated 
1       

2       

3       

4       

5       
6       

 

 



Table 2. Load demand data of energy hubs. 

Hour 
Industrial Commercial Residential 

Spr./Fall Summer Winter Spr./Fall Summer Winter Spr./Fall Summer Winter 

1 450 450 300 175 175 175 401.46 584.48 190.37 

2 450 450 300 175 175 175 400.38 551.92 259.62 

3 450 450 300 175 175 175 384.93 520.04 273.40 

4 450 450 300 175 175 175 380.90 499.58 304.33 

5 600 600 750 175 175 175 448.74 576.18 386.37 

6 900 750 1050 175 175 175 587.14 733.46 551.51 

7 1200 1050 1350 175 175 175 780.00 893.52 638.60 

8 1425 1350 1500 175 175 175 855.06 910.00 730.84 

9 1500 1500 1500 280 280 280 899.50 910.00 729.01 

10 1500 1500 1500 420 420 420 913.75 910.00 732.25 

11 1500 1500 1500 490 490 490 911.65 975.00 780.00 

12 1500 1500 1500 490 490 490 931.52 1105.0 780.00 

13 1500 1500 1500 490 490 490 947.14 1105.0 780.00 

14 1500 1500 1500 490 490 490 962.87 975.00 780.00 

15 1500 1500 1500 542.5 525 560 976.69 845.00 845.00 

16 1500 1500 1350 542.5 525 560 980.40 845.00 845.00 

17 1050 1350 1200 577.5 560 595 985.94 910.00 780.00 

18 900 1050 750 595 560 630 1020.5 975.00 715.00 

19 600 600 300 665 630 700 1019.2 1040.0 715.00 

20 450 450 300 700 700 700 979.17 1170.0 715.00 

21 450 450 300 700 700 700 878.02 1300.0 624.00 

22 450 450 300 647.5 700 595 729.98 1248.0 596.03 

23 450 450 300 595 700 490 581.45 1040.0 397.20 

24 450 450 300 385 490 280 414.01 780.00 192.59 

 

Five DR and IDR programs have been simulated to investigate their impacts on the operating cost 

of the system. The results, obtained are represented in Table 3. The results, derived from simulation 

of the DR programs for electrical loads show that the price-based DR program performs better, as 



no payment would be made by the system operator. In other words, consumers shift their load 

demand with respect to the electricity price, leading to a modified load demand profile and reduced 

cost. On the contrary, consumers shift their load demand using the load-based DR program, only 

if they receive an incentive.  

Table 3. The simulation results for the five case studies. 

 Operation cost ($/day) 
 Shiftable DR 
 Spring Summer Fall Winter 

Industrial 3356.36 4718.62 2984.14 3474.01 
Commercial 1006.39 1401.88 763.52 904.65 
Residential 1248.15 2407.16 806.96 969.64 

 Price-based DR 
 Spring Summer Fall Winter 

Industrial 3317.89 4668.27 2945.05 3438.88 
Commercial 987.26 1403.32 752.27 886.43 
Residential 1218.42 2376.99 790.46 958.61 

 Shiftable IDR 
 Spring Summer Fall Winter 

Industrial 3301.43 4475.41 2941.10 3400.73 
Commercial 974.53 1377.45 753.64 884.45 
Residential 1212.43 2279.39 789.58 955.20 

 Transferable IDR 
 Spring Summer Fall Winter 

Industrial 3481.46 4742.99 3049.75 3498.88 
Commercial 990.60 1381.06 788.50 904.23 
Residential 1268.12 2418.77 819.92 971.51 

 Curtailable IDR 
 Spring Summer Fall Winter 

Industrial 3564.38 4881.90 3118.69 3569.00 
Commercial 1002.35 1411.21 797.16 909.93 
Residential 1310.78 2484.18 833.02 985.26 

 Without DR or IDR 
 Spring Summer Fall Winter 

Industrial 3612.40 4975.28 3172.39 3596.32 
Commercial 1010.91 1425.36 798.17 919.32 
Residential 1327.97 2540.14 840.98 1000.91 

 

 



It is noteworthy that both DR programs result in modifying the load demand profile while the 

price-based DR program would be more beneficial to the system operator. The simulation results 

for the three IDR programs, applied to electrical, heating, and cooling loads verify that the shiftable 

