
1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 1

A Novel Evolutionary-based Deep Convolutional
Neural Network Model for Intelligent Load

Forecasting
Seyed Mohammad Jafar Jalali, Student Member, IEEE, Sajad Ahmadian, Abbas Khosravi, Senior Member,

IEEE, Miadreza Shafie-khah, Senior Member, IEEE, Saeid Nahavandi, Fellow, IEEE, and João P.S. Catalão, Senior
Member, IEEE

Abstract—The problem of electricity load forecasting has emerged
as an essential topic for power systems and electricity markets
seeking to minimize costs. However, this topic has a high level of
complexity. Over the past few years, convolutional neural networks
(CNNs) have been used to solve several complex deep learning chal-
lenges, making substantial progress in some fields and contributing to
state of the art performances. Nevertheless, CNN architecture design
remains a challenging problem. Moreover, designing an optimal
architecture for CNNs leads to improve their performance in the
prediction process. This paper proposes an effective approach for
the electricity load forecasting problem using a deep neuroevolution
algorithm to automatically design the CNN structures using a novel
modified evolutionary algorithm called enhanced grey wolf optimizer
(EGWO). The architecture of CNNs and its hyperparameters are
optimized by the novel discrete EGWO algorithm for enhancing
its load forecasting accuracy. The proposed method is evaluated
on real time data obtained from data sets of Australian Energy
Market Operator (AEMO) in the year 2018. The simulation results
demonstrated that the proposed method outperforms other com-
pared forecasting algorithms based on different evaluation metrics.

Index Terms—Deep convolutional neural networks, Electricity
load forecasting, Evolutionary computation, Neuroevolution, Opti-
mization.

I. INTRODUCTION

Electricity load forecasting is valuable for the energy compa-
nies to handle the demand response system effectively throughout
the day ahead of the electricity energy sector. Through obtaining
the raw data on the demand for electricity to be charged by cus-
tomers, energy suppliers can approximate how much electricity is
expected in the power system grid [1]. The aim of the supplier is
to decrease energy generation and procurement expenses. Thus,
this situation will allow utilities to better schedule the planning
of power systems and the resources to be supplied by a previous
awareness about energy demand [2], [3]. The accurate and effec-
tive load forecasting models can assist electricity organizations
take significant decisions in order to provide a reliable safety
bias for the grid management system. The costs of the energy
operator are saved by 10 million pounds according to Bunn and
Farmer [4] due to a drop of 1% in the load forecasting errors.
In other words, providing reliable needed power by keeping the

S. M. J. Jalali, A. Khosravi and S. Nahavandi are with the Institute for Intelligent
Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC,
3216, Australia, e-mail: sjalali@deakin.edu.au.

S. Ahmadian is with the Faculty of Information Technology, Kermanshah
University of Technology, Kermanshah, Iran

M. Shafie-khah is with the School of Technology and Innovations, University
of Vaasa, 65200 Vaasa, Finland.

J.P.S. Catalão is with the Faculty of Engineering of University of Porto and
INESC TEC, Porto, Portugal.

operational cost as low as possible is the primary goal of the
electricity load forecasting models.

Time series forecasting is a well-regarded field of research,
aiming to use best models for predicting the future trends depend-
ing on previously observed trends. As forecasting of electricity
load is considered as part of the time series forecasting paradigm,
there are three categories in accordance with the forecasting
horizon: short-term (minutes to hours ahead), medium-term (one
day to weeks ahead) and long-term (months to years ahead)
[5]. Throughout the multiple load forecasting strategies, medium-
term load forecasting is highly essential for electrical power
planning and scheduling, electric energy demand management,
and improvising electricity sharing agreements [6]. This technique
further leads to the generation of capacity planning for future
network expansions due to the rising electricity load demand [6].
On the other hand, the research in regards of medium-term load
forecasting is not actively explored by the researchers compared
to shot-term and long-term load forecasting. Thus, the focus of
this paper is on medium-term (one-day ahead) load forecasting.

Achieving highest accuracy forecasting models for electricity
load demand is a major challenge in the electric power domain.
From the year 1960 on-wards, several statistical and machine
learning techniques have been proposed and utilized for electricity
load forecasting [7].

Recently, with rapid development of artificial intelligence,
deep learning (DL) is the latest achievement of the machine
learning era attracting remarkable attention due to its outstanding
performance in various domains including machine vision, recom-
mendation systems and natural language processing [8]. Due to
high ability for analyzing complex and deep nonlinear relation-
ships through distributed feature representation, DL techniques
have shown excellent performance in comparison with traditional
machine learning techniques for various domains. Generally, for
time series forecasting problems, the most DL algorithms which
have been used by researchers in the literature are recurrent
neural network (RNN), stacked autoencoder (SAE), long short-
term memory (LSTM), deep belief networks (DBN), and their
modification [9].

Among different DL techniques, convolutional neural networks
(CNN) are the most commonly applied technique in order to solve
complex tasks specifically for image processing domain. The
strongest advantage of CNNs is in automating the procedure of
feature extraction for a given problem. They are able to optimize
the extracted features directly from the raw input during the
training phase. Moreover, they are inviolable for small input data
transformations such as scaling, translation, and distortion.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 2

Although CNNs can save significant human effort in feature
extraction, adjusting many hyperparameters in their architecture
is a difficult and time-consuming task. An effective and useful
way to obtain the most optimal values of the hyperparameters is
to use deep neuroevolution (DNE) methods (also called automated
neural architecture search). DNE is a form of computational
intelligence techniques that utilizes evolutionary algorithms (EAs)
to optimize hyperparameters and architecture of deep neural
networks (DNNs) [10]. This approach brought a number of
benefits over the still well-known gradient based algorithm called
as back propagation [11] [12]. Some of these advantages include:
being able to not trapped into the local optima, being not more
sensitive to the initial connection weights and creating automati-
cally optimal topologies for DNNs [13], [14].

Nevertheless, the application of CNNs in the field of time series
forecasting remains few to the best of our knowledge. Binkowski
et al. [15] utilized a CNN-autoregressive model for electricity
and financial time series data. They showed that their algorithm
outperforms LSTM and CNN networks. Koprinska et al. [16]
applied CNNs to forecast electricity load and photo-voltaic solar
power for the next day. They showed that CNNs outperformed
other state-of-the-art methods. Tsantekidis et al. [17] used a
CNN in order to forecast stock prices. They demonstrated that
their proposed methodology is competitive with MLP and SVM
algorothms. Although the mentioned studies investigated the
strength of CNNs, many hyperparameters of CNNs largely affect
in forecasting performance. On the other hand, the withdraw of
the previous works is in selecting hyperparameters manually for
designing the architecture of CNNs. Thus, using an intelligent
algorithm to efficiently obtain the optimal values of hyperparam-
eters for improving the forecasting accuracy is a critical issue.
Accordingly, in this work, we adopt a DNE method based on
GWO (grey wolf optimizer) algorithm to efficiently obtain the
hyperparameters of deep CNNs for a time series problem.

