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Abstract 

In this paper a novel scenario generation methodology based on artificial neural networks 

(ANNs) is proposed. The methodology is flexible and able to generate scenarios for various 

stochastic variables that are used as input parameters in the stochastic short-term scheduling 

models. Appropriate techniques for modeling the cross-correlation of the involved stochastic 

processes and scenario reduction techniques are also incorporated into the proposed approach. 

The applicability of the methodology is investigated through the creation of electric load, 

photovoltaic (PV) and wind production scenarios and the performance of the proposed ANN-

based methodology is compared to time series-based scenario generation models. Test results 

on the real-world insular power system of Crete and mainland Greece present the 

effectiveness of the proposed ANN-based scenario generation methodology. 
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1. Introduction 

The development of sustainable energy systems based on reduced fossil fuel emissions, 

improved energy efficiency and increased renewable energy sources (RES) penetration is a 

leading priority of the energy roadmaps in many countries worldwide [1], [2]. However, the 

promotion of sustainability in power systems should take into account the inherent 

characteristic of uncertainty, which poses difficulties in predicting the exact values of many 

random variables that influence the power system operation in different time scales (long-

term, short-term, real-time). For instance, the electric load, the generation unit availability and 

the RES production (characterized by high variability and uncertainty) are stochastic variables 

that have a strong impact on the secure, reliable and efficient power system operation and 

management. The great value for predicting these variables led to the development of 

appropriate forecasting tools that in some cases can be very accurate (e.g. hourly load 

forecasting for large regions).  

Popular forecasting methods include ARMA models [3] that are used for stationary time 

series, ARIMA models for non-stationary processes, SARIMA models that capture seasonal 

patterns of the time series and ARMAX models that include input terms related to exogenous 

parameters [4]. Another forecasting approach includes probabilistic methods based on 

probability density functions (PDFs) [5]. Finally, another popular approach that is able to 

capture both linear and non-linear dependencies and has been widely used in power systems 

engineering and other sciences comprises the Artificial Neural Networks (ANN). Relevant 

bibliography dealing with the design and use of ANNs for load, photovoltaic (PV) and wind 

generation forecasting can be found in references [6]-[8].  

In many cases, and especially in power systems with a large share of variable RES 

production, typical deterministic scheduling procedures based on point forecasts are not 

adequate. A point forecast represents an estimation, a single summary statistics, for the 
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examined random variable [9]. However, the probability that this event occurs in clearly close 

to zero, since a point forecast is always subject to an error. Therefore, stochastic approaches 

have been adopted lately using multiple scenarios as inputs that account for possible 

realizations of the random variable and not just the most likely outcome. Through the 

stochastic approaches more robust solutions are expected compared to the deterministic 

approaches based solely on the point forecast, since more information regarding the 

uncertainty of the random variable in incorporated in the optimization problem. However, the 

challenge of creating reliable scenario sets it is not an easy task. The effects of stochastic wind 

and load on the unit commitment and economic dispatch problems with high levels of wind 

power are investigated in [9], where it is shown that stochastic optimization results in better 

performing schedules than the deterministic optimization. A two-stage stochastic 

programming model for committing reserves in systems with large amounts of wind power is 

presented in [11], where the proposed model outperforms common deterministic rules for 

reserve quantification. Finally, the solution of the unit commitment problem under a two-

stage stochastic programming formulation is investigated in [12] considering the effects of 

generation availability and load uncertainty.  

For these approaches that require the presence of a scenario set, various methodologies 

have been proposed in the literature for the generation of a representative set of scenarios for 

random variables. A popular scenario generation technique is the moment matching method 

that was used in [13] to generate a limited number of scenarios that satisfy specified statistical 

properties. The basic idea is to minimize some measure of distance between the statistical 

properties of the generated outcomes and the specified properties. The same authors in [14] 

presented an algorithm that produces a discrete joint distribution consistent with specified 

values of the first four marginal moments and correlations. The joint distribution is 

constructed by decomposing the multivariate problem into univariate ones and using an 

iterative procedure to achieve the correct correlations without changing the marginal 

moments. An approach that relies on the moment-matching technique was proposed in [15]. 
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The approach was based on the idea of integrating simulation and optimization techniques. In 

particular, simulation is used to generate outcomes associated with the nodes of the scenario 

tree, which, in turn, provide the input variables for an optimization model that aims at 

determining the scenarios' probabilities matching some prescribed targets. An algorithm based 

on heteroskedastic models and a moment matching approach to construct a scenario tree that 

is a calibrated representation of the randomness in risky asset returns was presented in [16]. 

 Another widely used scenario generation technique is the path-based method [17]. This 

method evolves the stochastic process to generate complete paths in a ‘fan’ structure, which is 

transformed into a scenario tree using “clustering”, also called “bucketing”.  

An optimization-based method to generate moment matching scenarios for numerical 

integration and how it can be used in stochastic programming has been proposed in [18]. The 

main advantage of the method is its flexibility: it can generate scenarios matching any 

prescribed set of moments of the underlying distribution rather than matching all moments up 

to a certain order, and the distribution can be defined over an arbitrary set. In the same 

framework, three approaches for generating scenario trees for financial portfolio problems 

have been presented in [19]. These are based on simulation, optimization and hybrid 

simulation/optimization. Finally, an optimal discretization method that seeks to find an 

approximation of the initial scenario set that minimizes an error based on the objective 

function was described in [20].  