IDR program leads to a more desired solution. Transferrable and curtailable IDR programs are 

ranked the second and third in terms of their results desirability. It is noteworthy that the consumer 

would be paid using each of these three programs. The superior performance of the shiftable IDR 

program is due to the fact that it is associated with lower operating limitations. The obtained results 

for the five case studies also verify that the shiftable IDR program is associated with the best 

performance compared to others. Although the system operator should pay to consumers, it leads 

to better results as it is applied to heating and cooling loads as well, and it shifts the load demand 

to off-peak hours. It has been revealed that the residential energy hub has participated more in the 

DR programs as it includes more flexible loads compared to the commercial and industrial energy 

hubs. 

Figs. 3-5 depict the impact of shifting IDR program on the electrical load demand curve in summer, 

the cooling load demand curve in summer, and the heating load demand curve in winter 

respectively. As can be observed, this IDR program has successfully and effectively modified the 

load demand curves by shifting the peak load to off-peak hours.     

 

  



 

Fig. 3. Electrical load demand in summer. 

 

 

Fig. 4. Cooling load demand in summer. 
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Fig. 5. Heating load demand in winter. 

 

Table 4 represents the results, obtained from the simulating the six case studies with and without 

IDR programs. As the shiftable IDR program has the most desired performance, it is used for 

further studying the problem. The comparison made between case studies 1 and 2 shows that the 

operating cost would be much higher without applying the IDR program in Case 1 compared to 

Case 2. This difference is more considerable in summer and winter due to their higher load 

demands compared to spring and fall. Moreover, the commercial energy hub is less impacted by 

the IDR program as its load demand is less flexible compared to other energy hubs. In Case 3, it 

is assumed that the three energy hubs are only allowed to transact power with the upstream grid 

and transactive energy trading between these hubs is not allowed. Accordingly, the operating cost 

in this case is substantially higher than Case 2. This is due to the fact that they should pay more 

for emission costs, associated with the energy transaction with the upstream grid. The commercial 

energy hub is much more affected by this limitation and it should tolerate a higher cost. In this 

respect, the peak load demands of the commercial and industrial hubs are not coincident and energy 
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trading between these two hubs could have considerably reduced the operating cost of this hub. 

The impact of this limitation is more than the absence of the IDR program in residential and 

commercial energy hubs. In this respect, the residential hub could have purchased its required 

power over the final hours of the day from the industrial hub and decreased its operating costs by 

not paying for emission costs. It is noted that the load demand of industrial hub is significantly low 

during these hours and it can sell power to the commercial and residential hubs. The results indicate 

that in general, the transactive energy trading between the hubs would substantially enhance the 

system flexibility. Case 4 is simulated without any EES system, showing that a higher cost should 

be tolerated which is more tangible in the industrial hub as it owns a larger EES system. It is noted 

that if the hub is equipped with an EES system, it is charged during the initial hours of the day at 

low prices through absorbing power from the upstream grid or the surplus power generation of the 

CHP unit. Thus, it can deliver power to the system over the peak-load periods, resulting in reduced 

load demand and operating costs. The simulation results, obtained in Case 5 indicate that the 

impact of the absence of the TES system on the operating cost is less significant compared to the 

EES system. The comparison with Case 2 shows that the effect of lacking the TES system can be 

more observed in summer and winter, when it is utilized for providing the required heating power 

of the AC and supplying the heating load demand. The operating cost considerably increases in 

Case 6 without any renewable energies, i.e. PV panels in residential and commercial hubs and a 

wind turbine in the industrial energy hub. It is noted that the impact of renewable energies on the 

operating cost is much more significant compared to other cases.  

 

Table 4. The simulation results for the 6 case studies with and without the shiftable IDR 

program. 