GWO algorithm [18] is a newcomer among population-based
optimization algorithms, characterized by a number of attractive
advantages including flexibility, simplicity, derivation-free and
local minima avoidance, as well as high exploration and ex-
ploitation capability. Moreover, this algorithm has fewer control
parameters for adjusting, is easy to implement, and has a fast
convergence characteristic [19]. These excellent features make
GWO algorithm highly appropriate for solving highly nonlinear
and multi-modal function optimization problems. Although this
algorithm advantages by stochastic efficient controllers, it is also
vulnerable to local stagnation and fast convergence in solving a
problem with several variables. Therefore, in order to improve
the search capabilities of the gray wolf optimization algorithm
to find the effective optimal solutions, several efforts have been
made in recent years by applying operators such as dimension
learning-based hunting [19], opposition-based learning strategy
[20], levy-flight [21] and elite-based crossover [22] to reduce
the discrepancy between both the phases of exploration and
exploitation of the GWO algorithm. These findings motivate us
to further enhance the GWO performance by modifying this
algorithm using two powerful evolutionary operators including
nonlinear convergence factor and Gaussian mutation strategies.
Our modified two-stage GWO provides some potential advantages
such as gaining a greater capacity for local optima prevention
and conducting a more consistent balance between patterns in
exploration and exploitation phases. It should be noted that for

the most portion, the superior performance of GWO and its
modifications are primarily employed to optimize the continuous
functions for engineering problems. On the other hand, in the real
world, there are some discretization optimization problems. Since
CNN hyperparameter tuning is a discretization problem that can
only be taken the discrete (integer) values, the standard version of
GWO does not work for such discretization problems. As a result,
our improved Gray Wolf Optimizer expands the functionality of
the GWO algorithm to a discretization optimization problem such
as CNN hyperparameter tuning.

In addition, the GWO algorithm and its modified versions
have been applied to classical computational intelligence models
such as support vector regression (SVR) [23], [24], radial basis
function neural network (RBFNN) [25], ELMAN neural network
[26], regularized extreme learning machine (RELM) [27] and
generalized regression neural network (GRNN) [28] to solve
forecasting problems such as short-term load forecasting, sea
clutter forecasting, and wind speed forecasting. From the point
of view of deep learning network optimization, to the best of our
knowledge, a modified version of GWO [29] has been applied to
three different datasets of various prediction problems, including
individual household electric power consumption, air pollution,
and human activity recognition by considering the optimization of
CNN-LSTM deep neural network. Compared to this work, in our
work, we tune the CNN hyperparameters while they considered
the tuning of CNN-LSTM architecture which is a different deep
learning model with CNN. Second, the hyperparameters we tune
are different with that work in batch size, number of epochs, and
kernel size which they did not tune them. Third, the individual
household electric power consumption dataset considered in their
work is a multivariate dataset and the three datasets used in our
work are from the univariate type of forecasting model. Forth,
our focus is on electricity load forecasting and they applied their
models over different classification and regression tasks. There-
fore, our work is the first attempt for optimization of important
hyperparameters of CNN deep learning model by a novel and
powerful version of the GWO algorithm that focuses on the
problem of electricity load forecasting. In Table I, a comparison
between the GWO algorithm for real-world applications is shown.
As can be seen from this table, the work proposed by us is
the first one which presented on optimizing the CNN model
hyperparameters with a strongly improved version of the GWO
for the problem of electricity load forecasting, which optimizes
effectively the highest number of hyperparameters of the CNN
model.

Among the extensive literature of computational intelligence
techniques on load forecasting [7], some authors have focused
on modeling the load demand, for example, using ARIMA, neu-
ral networks, fuzzy logic, evolutionary optimization techniques,
and hybrid algorithms [31], [32]. Most of these methods have
evaluated their proposed methods with just one dataset, a very
short horizon or one evaluation performance metric such as well-
known RMSE [7]. In this work, three datasets, one-day ahead
horizon, and three evaluation metrics are utilized to validate the
effectiveness of the compared algorithms.

The novelty of the proposed algorithm in this work lies in
the characterization of the response of the electricity load by an
evolutionary neural architecture search. Moreover, according to
the best of our knowledge, this paper is the first one to benefit
from a bio-inspired algorithm (i.e., GWO) for optimizing the

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 3

TABLE I: A taxonomy of the reviewed works for GWO and its variants.

Work Improved GWO Application Deep learning model Hyperparameters

Batch size Number of epochs No.filters Kernel size Pooling size

[19] Yes Functional engineering problem - - - - - -
[20] Yes Functional engineering problem - - - - - -
[21] Yes Functional engineering problem - - - - - -
[22] Yes Feature selection - - - - - -
[23] Yes Electricity load forecasting - - - - - -
[24] Yes Electricity load forecasting - - - - - -
[25] Yes Sea clutter forecasting - - - - - -
[26] Yes Wind speed forecasting - - - - - -
[30] - Wind speed forecasting - - - - - -
[28] - Electricity load forecasting - - - - - -
[29] Yes Household electric power consumption CNN-LSTM - - Yes - Yes

Our work Yes Electricity load forecasting CNN Yes Yes Yes Yes Yes

hyperparameters of deep CNNs in order to improve the load
forecasting accuracy.

Briefly, the contributions of this paper are as follows:
• This paper is the first to use a novel discrete GWO algo-

rithm for optimizing CNN hyperparameters in time series
regression forecasting problems (here an electricity load
forecasting problem).

• A two-stage modification is applied in order to enhance the
search capabilities of GWO. We name our modified method
as enhanced GWO (EGWO).

• Hyperparameter tuning of CNNs is of paramount signifi-
cance since computational performance is strongly linked
to architecture of CNNs. On the other hand, the architecture
of CNNs is designed manually which is a time-consuming
and difficult task to do. The major contribution of this work
is in introducing an optimization neuro-evolution paradigm
for exploring the full spectrum of CNN hyperparameters,
automatically. To this end, EGWO is utilized to sequentially
look for optimum combination of hyperparameters under the
restriction of the error rate. Such a DNE methodology for
CNNs can design more efficient architectures and aid in the
learning processes, automatically.

• The proposed EGWO algorithm is utilized to select a set of
CNN hyperparameters in order to achieve more effective and
accurate forecasting results.

• The proposed method is compared with eleven state-of-
the-art and hybrid evolutionary forecasting algorithms on
three real-world electricity load demand time series. The
experimental results showed that the proposed method signif-
icantly outperforms other forecasting algorithms and obtain
the lowest error metrics.

The remainder of the paper is organized as follows: Section II
describes the enhanced GWO algorithm, deep CNNs and the steps
of the proposed model in detail. The analysis of numerical results
and discussions are presented in section III. Finally, section IV
highlights the conclusion of the work.