Other scenario generation methods can be found in papers that deal with wind power 

uncertainty. A method that allows for the generation of statistical scenarios from non-

parametric probabilistic forecasts is described in [9], while a first-order autoregressive time-

series model with an increasing noise to approximate the behavior of wind speed forecast 

errors is presented in [21]. This model allows for the creation of a large number of wind speed 

scenarios using Monte Carlo simulations, which are then transformed into wind power 

scenarios with the use of an aggregated power curve model. In addition, simple scenarios 

around point forecasts are generated in [22] for the optimal scheduling of the generators in a 
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wind integrated power system considering the demand and wind power production 

uncertainty. Finally, a new scenario generation methodology that adopts the empirical 

distributions of a number of forecast bins to model the forecast error of wind power, which 

are used as inputs to scenario generation, is proposed in [23].  

 This paper proposes a novel scenario generation methodology suitable to account for 

various stochastic variables commonly used in power system studies (e.g. electric load, PV 

and wind production). The proposed technique combines ANNs that are able to capture the 

linear or non-linear dependencies of the time series under consideration with its historical 

values, as well as with exogenous variables (e.g. ambient temperature, wind speed, solar 

radiation, etc.), with an iterative process based on the assimilation of randomly generated 

uncorrelated error terms with specific statistical properties to the ANN outputs. Actually, the 

methodology presented in this paper is an extension of the methodology proposed in [25] that 

includes time series analysis to create scenarios. The extension of the methodology takes 

advantage of the easy modeling of time stamping, which generally presents correlations with 

the underlying variables, and the easy incorporation of exogenous inputs in the ANN-based 

scenario generation application. These features are very useful in creating more representative 

and well-defined sets of scenarios, further analyzed in the following through the comparison 

of the proposed approach with two relevant scenario generation approaches.  

The remainder of the paper is organized as follows: Section 2 describes in detail the 

proposed scenario generation methodology, which is extended to account for cross-correlated 

stochastic processes and scenario reduction techniques. Section 3 presents results from the 

application of the proposed methodology for the creation of scenarios of electric load, PV and 

wind production. In Section 4 the performance of the proposed methodology is compared 

with two relevant scenario generation approaches, while in Section 5 the value of the 

proposed method for the optimal participation of a PV agent in day-ahead electricity market 

with respect to the other two scenario generation approaches is investigated. Finally, valuable 

conclusions are drawn in Section 6. 
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2. Methodology 

2.1 Forecasting with ANNs 

Neural Networks (NNs) may be seen as multivariate, nonlinear and nonparametric 

methods, and they could be expected to model complex nonlinear relationships much better 

than the traditional linear models [24]. Given a proper set of explanatory variables for a single 

stochastic variable, the NN is trained in order to capture the nonlinear dependency between 

the inputs and the respective output. Therefore, NNs can be seen as a “black-box”, however a 

good engineering judgment is necessary for a successful NN setup (layers and neurons 

selection, explanatory variable selection, etc.). In contrast to traditional linear models, NNs 

are very flexible in integrating time stamping inputs, such as the hour-of-day, day-of-year, 

etc. Many stochastic processes are highly related to time stamping information and this is a 

valuable advantage of NNs. 

A detailed analysis on ANN training properties and parameterization practices can be 

found in [24]. The ANN structure used in this paper includes a multi-input/single output 

design (one step-ahead forecasting) with three layers (one input, one output and one hidden 

layer) and feed-forward design (i.e. the outputs of one layer are used as inputs to the 

following layer). In general, the estimation of parameters (weights) is performed by 

minimizing a loss function (usually a quadratic function of the output error is used). For the 

parameters estimation, a back-propagation algorithm which uses a steepest-descent technique 

based on the computation of the gradient of the loss function with respect to the network 

parameters is used in this paper. Finally, the hyperbolic sigmoid function in the interval [-1 1] 

is used as the activation function.  

 The ANN inputs selection is based on experience and engineering judgment. For the 

stochastic variables under study in this paper, there is considerable experience on the selection 

of appropriate explanatory variables. In the examined case study we have selected the 

explanatory variables and historical values based on both engineering judgment and trial and 
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error in order to achieve uncorrelated error time series during the training process, further 

analyzed in the following. In detail, the ANN inputs are: a) historical values of the time series 

of interest, b) one or more exogenous input parameters correlated to the time series of interest 

and c) appropriate time indices. Time indexing inputs are introduced in the ANN as a pair of 

variables,  2sin k
T

 ,  2cos k
T

 , where T is the period of the respective time index, k  

(e.g. 24T   for Hour-Of-the-Day (HOD), 7T   for Day-Of-the-Week (DOW) or 365T  for 

Day-Of-the-Year (DOY)) [6]. Time indexing inputs are important to model seasonality effects 

related to HOD, DOY and DOW. A generic description of the ANN inputs and output is 

given in Table 1.  

  During the training stage the ANN is presented with a sequence of historical input - 

desired output pairs. Its internal parameters (weights) are adjusted so that the “training error” 

is minimized. 