 Operation cost ($/day) 
 Case 1 
 Spring Summer Fall Winter 

Industrial 3612.40 4975.28 3172.39 3596.32 
Commercial 1010.91 1425.36 798.17 919.32 
Residential 1327.97 2540.14 840.98 1000.91 

 Case 2 
 Spring Summer Fall Winter 

Industrial 3301.43 4475.41 2941.10 3400.73 
Commercial 974.53 1377.45 753.64 884.45 
Residential 1212.43 2279.39 789.58 955.20 

 Case 3 
 Spring Summer Fall Winter 

Industrial 3401.92 4551.49 3013.95 3435.05 
Commercial 989.80 1458.23 791.46 933.80 
Residential 1365.92 2614.69 841.72 952.27 

 Case 4 
 Spring Summer Fall Winter 

Industrial 3397.53 4593.77 3001.95 3473.09 
Commercial 986.18 1407.90 780.61 894.19 
Residential 1260.39 2329.01 805.45 952.09 

 Case 5 
 Spring Summer Fall Winter 

Industrial 3310.01 4501.24 2949.61 3425.37 
Commercial 978.18 1379.98 757.29 888.10 
Residential 1214.61 2282.78 791.85 957.47 

 Case 6 
 Spring Summer Fall Winter 

Industrial 4525.80 6450.50 4349.58 5174.02 
Commercial 1029.63 1526.07 836.76 937.70 
Residential 1388.68 2571.90 869.25 983.54 

 

Table 5 represents the annual cost due to emissions in each case. The results show that the impacts 

of the studied cases on the operating cost are different and the cases in which energy hubs pay 

more for emission are different as well. It is worth mentioning that the lowest cost relates to Case 

2 with all assets. Besides, the industrial hub tolerates the highest cost in Case 6, where there is no 

wind turbine as its capacity is relatively high. Accordingly, the industrial hub should purchase 

more power from the upstream grid, which in turn leads to a higher emission cost. The highest 



costs of the residential and commercial hubs occur in Case 3, where the transactive energy trading 

between hubs is not allowed. A substantial fraction of their load demand could have been supplied 

by the industrial hub, while without any access to the industrial hub, they have to purchase power 

from the upstream grid and pay more for emission.  

 

Table 5. Emission costs for the 6 case studies and for each hub. 

Energy hub 
units 

Emission cost ($/year) 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Industrial 218260.21 196188.69 209272.361 203439.49 197186.96 315663.40 

Commercial 103639.36 102746.42 115912.99 104145.05 106374.95 110911.37 

Residential 160766.16 145154.50 188975.13 149009.74 145238.42 174660.23 

 

9.6.Conclusion Remarks 

10. This chapter investigated the impacts of five DR and IDR programs on the scheduling of local 

energy hubs. First, a comprehensive review was carried out on the background of DR programs 

in local energy systems. Then, the mechanism of local energy systems and IDR programs in 

such systems were described. In this respect, a MILP framework was developed for the optimal 

scheduling of multiple energy hubs, connected to a 33-bus distribution network. The studied 

hubs were industrial, commercial, and residential. After determining the most desired IDR 

program, i.e. shiftable IDR program, showing a better performance compared to other 

programs, six case studies were simulated and analyzed. In this respect, the impacts of different 

assets and capabilities on the operating and emission costs were investigated. The results 

obtained from the simulation showed that renewable energies have the most significant impact 



on the emission cost of the industrial hub, while the other two hubs were mainly affected by 

the transactive energy trading between hubs. Besides, in the case without any renewable 

energies, all the three hubs tolerated the highest cost compared to other cases. This is due to 

the fact that a significant fraction of their load demand during the initial and final hours of the 

day is supplied by the industrial hub. Moreover, after renewable energies, the DR programs 

have the highest impact on the operating cost of the industrial hub. It was also noted that the 

residential and commercial hubs had to pay more for the emission costs compared to the 

industrial hub in the absence of transactive energy trading. With respect to the fact that the 

industrial hub could have supplied a substantial amount of the energy demand of the other two 

hubs, the residential and commercial hubs have to transact power with the upstream grid and 

pay for the emission costs. The absence of wind turbine caused the industrial hub to pay the 

highest amount for the emission as the capacity of the wind turbine was considerable. Five DR 

programs were tested, besides the energy management program, showing that the best one was 

the shiftable IDR program. This efficacy was due to the opportunities provided by impacting 

the heating and cooling load demand as well, particularly in summer and winter. It is also 

noteworthy that the residential hub is more affected by the DR programs in comparison with 

the other two hubs which is due to the higher flexibility of residential loads compared to 

industrial and commercial loads.       
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