II. METHODOLOGY

This section presents a novel electricity load forecasting method
called EGWO-CNN which is based on deep convolutional neural
networks optimized by grey wolf optimizer. To this end, deep
CNN is employed for forecasting future electricity load using
available time series data in the past. In addition, the proposed
EGWO algorithm is applied to obtain the optimal values of
hyperparameters used in deep CNN leading to improve its per-
formance in forecasting time series. The overall steps of EGWO-
CNN is presented in Fig. 1. The detailed descriptions of GWO

Convolutional

Nf Ks PsBs Ne

G
W

O
 A

lg
o

ri
th

m

Hyperparameter Update

Convolutional Pooling

Fig. 1: EGWO-CNN overall procedure

algorithm, deep CNN, and the proposed model are represented in
the following subsections.

A. Modified Grey Wolf Optimizer

GWO is a recently developed swarm-based meta-heuristic
algorithm proposed which imitates the behavior of grey wolves in
nature for hunting and social leadership [18]. In this algorithm,
the population of individuals (wolves) is split into four groups
including alpha (α), beta (β), delta (δ), and omega (ω) wolves.
The first three best wolves are regarded to be α, β, and δ that
guide other wolves (ω) towards promising search space areas.
The wolves update their positions around α, β, or δ during the
optimization process based on the following formulas:

~D = |~C. ~Xp(t)− ~X(t)| (1)

~X(t+ 1) = | ~Xp(t)−A. ~D| (2)

where t represents the current iteration, A = 2a.~r1a and C =
2. ~r2 indicate the coefficients. ~X and ~Xp represent the position
vectors for grey wolf and prey (optimum solution), respectively.
During the iterations, the value of a is linearly decreased from 2
to 0, while, r1 and r2 are random vectors in the interval of [0, 1].
Grey wolves use Eqs. (1) and (2) to update their positions around
the prey, respectively. The grey wolves navigate around the best
solution acquired so far in the m-dimensional search space.

For the process of hunting, the wolves update their positions
based on the (α), (β) and (δ). The hunting mathematical model
is provided as:

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 4

~Dα = |C1. ~Xα − ~X|
~Dβ = |C2. ~Xβ − ~X|
~Dδ = |C3. ~Xδ − ~X|

(3)

where Xα, Xβ and Xδ indicate the positions of α, β and δ,
respectively. C1, C2 and C3 are the different sets of random
vectors and ~X represents the current solution position. Indeed, the
formulas used in Eq. (3) calculate the estimated distance between
the present solution and Xα, Xβ , and Xδ , respectively. It should
be noted that the main task of Eq. (3) is to set the step size of
the ω wolf with regard to Xα, Xβ and Xδ , respectively.

After defining the distances, the final position vectors for the
solution will be calculated by the following equations:

~X1 = ~Xα −A1. ~Dα

~X2 = ~Xβ −A2. ~Dβ

~X3 = ~Xδ −A3. ~Dδ

(4)

~X(t+ 1) =
~X1 + ~X2 + ~X3

3
(5)

where A1, A2 and A3 show random vectors and the number of
iterations is represented by t. It should be noted that to provide
the exploration and exploitation phases in GWO algorithm, two
random and adaptive vectors of ~A and ~C play a significant role in
providing exploration and exploitation for GWO algorithm. The
phase of exploration takes place when the vector ~A is less than
-1 and greater than 1. The exploitation phase occurs, when ~C is
greater than 1.

In order to enhance the search capabilities of GWO, we design
a two-modification phase as follows:

-First modification: In this phase, we employ nonlinear conver-
gence factor as shown in Eq. (6) for balancing the convergence of
parameter a. Half of the iterations are for exploration phase in the
original GWO algorithm, while the other half are for exploitation.
Using this operator, a greater number of iterations for exploration
are used, which is worthwhile to prevent into local optima.

a = 2

(
1−

(
t− 1

tmax − 1

)1.5
)

(6)

-Second modification
In this stage, We apply Gaussian mutation strategy to address

the diversity loss and take smaller steps to make it easier for
exploring every corner of the search space. The Gaussian density
function is as following:

fΥ,Ψ2(x) =
1

Ψ
√

2π
e−

(x−Υ)2

2Ψ2 (7)

where Υ and Ψ denote to the mean and the standard deviation,
respectively. This formula is also simplified to provide a random
single D-dimension variable with Υ = 0 and Ψ =1:

X
′

= Xi ⊕Gaussian(Υ)Xi (8)

where X
′

is a mutated search agent and Gaussian(Υ) represents
a Gaussian D-dimension vector obtained by Eq. (7) between [0,1]
interval. By applying these two modifications, the diversity of
population as well as the exploration and exploitation of the GWO

is enhanced. We name this two stage-modification as Enhanced-
GWO (EGWO).

The procedure of training CNNs is regarded as a difficult and
challenging topic with an unknown search space due to choosing
the optimal sets of hyperparameters and architectures. On the
other hand, the balance between exploration and exploitation
phases in GWO algorithm is effective which can be very helpful
for solving challenging problems such as training of CNNs.
Therefore, high exploration of GWO algorithm needs to be
effective as a CNN learner, excellently.

For further specifying the contribution performed on the orig-
inal version of GWO algorithm, we will represents more details
here. We can see two linear functions in the exploration phase
(Functions A and C used in Eqs. 1 and 2) of the basic version
of GWO algorithm. On the other hand, the hyperparameter
optimization of deep CNNs is considered as a non-linear problem
in which the original GWO utilizes of linear functions in the
exploration phase which leads to decreasing the performance of
GWO in finding the optimal CNN hyperparameters. Besides, this
weakness increases the probability of tapping into the local optima
as well as neglecting the global solutions and decreasing the
performance of the forecasting model. To alleviate this issue,
we use nonlinear convergence factor (Eq. 6) by replacing the
linear functions utilized in basic GWO that leads to increasing
search capability and decrease the probability of tapping into local
optima.

The original version of the GWO algorithm employs random
vectors (namely the vectors C1, C2 and C3 in Eq. 3 and vectors
A1, A2 and A3 in Eq. 4) in the phase of exploitation without
allowing any probabilistic distribution. This concern leads to a
loss of search diversity and the neglect of global optimum. The
key explanation is that evolutionary algorithms have to conduct
their search in the exploitation process by small movements in
order to reach the global optimum. However, the utilization of
random vectors throughout the exploitation stage can result in
disregarding global optimum due to their chaotic nature. In the
proposed EGWO algorithm, we apply the Gaussian mutation
strategy (Eq. 7) instead of using random vectors in the exploitation
phase to address the diversity loss and take smaller steps to make
it easier for exploring every corner of the search space.