Once the training stage is completed and the ANN weights have been adjusted, the recall 

stage begins, in which the trained ANN is used for actual forecasting. For one step-ahead 

forecasting the ANN runs only once. For two or more steps-ahead forecasting, an iterative 

application of the one step-ahead forecasting ANN is necessary.  In each new iteration the 

time indexing inputs are updated accordingly and non-available input variables (related to 

either the time series being forecasted or the exogenous parameters) are replaced by the 

corresponding forecasts obtained so far. With the iterative application of the one step-ahead 

forecasting ANN (rolling update of the ANN inputs) the forecast horizon can be extended to 

any desired number of time steps in the future. 

<INSERT TABLE 1, Color only for WEB, black-and-white in print> 

 
2.2 Scenario Generation with ANNs 

The scenario generation methodology using ANN is illustrated in Fig. 1 for three time 

steps ahead.  

<INSERT FIGURE 1, Color only for WEB, black-and-white in print> 
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Once the training of the ANN is completed, the time series of the residuals (errors) of the 

training phase is calculated as the difference between the forecasted values (using the trained 

ANN) and the historical values (real measurements). A statistical analysis of the time series of 

the residuals investigates whether the time series could be considered a Gaussian white noise 

signal, i.e. it has almost zero autocorrelation coefficients for all time delays other than zero 

and the error distribution can be approximated by a normal distribution with zero mean and 

standard deviation σ (i.e. N(0,σ)). 

As already mentioned, the procedure to generate a set of scenarios for a stochastic process 

Y (e.g. electric load, PV or wind production) comprises an iterative process based on random 

generation of Gaussian white noise. These error terms follow the approximated distribution of 

the time series of the residuals derived during the training phase. Based on this logic [25], an 

appropriate algorithm is proposed to generate a set of scenarios using ANNs, described as 

follows:  

As illustrated in Fig. 1, time indexing (HOD, DOW, DOY) is specified as an input to the 

ANN in each stage, exactly as described in the training and the recall phase. For the first step 

ahead forecast (t), the input vector comprises of: the previous n recorded (real) values of the 

time series  1,t t nx x  (dark blue color), the forecast value of any exogenous input ˆ ty  for the 

first step ahead (orange color) and possibly previous m recorded (real) values of the same 

exogenous inputs  1,t t my y  (green color). The first step ahead ANN output ( ˆtx ) is distorted 

by the normal distributed error term and yields an input for the two steps ahead forecast t+1 (

tx ) (light blue color), along with the n-1 previous recorded values of the time series 

 1 ( 1),t t nx x    (dark blue color), the forecasted values of any exogenous inputs  1ˆ ˆ,t ty y 

(orange color) for the first two steps and possibly previous m-1 recorded values of the same 

exogenous inputs  1 ( 1),t t my y   (green color).  

In each iteration (time step), the total number of inputs remains intact. However, as the 
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algorithm moves forward in time, the recorded (real) values used as input in the first steps are 

gradually replaced by the outputs of the ANN of the previous steps (distorted forecasted 

values) and the forecasted values of the exogenous inputs accordingly. The input shifting is 

illustrated in Fig. 1. 

The above process is repeated until the desired scenario generation horizon is reached. The 

entire process is also repeated as many times as the desired number of scenarios. Due to the 

random generation of error values, a different path is created in each iteration. However, all 

paths follow the statistical properties of the initial error time series. 

The algorithm is also presented step-by-step in Fig. 2, where ΝΤ denotes the desired 

number of forecast periods (steps) and ΝΩ denotes the desired number of scenarios. 

 

2.3 Scenario Generation for Cross-Correlated Stochastic Processes 

The management of the power systems with high renewable penetration involves many 

stochastic processes that are statistically dependent. For instance, the energy injection from 

adjacent wind farms or PV stations frequently follows similar patterns. Modeling this 

statistical correlation is crucial for the System Operator who is responsible for the scheduling 

and the real-time operation of the power system. In this paper, the procedure presented in [25] 

is embedded in the proposed ANN-based scenario generation methodology for the creation of 

spatially and temporally cross-correlated scenarios regarding the energy injection from 

neighboring RES plants.  

In this context, in case that two stochastic processes aY  and bY  are statistically dependent, 

the dependency is transferred to the series of residuals aε  and bε  and, therefore, aε  and bε

should be cross-correlated.  

<INSERT FIGURE 2, Color only for WEB, black-and-white in print> 

In order to determine the degree of dependency of the series of the residuals, a cross-

correlogram that represents the cross-correlation coefficients for different time lags can be 
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derived [1]. According to the shape of the residual cross-correlogram, three different types of 

dependent stochastic processes can be distinguished, namely contemporaneous, quasi-

contemporaneous and non-contemporaneous stochastic processes. For further details on the 

distinction and the features of cross-correlated stochastic processes the interested reader can 

refer to [25].  

In general, a variance-covariance matrix G can be used to identify the cross-correlations 

between aε  and bε . This matrix is symmetric by definition, and, therefore, can always be 

diagonalized. In other words, an orthogonal transformation can be used to model such series 

of errors, as follows:  

   
   
   
   

 
α α

b b
ε ξε = = B ξ = B
ε ξ

      (1) 

In this context, white noise (independent standard normal errors ξ) can be generated, and 

then, cross-correlated according to the variance-covariance matrix G using the orthogonal 

transformation. In most engineering applications, matrix G besides being symmetric is also 

positive definite and as such can be decomposed through the computationally advantageous 

Cholesky decomposition, which avoids the calculation of eigenvalues and eigenvectors. The 

Cholesky decomposition can be stated as:   

 TG = B B         (2) 

where B  is an inferior triangular matrix that turns out to be the orthogonal matrix required 

for transformation (1). 

The analytical description of the scenario generation methodology for cross-correlated 

stochastic processes is outside the scope of this paper and the interested reader can refer to 

[25] for further details. Indicative results from the incorporation of the aforementioned 

methodology into the proposed ANN-based scenario generation algorithm presented in 

Section 2.2 are given in Section 3. 
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2.4 Scenario Reduction Technique 

More than often, the computational performance of stochastic programming optimization 

models is highly dependent on the size of the scenario set. For this reason, a compromise 

between the necessary number of scenarios and the computational burden of the associated 

stochastic programming model needs to be made, so that the problem can be solved using 

acceptable computational resources. For this purpose, scenario reduction techniques are 

usually applied. Various scenario reduction techniques have been reported in the literature so 

far. 

The scenario reduction methodology adopted in this paper is based on the concept of the 

probability distance [25]. In general, the probability distance allows for quantifying how 

“close” two different sets of scenarios representing the same stochastic process are. In this 

context, if a large scenario set is close enough to a reduced one in terms of the probability 

distance, the optimal solution of the simpler problem (which is formulated and solved using 

the reduced set of scenarios) is expected to be close to the optimal value of the original 

problem (which is formulated and solved with the extended set of scenarios). An overview of 

the theoretical background underlying the concept of probability distance is thoroughly 

presented in [26], while its application to scenario reduction is discussed in detail in [27]. In 

this paper, the scenario reduction methodology based on the probability distance criterion is 

used to effectively reduce the initially extended number of scenarios created by the proposed 

ANN-based scenario generation methodology. 

3. Case Study 

In this section, the application of the ANN-based scenario generation methodology for 

three distinct stochastic variables, namely electric load, PV and wind production, is 

analytically presented. The implementation took place for the system load of the real-world 

insular power system of Crete, Greece, for spatially close real-life wind farms located in Crete 

and for adjacent PV plants located in mainland Greece. In each one of the three cases, 
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different number of scenarios and scenario reduction techniques (cross-correlated or not) are 

applied on purpose, in order to highlight the flexibility of the proposed methodology. It is 

noted that, when used below, the application of the cross-correlated scenario generation 

algorithm is limited for scenarios of the same stochastic variable. The method can be 

extended to create cross-correlated scenarios for the three stochastic variables simultaneously; 

however, this extension is not included in the paper since it does not actually affect the 

philosophy of the proposed method. 

 

3.1 Scenario Generation for System Load 

In order to create scenarios for the system load of Crete, the ANN was trained with: a) the 

hourly load time series and b) the maximum and minimum daily temperature of the insular 

power system of Crete, Greece, of the years 2011 and 2012. The recall stage took place for 

the year 2013. The hourly load time series (real measurements) for the three-year period 

(2011-2013) is presented in Fig. 3.  

<INSERT FIGURE 3, Color only for WEB, black-and-white in print> 

<INSERT TABLE 2, Color only for WEB, black-and-white in print> 

There are many combinations of time lags that can lead to a successful training. After 

extensive testing, 29 time lags were chosen, extended back to one week prior to the forecast 

hour. All ANN inputs are presented in Table 2. The maximum and minimum daily 

temperatures in Heraklion Crete were also used as ANN exogenous inputs. The time series of 

the residuals derived from the 1-hour ahead training for the years 2011-2012 is presented in 

Fig. 4, while the autocorrelation diagram of the same time series is presented in Fig. 5.  

<INSERT FIGURE 4, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 5, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 6, Color only for WEB, black-and-white in print> 

It is obvious that the autocorrelation coefficients beyond the zero lag are negligible. In Fig. 
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6 the histogram of the residual time series is illustrated, which is approximated by a normal 

distribution with zero mean and standard deviation σ = 4.83 MW. 

As described above, the scenario generation methodology can be extended up to many 

steps ahead, provided that forecasts of the exogenous inputs are available up to the desired 

horizon. In Fig.7, the proposed methodology is used to create 100 scenarios for five days 

ahead with hourly discretization, beginning on Friday, 10th of May 2013. The real and 

forecasted system load values are also presented. In addition, 1000 scenarios for 24-hours 

ahead are created for the 18th of July 2013 and shown in Fig. 8. The 1000 initially created 

equiprobable scenarios are then reduced to 5 scenarios (reduced set) using the scenario 

reduction methodology outlined in Section 2. The final set of scenarios along with their 

correspondent probabilities is presented in Fig. 9. 

<INSERT FIGURE 7, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 8, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 9, Color only for WEB, black-and-white in print> 

 
3.2 Scenario Generation for PV production 

 
The proposed ANN-based scenario generation methodology is also used to create scenarios 

for PV production. In general, PV production is usually highly correlated between adjacent 

PV stations. Therefore, the proposed methodology was applied for the creation of cross-

correlated scenarios for the electricity production of two PV stations located in the adjacent 

prefectures of Attica and Viotia in central mainland Greece. The installed capacity of the PV 

stations is 0.15 MW and 1 MW, respectively. After numerous tests, 11 time lags were chosen. 