B. Deep Convolutional Neural Network

In the proposed method, we use 1D convolutional neural
network which has recently been introduced and immediately
achieved the state-of-the-art performance levels in several appli-
cations. It should be noted that time series forecasting problems
mainly contain one-dimensional vectors of data that have been
ordered in specific time steps. Therefore, 1D CNN can be applied
on such data to predict missing values. Generally, 1D CNNs
consist of an input layer, an output layer and a number of CNN-
layers. The input layer is a passive layer that receives the raw
1D input data and the output layer is a layer with a number of
neurons equal to the number of outputs. In addition, both 1D
convolutions and sub-sampling (pooling) occur in CNN-layers of
1D CNNs.

Forward- and back-propagation are two main methods to train
CNNs. Forward propagation can be applied in each CNN-layer
using the following equation:

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 5

xlk = blk

l−1∑
i=1

Conv1D(wl−1
ik , sl−1

i) (9)

where xlk represents the kth input at layer l, blk is the bias of kth

neuron at layer l, sl−1
i indicates the output of the ith neuron at

layer l − 1, wl−1
ik is the weight from the ith neuron at layer l − 1

to the kth neuron at layer l. Conv1D(., .) shows 1D convolution
without zero-padding in 1D CNNs. The intermediate output in
each layer can be obtained by passing the corresponding input
through the activation function as follows:

slk = ylk = f(xlk) ↓ ss (10)

where slk indicates the output of the kth neuron at layer l, and
f(.) represents the activation function used in 1D CNNs.

The back-propagation algorithm is used for propagating the
error from the output layer. Suppose that the number of layers is
L and NL be the number of outputs in the output layer. Moreover,
tp and [yL1 , ..., y

L
NL

]′ are the target and output vectors of an input
vector p, respectively. Therefore, the mean square error (MSE)
for the input p in the output layer can be calculated as follows:

Ep = MSE(tp, [yL1 , ..., y
L
NL]′) =

NL∑
i=1

(yLi − t
p
i)

2 (11)

The purpose of training 1D CNNs is to minimize the error
calculated by Eq. (11). To this end, gradient descent algorithm
can be applied to minimize the error by calculating the deviation
of Ep by each network parameter.

In this paper, two convolutional layers and one pooling layer
are accompanied by a dense fully connected layer. Pooling layer’s
role is to distill the convolutional layer output to the most
important elements and dense layer interprets the features drawn
from convolutional component of the models. Rectified Linear
Unit (ReLU) activation function within the convolutional layer
is used in the proposed method. In order to lessen the feature
maps to a single 1D vector, a flatten layer is utilized between
the pooling layer and dense layer. Finally, training procedure is
performed by stochastic gradient descent (SGD).

C. EGWO-CNN based electricity load forecasting approach

In this section, we present the proposed electricity load fore-
casting method (called EGWO-CNN) which is based on one-
dimensional convolutional neural network optimized by grey wolf
optimizer. The purpose of EGWO-CNN method is to estimate the
electricity load demand for a time step or multiple time steps in
the future by using historical electricity load demand data. To
this end, first, the hyperparameters of 1D CNN are optimized by
grey wolf algorithm based on training data. Then, the trained 1D
CNN is used to predict unknown values in test data. Two main
issues should be addressed before performing EGWO algorithm
including representation of solutions in population and calculation
of fitness function.

1) Representation of solutions: One-dimensional CNN has
several hyperparameters and its performance closely depends
on determining the optimal values for them. The aim of using
EGWO algorithm in the proposed method is to find optimal values
for these hyperparameters leading to an improved predication
accuracy. To this end, in the proposed method, we consider five

critical hyperparameters including number of filters, kernel size,
number of epochs, batch size, and pooling size. Therefore, each
solution in the population space of EGWO algorithm contains
five values corresponding to the considered parameters. It should
be noted that the original EGWO algorithm can be applied
for the problems with continuous space for the individuals. On
the other hand, the hyperparameters values of CNN should be
considered as discrete values. To this end, we employ an encoding
transformation function to convert the real number vector, the
position of an individual in continuous space into an integer vector
by the following equation:

yij = bbj ∗
xij − lb
ub− lb

+ 0.5c, j = 1, ..., n (12)

where xij is the real number as the position Xi in the jth
dimension, yij is the transformed integer value for the jth
dimension of individual i, bj is the total number of the item of
type j, lb and ub are the lower and upper bounds of the search
space, respectively.

2) Calculation of fitness function: The optimization procedure
starts with an initialization step where a number of individuals are
initialized with random values as the positions. The number of po-
sitions is equal to the number of CNN hyperparameters optimized
by EGWO algorithm. It should be noted that each individual
refers to a solution containing the values of hyperparameters for
CNN. After the initialization step, the new generations of the
first population can be obtained by repeating the search procedure
of EGWO algorithm to find the optimal solution corresponding
to the optimal values of CNN hyperparameters. To evaluate
the effectiveness of each solution, we need to define a fitness
function for the optimization process. In the proposed method, the
prediction error obtained by CNN based on the training samples
is used as the fitness function. It is worth noting that our goal
in this work is to predict the next day (next 24 hours) based
on weekly input data. Suppose that the historical electricity load
demand data for M time steps is expressed by a vector as follows:

~y = (y(0), y(1), ..., y(M−1)) (13)

where y(t) is the actual electricity load demand for the time step
t. The aim of the proposed method is to predict the electricity
load demand for the next N time steps using CNN model.
The predicted electricity load demand for N time steps can be
represented as follows:

~̂y = (ŷ(M), ŷ(M+1), ..., ŷ(M+N−1)) (14)

where ŷ(t) is the predicted electricity load demand for the time
step t. In the proposed method, each individual is used to con-
figure a CNN based on the obtained values of hyperparameters.
Then, the CNN is applied to predict the electricity load demand
data in training set. It should be noted that the electricity load
demand data is represented as an one-dimensional input vector.
Therefore, 1D CNN can be used to predict the time series data.
The MSE metric is used to evaluate the performance of performed
CNN for each solution in the search space which can be calculated
using Eq. (11). In EGWO algorithm, the calculated MSE metric
for each CNN is considered as the fitness function. After perform-
ing EGWO algorithm, the best individual can be obtained which
is used to find the optimal values of CNN hyperparameters. Then,
the CNN with the optimal hyperparameters is applied to predict

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 6

the electricity load data in the test set. The overall procedure of
the proposed method is represented in Algorithm 1.