In addition, exogenous factors were also used to improve both the ANN training and the 

scenario generation procedure. During the training phase, irradiation measurements were used 

and during the scenario generation, irradiation forecasts were used as exogenous inputs. All 

inputs of the related ANN are presented in Table 3.  
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<INSERT TABLE 3, Color only for WEB, black-and-white in print> 

The training phase includes the period Jan-2011 to Jul-2012. Results are presented for a 

single day of August 2012. The scenario generation procedure comprises the generation of an 

initial set of 50 cross-correlated scenarios (original set) that was finally reduced to a set of 20 

scenarios per PV station (reduced set). For the reader’s convenience, in all figures the PV 

production is normalized with the installed capacity of each PV station and, therefore, per unit 

(p.u.) values are used. 

Fig. 10 illustrates the original sets of 50 cross-correlated scenarios for each PV station. 

Both sets were created according to the methodology described in Section 2 It is noted that 

the initial 50 scenarios are equiprobable, and therefore, each pair of cross-correlated scenarios 

of the two PV stations is assigned a probability of 1/50=0.02. 

Once the initial sets of scenarios are generated, the scenario reduction technique already 

described in Section 2 is applied, keeping the stochastic information contained in the extreme 

scenarios of each PV station intact. The extreme scenarios are defined as those scenarios 

where the maximum daily production has the maximum and the minimum value, respectively, 

among all scenarios. These scenarios, despite their low probability of occurrence, can have a 

significant impact on the short-term scheduling of the power system. In order to maintain this 

information, the extreme scenarios of each PV station are excluded from the scenario 

reduction procedure that follows. In Fig. 10 the extreme scenarios of each PV station are 

illustrated in bold line along with an associated marker (Red: Attica, Blue: Viotia).  

Given that the scenarios for the two PV stations have been generated with the 

aforementioned cross-correlation procedure, for each scenario that is selected for each PV 

station, the corresponding cross-correlated scenario of the other PV station is also selected, in 

order to be excluded from the scenario reduction procedure. In Fig. 11, the four scenarios that 

have been selected as extreme ones and are excluded from the scenario reduction process are 

presented. In this way, the modified initial set of scenarios, in which the scenario reduction 

process applies, is determined and presented in Fig. 12. These sets include 50 – 4 = 46 



15 

scenarios each. 

The implementation of the scenario reduction algorithm on the modified initial sets of 

scenarios results in the reduced scenario sets that comprise 16 scenarios for each PV station. 

The reduced scenario sets are presented in Fig. 13, where a color scale from red to yellow is 

used to denote scenarios with higher to lower probability, accordingly. The final sets of 

scenarios comprising 20 scenarios per PV station are illustrated in Fig. 14. It is evident that 

the final sets result from the composition of the reduced sets (16 scenarios per PV station) and 

the 4 extreme scenarios initially selected. 

<INSERT FIGURE 10, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 11, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 12, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 13, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 14, Color only for WEB, black-and-white in print> 

 

3.3 Scenario Generation for Wind Power Production 

Following the same logic with the PV scenario generation, indicative results from the 

process of creating cross-correlated scenarios for the electricity production of four wind 

farms, namely Aiolos, Rokas, Honos Iweco and Rokas-Modi, located in the prefecture of 

Lasithi, Crete, are presented next. Their installed capacity is 10 MW, 12.90 MW, 4.50 MW 

and 4.80 MW, respectively. The related ANN inputs are presented in Table 4.  

<INSERT TABLE 4, Color only for WEB, black-and-white in print> 

The scenario generation process follows the same steps with the previous case. Once the 

initial sets of 50 scenarios are generated, the extreme scenarios are extracted, which now are 

defined as those scenarios where the maximum daily wind power production (in MWh) has 

the maximum and the minimum value, respectively, among all scenarios. The modified initial 

sets of scenarios, in which the scenario reduction process applies, is determined and presented 
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in Fig. 15. These sets include 50 (initial scenarios) - 8 (extreme scenarios) = 42 scenarios 

each. The implementation of the scenario reduction algorithm on the modified initial sets of 

scenarios results in the reduced scenario sets that comprise 12 scenarios for each wind farm. 

The final sets of 20 scenarios composed of the reduced sets and the extreme scenarios initially 

selected are presented in Fig. 16. 

<INSERT FIGURE 15, Color only for WEB, black-and-white in print> 

<INSERT FIGURE 16, Color only for WEB, black-and-white in print> 

 

4. Performance Evaluation 

To evaluate the performance of the proposed ANN-based scenario generation approach 

against previous approaches, a fair comparison between the proposed model and two other 

time series-based scenario generation models is performed. The comparison is carried out for 

the photovoltaic generation case. The first rival approach adopts the methodology presented 

in [25] and is based on a SARIMA time series model. The second rival approach, entitled 

adjusted SARIMA, is primarily based on the SARIMA time series model, but is further 

adjusted by a scaling factor that expresses an estimated modification on the results of the 

initial model, based on the information of the short-term solar irradiation forecast. Since the 

adjusted SARIMA approach takes into consideration an important exogenous factor, it is 

expected to perform better than the pure SARIMA model. The scaling factor, by which the 

forecasts created by the SARIMA model are adjusted, is presented in [28]. In the present 

work, the same scaling factor is used to adjust the scenarios created by the SARIMA model.     

The three models were trained with the same photovoltaic generation data from the Attiki 

PV plant from 1/1/2011 to 31/6/2012. The lag terms for the SARIMA and the adjusted 

SARIMA models are those presented in [28]. The trained models are then tested for the entire 

February 2013. To this context, 28 executions are carried out, one for each day, starting at 

00:00 for the 24 hours-ahead horizon. For each of the three models and for each daily 
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execution, three distinct data sets are created: a) the 24-hour ahead forecast time series, b) 

1000 equiprobable 24 hours-ahead scenarios and c) 5 final 24 hours-ahead scenarios, which 

are created by applying the scenario reduction algorithm on the extended scenario set. In 

particular, the 1000 equiprobable scenarios are reduced to 5 scenarios with their associated 

probabilities, which also calculated based on the algorithm briefly explained in this paper and 

thoroughly described in [25]. 

Three metrics are then used to evaluate the performance of the three scenario generation 

approaches. All metrics are based on the Normalized-Root-Mean-Square-Error (NRMSE) 

metric, and are as follows: 

A) Monthly NRMSE calculation between the photovoltaic generation forecast and the 

photovoltaic generation measurement. This metric is suitable to compare the forecasting 

performance of the three approaches.  

B) Monthly NRMSE calculation between each one of the 1000 initially created scenarios 

and the photovoltaic generation measurement. Subsequently, the mean and standard deviation 

of the 1000 monthly NRMSEs is calculated in order to compare the performance of the three 

scenario generation approaches using the different models.  

C) Monthly NRMSE calculation between the dominant scenario (scenario with the highest 

probability) after the scenario reduction application and the photovoltaic generation 

measurement. This metric is suitable to compare the scenario reduction performance of the 

three approaches.  

In all cases the NRMSE calculation considers only the daylight hours. The results are 

presented in Tables 5-7. 

<INSERT TABLE 5, Color only for WEB, black-and-white in print> 

<INSERT TABLE 6, Color only for WEB, black-and-white in print> 

<INSERT TABLE 7, Color only for WEB, black-and-white in print> 

The above detailed comparison tests clearly demonstrate that in all cases: a) the ANN 

model is superior in terms of forecasting and scenario generation accuracy with respect to the 
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other two models and b) the adjusted SARIMA model performs better than the pure SARIMA 

model.  

5. Applicability of scenario generation methodologies 

In this section the practical applicability of the proposed ANN-based scenario generation 

methodology is evaluated and compared to the two time series-based scenario generation 

methodologies already described in the previous section. A simple stochastic optimization 

model is formulated for the development of the optimal bidding strategy of a PV agent, who 

is assumed to participate in a day-ahead electricity market aiming at the maximization of his 

profit. In this context, the added value of using the three scenario generation methodologies is 

compared and discussed.  

It is assumed that the PV plant described in the previous section participates in the day-

ahead electricity market through a market agent, named “PV agent”. Although most of current 

electricity markets have fixed regulated tariffs for the remuneration of RES energy injection, 

there is a long debate among stakeholders and authorities whether RES should actively 

participate in the electricity market auctions, as conventional generating units do. In this case 

study, it is considered that RES agents participate in the day-ahead electricity market by 

submitting injection offers, for each hour of the next day, in the form of quantity (MWh) – 

price (€/MWh) pairs. In this framework, the PV agent focuses on the development of an 

optimal bidding strategy aiming at the maximization of his profits. Due to the small size of 

the PV plant, the PV agent is assumed to act as price-taker that cannot affect the energy 

market clearing prices, and therefore, he submits energy quantity offers (MWh) at zero price. 

Once the submission period closes, the Market Operator clears the market and announces the 

hourly energy prices for the next day (day-ahead clearing prices). 

During the real-time operation the generating entities must buy (sell) any shortfall (excess) 

of energy with respect to the day-ahead cleared quantities from (to) the balancing market. 

This market comprises the activation of balancing energy from Balancing Service Providers 
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(BSPs), which are nominated to offer balancing services, in order to offset the energy 

imbalances of the Balancing Responsible Parties (BRPs). In this case the PV agent is 

considered as a BRP, who is charged for any negative imbalance (real-time production lower 

than the day-ahead cleared quantity) and is remunerated for any positive imbalance (real-time 

production greater than the day-ahead quantity) during the RT operation. The payment or 

remuneration mechanism is dependent on the specific imbalance settlement. There are various 

imbalance settlement rules in different real-world electricity markets [29]. However, in this 

paper the market settlement is kept simple on purpose, in order to focus on the comparison 

between the different scenario generation approaches. Two price trajectories are considered, 

one for positive BRP imbalances and one for negative BRP imbalances. 