Algorithm 1 Pseudo-code of the proposed electricity load forecasting model
(EGWO-CNN)

1: Input: pop size (population size) and n (maximum number of iterations).
2: Output: Predicted electricity load demand.
3: Begin algorithm:
4: Split dataset into two sets including training set Tr and test set Te;
5: Initialize the grey wolf population Xi (i=1,2,. . . , pop size);
6: Initialize parameter a, A and C;
7: for (each solution Xi in the grey wolf population) do
8: Set a CNN model based on the values of solution Xi as the hyperparameters;
9: Calculate the fitness of solution Xi using Eq. (11) as the MSE error of CNN model

obtained based on the training set Tr;
10: end for
11: Let Xα be the best solution;
12: Let Xβ be the second best solution;
13: Let Xδ be the third best solution;
14: while (number of iterations < n) do
15: for each solution Xi in the grey wolf population do
16: Apply the Gaussian mutation operator by using Eq. (8);
17: Update the position of Xi using Eq. (5);
18: Set a CNN model based on the values of solution Xi as the hyperparameters;
19: Calculate the fitness of solution Xi using Eq. (11) as the MSE error of CNN

model obtained based on the training set Tr;
20: end for
21: Update a using Eq. (6), A and C;
22: Update Xα, Xβ and Xδ
23: Increase the number of iterations by 1;
24: end while
25: Set a CNN model based on the values of solution Xα as the hyperparameters;
26: Predict the electricity load demand data in the test set Te using the CNN model;
27: End algorithm

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Data

In order to evaluate the effectiveness of the proposed method,
the electricity load demand datasets from Australian Energy
Market Operator (AEMO) are utilized [33]. The experiments are
conducted on the datasets from the states of New South Wales
(NSW), Queensland (QLD), and Victoria (VIC) for the year 2018.
For each state, similar to [34], four months including January,
April, July and October are considered to represent the differ-
ent seasons: summer, autumn, winter, and spring, respectively.
Generally, each time series data consists of multiple data points
that are adjacent based on a specific time step. The used datasets
represent the time series data as a sequence of data points with
one hour time-steps. As a day consists of 24 hours, each day in
the used datasets contains 24 data points. On the other hand, we
use the data of each month in the used datasets as an independent
dataset in the experiments. Therefore, for a 30-days month, we
have 30 ∗ 24 data points, while this value is 31 ∗ 24 for a 31-
days month. To perform the experiments, we need to divide each
dataset into two separate sets including training set and test set.
To this end, 75% of the earlier data points in each dataset are
considered as training set while the remaining are used as test set.
Eqs. (13) and (14) represent the data points of training set and test
set, respectively. According to these equations, the number of data
points in the training set and test set is N and M , respectively. For
a dataset containing the data points of a 30-days month, the values
of N and M are 0.75∗30∗24 and 0.25∗30∗24, respectively. In
addition to splitting the used datasets into training set and test set,
we need to form the input vectors based on these two sets for all
implemented learning algorithms. To this end, each input vector is
formed by considering a sequence of the data points for one week.
Therefore, the number of data points in each input vector is equal
to 168 (i.e. 7*24 data points). On the other hand, the purpose of

forecasting model is to predict electricity load for the next day
in which we have an one-day ahead forecasting model. Since
our goal is to predict the next day (24 hours) ahead, based on
reference [5], this type of forecasting is classified as medium-term
(one day to weeks ahead). In order to perform the experiments,
the original data points of the datasets are normalized into an
interval of [0, 1].

B. Experiment Procedure and Parameters
The optimal hyperparameters for the deep learning models used

in the experiments are reported in Table II. It should be mentioned
that for the models such as CNN and LSTM, we first examine
their performances based on their reference articles. Then, for
obtaining their best performances, we determine their optimal
values through trial and error sets of simulation. For the remaining
non-deep learning models, we first use the values determined by
their corresponding reference articles, then we conduct a trial
and error set of simulations to report their best performances.
We set the population size of wolves and maximum number
of iteration in 40 and 20, respectively. Through trail and error,
these initialized parameter settings for EGWO ensured to avoid
local minima and converge to an acceptable solution within the
shortest time. The dimension of problem is set to five as there are
five key CNN hyperparameters. These hyperparameters and their
ranges are reported in Table III. These ranges are quite wide and
have been set based on the existing CNN literature [35], [36].
Moreover, the reason behind selecting the optimization of these
five hyperparameters is in their higher performance in architecture
design of CNNs as indicated by recommended literature [36],
[37]. It should be noted that Other hyperparameters that are not
involved in the optimization process are trained with fixed values,
which included dropout rate equal to 0.25, learning rate equal to
0.006, activation function as ReLU and optimizer as SGD.

TABLE II: Hyperparameters of deep learning benchmark algorithms
used in the experiments

Model Parameter Value

No.hidden neuron [5, 10, 20, 30, 50, 100]
PDRNN Optimizer Adam

Learning rate 0.001, 0.002, 0.005, 0.01

Act.function Relu
Batch size 512
Learning rate 0.001

CNN Epochs 100
No.filters 32
Pooling size 3
Dropout rate 0.3

Act.function Relu
Batch size 256
Learning rate 0.001

LSTM Epochs 200
No.filters 64
Pooling size 4
Dropout rate 0.2

Epoch [1-500]
GWO-LSTM No.hidden neuron [1-60]
EGWO-LSTM Batch size [1-200]

Learning rate [0.0001–0.1]
Optimizer Adam

PSO-CNN Batch size [10-100]
GA-CNN Epochs [1-200]
GWO-CNN No.filters [1-300]
IGWO-CNN Kernel size [1-20]
MGWO-CNN and Pooling size [1-15]
EGWO-CNN (Proposed) Act.function Relu

Optimizer SGD

C. Results and Analysis
In this work, for evaluating the error of prediction models, we

employ three metrics including root mean square error (RMSE),

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 7

TABLE III: List of hyperparameters and their values

Hyperparameter Definition Value
Batch size Bs [10-100]
No.epochs Ne [1-200]
No.filters Nf [1-300]
Kernel size Ks [1-20]
Pooling size Ps [1-15]

TABLE IV: The best obtained configuration of hyperparameters for
CNNs found by EGWO

Dataset Month RMSE Hyperparameters
Nf Ks Ne Bs Ps

Jan 0.159 50 1 50 70 6
VIC Apr 0.090 106 1 50 50 1

Jul 0.069 170 8 45 50 6
Oct 0.089 196 7 55 60 3
Jan 0.126 50 20 50 30 1

NSW Apr 0.062 50 1 65 50 4
Jul 0.075 47 19 50 40 1
Oct 0.063 87 6 50 80 2
Jan 0.088 50 1 70 30 1

QLD Apr 0.113 75 8 86 50 1
Jul 0.087 138 2 50 60 1
Oct 0.094 50 15 50 50 6

mean absolute percentage error (MAPE) and mean absolute error
(MAE).