The basic problem of the PV agent is to calculate the optimal offer quantities (MWh) to 

submit in the day-ahead market. A two-stage stochastic linear optimization problem is solved 

for this purpose. The PV agent creates scenarios for the estimated real-time PV production 

and based on these scenarios, along with the expected day-ahead and positive and negative 

BRP’s imbalance prices, the optimal day-ahead hourly offers are calculated. The hourly day-

ahead clearing prices and the hourly imbalance prices have been obtained from the 

EPEXSPOT website for France [30], and the RTE France website [31], respectively. Perfect 

knowledge is considered for all day-ahead and imbalance clearing prices, in order to focus 

solely on the photovoltaic generation uncertainty and the performance of the scenario 

generation methods. Since EPEXSPOT offer submission period for the reference day (day D) 

closes near 12:00 AM of the previous day (day D-1), in this study the scenarios were created 

at 12:00 for 36 hours-ahead (12 hours of day D-1 and 24 hours of day D). It is noted that only 

the PV production values for the 24 hours of day D are used as input to the PV plant optimal 

offering strategy problem. 

The optimal offering strategy of the PV agent is formulated as a two-stage stochastic linear 

optimization problem, as follows: 

Maximize 
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, ,
, ,

, ,

DA DA pos Imb pos neg Imb neg
t t s t s t s t s t

t t s t s
e P p de P p de P              (3) 

Subject to: 

, , ,RT DA
t s t s tde E e t s         (4) 

, , , ,pos neg
t s t s t sde de de t s         (5) 

DA rtd
te PV t         (6) 

 

where the symbols used are defined in the following: 

Indices 

 t       index of hourly time intervals 

s      index of scenarios  

Parameters 

DA
tP     day-ahead energy price, in €/MWh 

,Imb pos
tP    imbalance price for positive BRP imbalances, in €/MWh  

,Imb neg
tP   imbalance price for negative BRP imbalances, in €/MWh  

,
RT
t sE     real-time photovoltaic generation for time t  and scenario s , in MWh  

sp      probability of scenario s  

rtdPV    rated power of the photovoltaic park, in MWp 

Meas
tE    measured photovoltaic generation, in MWh 

Variables 

DA
te    day-ahead energy offer, in MWh  

,t sde    BRP energy imbalance, in MWh 

,
pos
t sde     BRP positive energy imbalance, in MWh, positive variable 
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,
neg
t sde     BRP negative energy imbalance, in MWh, positive variable 

 
In the above problem, the main decision variables are the first-stage variables, DA

te . Once 

the day-ahead quantities DA
te  are calculated, the actual PV agent profit can then be calculated, 

based on the real PV production measurements. For the calculation of the hourly energy 

imbalances a new hourly parameter tDE  is defined, further distinguished in pos
tDE  for actual 

positive imbalances and neg
tDE  for actual negative imbalances. The three hourly parameters 

are defined by constraints (7)-(9), as follows: 

Meas DA
t t tDE E e t           (7) 

If 0tDE   then pos
t tDE DE t    (8) 

If 0tDE  then neg
t tDE DE t     (9) 

 
Finally, the actual PV agent profit, including the actual hourly imbalances is calculated by 

(10):  

, ,DA DA pos Imb pos neg Imb neg
t t t t t t

t t t
Profit e P DE P DE P          (10) 

 
Three models, namely the proposed ANN-based model, the SARIMA-based and the 

adjusted SARIMA-based model, already described in the previous section, are used to create 

three data sets, namely as follows: a) a 36 hour-ahead forecast time series, b) 1000 

equiprobable 36 hour-ahead scenarios and c) 5 final 36 hour-ahead scenarios which are 

created by applying the scenario reduction algorithm on the extended scenario set.  

The three data sets are used as scenario sets modeling the real-time PV production 

uncertainty, ,
RT
t sE  which is the input to the two-stage stochastic optimization problem. After 

the solution of optimal PV plant offering strategy problem, the actual profit (10) is calculated 

for the three data sets and the three models. A perfect forecast case, where the PV production 
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scenario set values are substituted by a single scenario comprising the real PV generation 

measurement time series, is also considered as base case and comparison results with respect 

to the aforementioned nine cases are obtained. Each model is executed for all days of 

February 2013 and the respective simulation results for all nine cases in terms of the PV agent 

monthly profit obtained are presented in Table 8. 

<INSERT TABLE 8, Color only for WEB, black-and-white in print> 

The above simulation results show that, for the specific case study, the ANN-based 

scenario generation approach performs better than the SARIMA and the adjusted SARIMA-

based approaches. These results are in line with the comparison results of the previous 

section. Additionally, it is obvious that the stochastic approach leads to much better results, 

i.e. higher PV agent profits, than the deterministic approach using the point forecasts only. 

Finally, the PV profits obtained using the reduced scenario set are close enough to the initial 

scenario set, thus justifying the efficiency of the implemented scenario reduction algorithm.  