We also compare the performance of the proposed algorithm
with several state of the arts and hybrid algorithms. These algo-
rithms are ARIMA (auto regressive integrated moving average)
[38], CNN (convolutional neural network) [16], LR (logistic
regression) [39], LSTM (long short-term memory) [40], MLP
(multilayer perceptron) [41], RFR (random forest regression) [42],
SVR (support vector regression) [43] and xgboost [44]. Besides,
in order to show the search capabilities of our proposed model, the
combination of deep CNN model with original GWO, two state-
of-the-art GWO algorithms including improved GWO (IGWO)
benefiting from dimension learning-based hunting search strategy
[19] and the modified GWO (MGWO) which benefits from
opposition-based learning strategy [20] alongside two powerful
evolutionary algorithms including genetic algorithm (GA) and
particle swarm optimization (PSO) are examined. Besides, the
hybridization of GWO and EGWO with LSTM deep neural
network model are investigated as well. We also validate the
efficiency of our proposed method with three recently powerful
algorithms in the literature including pooling-based deep recurrent
neural network (PDRNN) [45], ensemble wavelet transform ex-
treme learning machine (EWELM) [46] and principal component
correlation analysis combined with LSTM (PCCA–LSTM) [47].

For having a fair comparison, the initialized configuration of
state of the art algorithms is based on their corresponding papers
in which the authors reported their best obtained results. Further-
more, a separate sensitivity analysis is used for these algorithms
to ascertain their optimum setting parameters. For instance, for
configuring the CNN and LSTM models, in addition to the
settings considered in their original works, we also trained them
with the greedy search method and the same architecture used
in the proposed method with the non-optimized hyperparameters.
Thus, by this procedure, we obtained the best possible models.
Regarding hybrid models, the initial population size and the
maximum iteration number are assumed the same for all models.
For initializing the parameters of GA and PSO, we perform a

0.00

0.25

0.50

0.75

1.00

0 50 100 150

M
W

January

0.25

0.50

0.75

1.00

0 50 100 150

M
W

April

0.00

0.25

0.50

0.75

0 50 100 150

M
W

July

0.00

0.25

0.50

0.75

0 50 100 150
Time(hour)

M
W

October

Fig. 2: Actual vs predicted points for VIC dataset. The real line represents
the actual values and the dotted line represents the predicted values.

0.00

0.25

0.50

0.75

0 50 100 150

M
W

January

0.0

0.2

0.4

0.6

0.8

0 50 100 150

M
W

April

0.0

0.2

0.4

0.6

0.8

0 50 100 150

M
W

July

0.0

0.2

0.4

0.6

0.8

0 50 100 150
Time(hour)

M
W

October

Fig. 3: Actual vs predicted points for NSW dataset. The real line
represents the actual values and the dotted line represents the predicted
values.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 8

TABLE V: The average results of forecasting performance of proposed EGWO-CNN vs other forecasting benchmarks

Dataset Month Metric Prediction Model

LR ARIMA CNN RFR XGBOOST LSTM SVR MLP PDRNN PCCA–LSTM EWELM GWO-LSTM EGWO-LSTM PSO-CNN GA-CNN GWO-CNN IGWO-CNN MGWO-CNN Proposed

Jan RMSE 0.196 0.284 0.169 0.199 0.213 0.173 0.188 0.182 0.168 0.172 0.17 0.171 0.167 0.168 0.167 0.166 0.165 0.163 0.161
MAE 0.139 0.237 0.138 0.147 0.163 0.129 0.159 0.144 0.122 0.131 0.138 0.142 0.123 0.123 0.122 0.119 0.119 0.118 0.115
MAPE 41.854 73.288 40.666 44.171 40.951 34.638 48.259 52.235 33.279 35.898 41.029 44.908 32.142 33.554 31.908 30.004 29.877 28.619 26.593

Apr RMSE 0.195 0.121 0.108 0.201 0.118 0.104 0.112 0.131 0.103 0.104 0.109 0.102 0.098 0.101 0.099 0.096 0.096 0.095 0.092
VIC MAE 0.155 0.097 0.086 0.161 0.088 0.081 0.089 0.105 0.073 0.08 0.084 0.074 0.063 0.071 0.068 0.067 0.068 0.067 0.064

MAPE 36.029 26.913 23.21 39.832 22.147 20.965 24.799 31.398 21.023 20.464 22.61 20.117 18.743 20.143 19.055 17.867 17.885 16.252 14.571

Jul RMSE 0.166 0.114 0.096 0.152 0.081 0.086 0.107 0.111 0.079 0.086 0.094 0.08 0.077 0.078 0.076 0.075 0.074 0.073 0.071
MAE 0.125 0.093 0.078 0.121 0.063 0.064 0.081 0.091 0.061 0.064 0.076 0.063 0.058 0.059 0.058 0.056 0.056 0.055 0.053
MAPE 50.882 29.568 29.518 65.052 28.733 32.806 28.669 58.212 27.335 32.052 29.032 27.186 25.591 26.287 25.109 24.676 23.918 23.451 21.296

Oct RMSE 0.162 0.136 0.111 0.158 0.112 0.089 0.104 0.117 0.101 0.088 0.107 0.101 0.097 0.098 0.095 0.094 0.095 0.094 0.091
MAE 0.116 0.113 0.086 0.128 0.086 0.079 0.083 0.095 0.08 0.078 0.083 0.081 0.076 0.078 0.076 0.075 0.076 0.074 0.072
MAPE 33.633 29.593 21.168 40.447 20.956 21.119 22.534 32.141 20.784 20.332 20.316 22.516 18.474 19.222 17.307 16.945 17.282 16.535 15.721

Jan RMSE 0.144 0.242 0.184 0.148 0.168 0.166 0.196 0.165 0.141 0.164 0.181 0.14 0.137 0.138 0.135 0.133 0.132 0.131 0.129
MAE 0.105 0.186 0.151 0.121 0.129 0.117 0.161 0.131 0.106 0.114 0.147 0.106 0.104 0.104 0.102 0.101 0.101 0.1 0.099
MAPE 29.666 44.051 42.458 36.424 32.918 28.651 45.361 38.732 30.953 27.668 41.683 30.276 27.916 28.558 26.712 26.097 25.889 25.454 24.431

Apr RMSE 0.131 0.109 0.089 0.118 0.077 0.072 0.132 0.103 0.07 0.07 0.084 0.07 0.069 0.069 0.067 0.066 0.066 0.066 0.064
NSW MAE 0.103 0.082 0.071 0.096 0.056 0.045 0.115 0.081 0.046 0.042 0.066 0.045 0.044 0.044 0.043 0.042 0.041 0.041 0.039

MAPE 35.287 31.934 28.738 40.011 20.298 17.966 47.908 51.731 17.512 15.855 28.131 17.132 16.139 16.664 16.148 15.807 15.559 15.323 14.033

Jul RMSE 0.139 0.111 0.118 0.122 0.092 0.109 0.131 0.131 0.089 0.108 0.113 0.086 0.085 0.086 0.084 0.083 0.083 0.081 0.078
MAE 0.107 0.082 0.088 0.098 0.068 0.084 0.095 0.107 0.07 0.083 0.084 0.065 0.064 0.066 0.063 0.059 0.058 0.057 0.056
MAPE 39.439 37.957 44.026 47.654 30.778 36.309 44.601 60.347 31.784 35.766 42.729 28.881 28.643 29.066 28.563 27.442 27.152 26.458 25.832