6. Conclusion 

This paper proposed a novel scenario generation methodology that combines the flexible 

operation of ANNs with an iterative process based on the assimilation of randomly generated 

Gaussian white noise to the ANN outputs. A single ANN for one step-ahead forecasting was 

employed and a continuous rolling update of the inputs of the ANN allows the scenario 

generation procedure to be extended up to the desired horizon. The application of the 

proposed algorithm on real-life systems in combination with appropriate techniques for the 

creation of spatially and temporally cross-correlated scenarios regarding the energy injection 

from neighboring RES plants proves its effectiveness. In fact, the proposed methodology 

constitutes a useful tool for power system related studies, where the creation of large sets of 

scenarios to account for the inherent uncertainty of various stochastic variables is required. 
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Fig.1. ANN-based scenario generation methodology for three time steps ahead 
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Fig.2. ANN-based scenario generation algorithm 

 

 
Fig.3. Hourly load of the insular power system of Crete for the years 2011-2013 

 
Fig.4. 1-hour ahead residuals (errors) time series of the Crete system load yielded by the 

training stage of the years 2011-2012 
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Fig. 5. Autocorrelation function of the residual time series of the Crete system load yielded by 

the training stage of the years 2011-2012 
 
 

 
Fig.6. Histogram of the residual time series of the Crete system load yielded by the training 

stage of the years 2011-2012  
 

  
Fig.7. Creation of 100 load scenarios for five days ahead with ANN-based scenario 

generation methodology 

  
Fig.8. Creation of 1000 load scenarios for 24 hours ahead with ANN-based scenario 

generation methodology 
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Fig.9. Reduced set of 5 final scenarios with their correspondent probabilities by applying the 

scenario reduction algorithm on the extended scenario set 
 

 
Fig.10. Initial set of cross-correlated scenarios (50 scenarios per PV stations) with ANN-

based scenario generation methodology 
 
 

 
Fig.11. Sets of the extreme scenarios (4 scenarios per PV station), (Red: Attica, Blue: Viotia) 

 
 

 
Fig.12. Modified initial sets of scenarios to be reduced after extracting the extreme scenarios 

(46 scenarios per PV station) 
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Fig.13. Reduced sets of scenarios (16 scenarios per PV station) by applying the scenario 

reduction algorithm on the extended scenario set 
 

 
Fig.14. Final sets of scenarios including the reduced and the extreme scenarios set (20 

scenarios per PV station) 
 

 
Fig.15. Modified initial sets of scenarios to be reduced after extracting the extreme scenarios 

(42 scenarios per wind farm) 
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Fig.16. Final sets of scenarios including the reduced and the extreme scenarios set (20 
scenarios per wind farm) 

 
ANN Inputs ANN Output 

Historical values of the stochastic variable One step-ahead 
forecasted 
value of the 
stochastic 
process 

Forecasted and historical values of exogenous 
Time indexing: (e.g. HOD, DOW, DOY) 

pair of  2sin k
T

 ,  2cos k
T

  

 
Table 1. Generic Input and Output Structure of the ANN 

Historical 
values 

t k  ; k 1,..,7, 23,..,26, 48,..,50, 72,..,74,  
96, .., 98, 120,..,122, 144,..,146, 168,..,170 

Exogenous 
Inputs 

 Maximum and Minimum Daily 
Temperature 
 Previous day d-1 (Historical data) 
 Next day (Forecast data) 

Time indices HOD, DOW, DOY 
Table 2. ANN Inputs - One Hour-Ahead Electric Load Forecasting 

Historical 
values t k  ; k 1,..,5, 24,..,26, 48,..,50 

Exogenous 
inputs 

 

 Total Daily Solar Irradiation 
 Previous day d-1 (Historical data) 
 Next day (Forecast data) 

 Hourly Solar Irradiation 
 Previous hour t -1 (Historical data)  
 Next hour (Forecast data) 

Time indices HOD, DOY 
Table 3. ANN Inputs - One Hour-Ahead PV Production Forecasting 

Historical 
values t k  ; k 1,..,5, 23,..,25 

Exogenous 
inputs 

 

 Hourly Wind Speed 
 Previous hours t (-1, -2,-3) 

(Historical data) 
 Next hour (Forecast data) 

Time indices HOD, DOY 
Table 4. ANN Inputs - One Hour-Ahead Wind Production Forecasting 

ANN-based  model SARIMA model Adjusted SARIMA model 
14.3% 22.8% 15.5% 

Table 5. Monthly NRMSE between PV generation forecasts and PV measurements 
 

 ANN-based model SARIMA model Adjusted SARIMA model 
Mean 17.3% 24.9% 20.6% 

Standard deviation 1.02% 1.30% 1.88% 
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Table 6. Mean and standard deviation of the monthly NRMSE of the 1000 scenarios. NRMSE 
calculation of each scenario is based on the error between the PV generation scenario and 

PV measurements 
 

ANN-based model SARIMA model Adjusted SARIMA model 
13.9% 25.6% 17.1% 

Table 7. Monthly NRMSE between the dominant PV generation scenario after the scenario 
reduction application and PV measurements 

 

Case PV agent Profits 
Perfect forecast 718.29 

 1000 scenarios 5 scenarios Forecast 
ANN-based model 712.70 (-0.78%) 706.49 (-1.64%) 686.18 (-4.47%) 
SARIMA model 709.15 (-1.27%) 705.31 (-1.81%) 670.79 (-6.61%) 

Adjusted SARIMA model 706.42 (-1.65%) 703.38 (-2.08%) 667.51 (-7.07%) 
Table 8. Absolute PV agent profits and percentage difference (in brackets) with respect to 

perfect forecast. 
 
 
 
 
 
 
 