Oct RMSE 0.124 0.103 0.081 0.119 0.069 0.075 0.074 0.099 0.075 0.073 0.078 0.074 0.072 0.073 0.072 0.069 0.07 0.069 0.066
MAE 0.096 0.084 0.062 0.095 0.055 0.056 0.061 0.073 0.055 0.053 0.059 0.059 0.053 0.054 0.052 0.051 0.052 0.051 0.049
MAPE 33.934 33.762 22.451 42.343 19.219 17.963 23.344 43.725 19.203 17.906 21.414 17.701 16.674 17.388 16.895 16.402 16.668 16.284 15.972

Jan RMSE 0.113 0.171 0.131 0.101 0.138 0.114 0.141 0.141 0.103 0.112 0.129 0.1 0.098 0.099 0.097 0.096 0.096 0.095 0.094
MAE 0.085 0.137 0.102 0.077 0.107 0.091 0.117 0.119 0.08 0.088 0.099 0.077 0.075 0.076 0.076 0.075 0.074 0.074 0.073
MAPE 23.473 32.848 25.508 19.503 24.972 22.342 31.997 37.828 20.965 20.878 24.193 19.429 18.979 19.336 18.771 17.844 17.794 17.283 16.538

Apr RMSE 0.159 0.136 0.247 0.167 0.129 0.146 0.231 0.182 0.128 0.143 0.243 0.125 0.124 0.125 0.123 0.119 0.119 0.118 0.116
QLD MAE 0.126 0.101 0.228 0.138 0.097 0.117 0.209 0.154 0.095 0.115 0.222 0.09 0.09 0.091 0.088 0.086 0.085 0.085 0.084

MAPE 585.921 535.178 1626.104 1038.221 255.478 1220.361 2031.133 2347.967 279.445 1145.676 1431.886 264.303 259.604 267.454 249.098 228.343 225.312 220.791 210.335

Jul RMSE 0.137 0.112 0.104 0.134 0.103 0.099 0.121 0.125 0.1 0.097 0.102 0.099 0.098 0.097 0.095 0.092 0.091 0.091 0.089
MAE 0.105 0.089 0.087 0.111 0.087 0.083 0.103 0.108 0.083 0.081 0.084 0.082 0.082 0.079 0.076 0.073 0.072 0.072 0.071
MAPE 33.979 33.655 36.929 53.152 32.666 29.277 39.426 57.607 30.116 27.047 34.875 28.906 28.661 28.744 27.806 27.005 26.918 26.706 25.403

Oct RMSE 0.161 0.121 0.118 0.152 0.105 0.112 0.121 0.131 0.104 0.11 0.115 0.102 0.101 0.101 0.098 0.097 0.097 0.096 0.095
MAE 0.113 0.093 0.079 0.117 0.076 0.075 0.088 0.105 0.077 0.072 0.074 0.077 0.075 0.075 0.074 0.073 0.072 0.073 0.071
MAPE 32.612 28.315 21.539 33.927 22.361 20.288 27.918 36.841 21.166 18.887 19.773 19.989 19.202 19.961 19.046 18.568 18.339 18.161 17.307

TABLE VI: Time complexity (per second) of the proposed model and other compared benchmark models for VIC case study.

Model Optimization time Training time Testing time

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

LR - - - - 59.1 61.2 58.4 59.2 30.8 28.8 30.2 29.1

ARIMA - - - - 53.2 55.9 53.5 56.3 23.3 24.1 22.9 23.9

CNN - - - - 62.5 59.1 61.7 61.4 32.5 31.9 32.7 32.9

RFR - - - - 63.2 56.6 58.7 58.5 32.8 33.1 33.6 32.5

XGBOOST - - - - 51.1 51.7 54.6 53.8 22.8 23.7 22.2 22.9

LSTM - - - - 64.4 63.3 59.6 60.3 33.5 33.8 34.2 34.7

SVR - - - - 58.1 56.6 55.1 57.9 29.8 27.8 29.1 28.6

MLP - - - - 56.8 57.4 56.3 58.6 26.8 26.4 27.1 27.4

PDRNN 270.3 285.4 281.1 274.7 61.4 60.9 56.4 60.2 31.5 31.2 30.9 30.8

PCCA–LSTM - - - - 62.2 67.4 65.9 63.3 33.4 32.5 32.9 33.4

EWELM - - - - 58.7 60.2 61.4 59.1 28.8 27.6 28.3 28.1

GWO-LSTM 271.6 277.8 280.3 279.5 66.5 65.1 68.4 67.4 35.4 35.2 34.1 33.8

EGWO-LSTM 266.3 262.5 271.6 269.5 70.1 70.9 69.5 71.8 37.8 38.1 37.1 37.4

PSO-CNN 261.8 264.4 268.1 265.5 58.9 60.5 57.1 58.8 29.9 28.7 29.1 30.1

GA-CNN 262.9 266.1 261.2 262.4 61.1 59.4 60.8 59.5 30.3 29.6 29.8 30.5

GWO-CNN 258.8 260.3 255.1 256.9 58.1 59.2 58.3 57.6 29.4 28.4 28.3 29.3

IGWO-CNN 260.9 265.5 267.9 258.5 61.3 62.2 61.9 60.2 31.1 30.9 31.2 31.6

MGWO-CNN 262.7 268.8 259.4 259.1 61.2 63.3 62.1 61.1 29.8 30.5 30.4 30.8

Proposed 255.7 254.8 256.1 251.7 50.8 49.7 52.6 53.4 22.5 22.9 22.1 21.5

sensitivity analysis to obtain their optimal values. Based on the
results of sensitivity analysis, the values for inertia weight factor
and social parameters are set to 0.7 and 1.4, respectively. Regard-
ing GA, the values of crossover and mutation probability are set
to 0.6 and 0.07, respectively. Besides, the CNN hyperparameters
optimized in the proposed EGWO-CNN model are also used in
the hybrid algorithms (GWO-CNN, PSO-CNN and GA-CNN).
All of these benchmarks are implemented in Python version 3.7
programming environment and all the experiments are repeated
10 times for each model to have a solid performance evaluation.
Table IV shows the optimal values for the hyperparameters of
the CNNs optimized by EGWO. These values are chosen with
respect to the lowest value of RMSE in each run of the proposed
EGWO-CNN algorithm. These findings show that the EGWO-
CNN chooses the values that are not heavy in simulation results

and obtains the lowest RMSE. Thus, we use optimal values for
the compared forecasting models that have resulted in the best
output in each month. In other words, we set the values of the
parameters of the compared approaches according to the optimal
values obtained for each month. In this way, we can claim that the
experiments are fair and the superiority of the proposed method
is easily proved.

In Table V, the average values of prediction results for one day
ahead load forecasting of three states are tabulated. The values
in bold format represent the lowest value of their corresponding
error metric. From this table, it can be observed that our proposed
EGWO-CNN outperforms other eighteen benchmark models in
terms of lower RMSE, MAE and MAPE in all cases. The obtained
results also highlight the potential of the EGWO-CNN for one-
day ahead forecasting. Among the compared models, the hybrid

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 9

0.00

0.25

0.50

0.75

1.00

0 50 100 150

M
W

January

0.00

0.25

0.50

0.75

1.00

0 50 100 150

M
W

April

0.00

0.25

0.50

0.75

1.00

0 50 100 150

M
W

July

0.25

0.50

0.75

1.00

0 50 100 150
Time(hour)

M
W

October

Fig. 4: Actual vs predicted points for QLD dataset. The real line
represents the actual values and the dotted line represents the predicted
values.

0.22

0.23

0.24

0.25
January

V
IC

0.09

0.1

0.11

0.12
April

0.075

0.08

0.085
July

0.05

0.1

0.15
October

0.16

0.18

0.2

N
S

W

0.06

0.08

0.1

0.12

0.08

0.09

0.1

0.068

0.0685

0.069

0.0695

0.07

0 10 20 0
0.13

0.14

0.15

0.16

Iteration

Q
L

D

5 10 15 20
0.112

0.113

0.114

0.115

0.116

Iteration
5 10 15 20

0.085

0.09

0.095

0.1

Iteration
5 10 15 20

0.09

0.095

0.1

0.105

Iteration

Fig. 5: Convergence profiles of proposed EGWO-CNN model for four
months and three states based on RMSE metric.

Batch Size Kernel Size Number of Epochs Number of Filters Pooling Size

-2.5

0.0

2.5

5.0

7.5

10.0

0

100

200

40

60

80

-10

0

10

20

30

25

50

75

Fig. 6: Violin plots of best CNN configurations obtained by EGWO

models achieve competitive results in comparison with the state of
the art algorithms. The closest competitor to the proposed method
is the state of the art version of GWO called MGWO hybridized
with CNN obtained close performance to the EGWO-CNN model.
In Figs. 2, 3, and 4, the actual and predicted values generated by
the proposed algorithm are represented. The blue and red lines
represent the actual and predicted values obtained by EGWO-
CNN, respectively. The obtained results closely agree with the
actual electricity load which meet the min or max picks.

Fig. 5 represents the convergence curves of EGWO-CNN for
four months of each state based on RMSE values for all training
samples over the course of 20 iterations. This figure shows that
EGWO-CNN can be converged in a faster way to obtain the opti-
mal solution for each case. In Fig. 6, we illustrate the distributions
of the optimized hyperparameters of CNNs using violin plots.
This illustration is important since it shows a worthy estimate
of the hyperparameters values for training of CNNs. Besides,
they confirm and justify golden setting of CNN hyperparameters
during training procedure for obtaining the best performance of
the network.

In Table VI, the time performance of the proposed algorithm
and other benchmarked algorithms are reported based on three
time criteria including optimization, training and testing times
for VIC dataset. It is worth noting that optimization time refers
to the time of algorithms in which the optimization operators are
used in them. As can be deduced from this table, the proposed
algorithm in terms of optimization time, has the least time for
different scenarios among the optimization algorithms. Also, in
terms of training and testing time, our proposed EGWO-CNN
algorithm has the shortest time for different months.

In summary, the extensive experiments support the efficient
forecasting performance of EGWO-CNN approach for one-day
ahead period. The capability of the proposed approach to op-
timize the hyperparameters of CNNs from load data results
in accurate forecasting of future loads. The key advantages of
the proposed EGWO-CNN algorithm are: 1) automating CNN
hyperparameters, 2) avoiding being trapped in local minima,
3) being computationally cheap and 4) having fast convergence
profiles during optimization process. The effective performance of
the proposed method is verified by the lower forecasting errors
such as RMSE, MAE and MAPE. The competitive performance of
EGWO-CNN approach reveals that it can be used as an effective
forecasting tool for time series prediction problems.

IV. CONCLUSION

In this study, we presented a novel evolutionary deep neural
architecture search for the problem of load forecasting. To this
end, EGWO is applied to fine tune the CNN hyperparameters
automatically. The proposed approach was assessed with datasets
from three regions of AEMO. In order to evaluate the robustness
of the proposed method, several benchmark algorithms were
also compared with the proposed method. Three error metrics
including RMSE, MAE and MAPE were utilized for evaluating
the performance of these forecasting algorithms. The obtained
results indicated that the proposed neural architecture search
method results in models outperforming benchmarks in most
cases. For the future works, more advanced evolutionary methods
will be applied to improve the convergence profile of CNNs. Also,
the proposed neural architecture search will be applied to other
datasets including renewable ones.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3065718, IEEE
Transactions on Industrial Informatics 10

REFERENCES

[1] M. Mishra, J. Nayak, B. Naik, and A. Abraham, “Deep learning in
electrical utility industry: A comprehensive review of a decade of research,”
Engineering Applications of Artificial Intelligence, vol. 96, p. 104000, 2020.

[2] A. Heydari, M. M. Nezhad, E. Pirshayan, D. A. Garcia, F. Keynia, and
L. De Santoli, “Short-term electricity price and load forecasting in isolated
power grids based on composite neural network and gravitational search
optimization algorithm,” Applied Energy, vol. 277, p. 115503, 2020.

[3] A. Rafati, M. Joorabian, and E. Mashhour, “An efficient hour-ahead electrical
load forecasting method based on innovative features,” Energy, p. 117511,
2020.

[4] A. R. Hapka, “Dw bunn, ed farmer, comparative models for electrical load
forecasting, wiley, belfast (1985), pp. 232,£ 24.95,” 1986.

[5] X. Qiu, Y. Ren, P. N. Suganthan, and G. A. Amaratunga, “Empirical mode
decomposition based ensemble deep learning for load demand time series
forecasting,” Applied Soft Computing, vol. 54, pp. 246–255, 2017.

[6] G. Paredes, L. Vargas, and S. Maldonado, “Reconfiguration and reinforce-
ment allocation as applied to hourly medium-term load forecasting of
distribution feeders,” IET Generation, Transmission & Distribution, vol. 14,
no. 9, pp. 1791–1798, 2020.

[7] M. Q. Raza and A. Khosravi, “A review on artificial intelligence based load
demand forecasting techniques for smart grid and buildings,” Renewable and
Sustainable Energy Reviews, vol. 50, pp. 1352–1372, 2015.

[8] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-
C. Chen, and S. Iyengar, “A survey on deep learning: Algorithms, techniques,
and applications,” ACM Computing Surveys (CSUR), vol. 51, no. 5, p. 92,
2019.

[9] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep
learning for time series classification: a review,” Data Mining and Knowledge
Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[10] J. Long, S. Zhang, and C. Li, “Evolving deep echo state networks for
intelligent fault diagnosis,” IEEE Transactions on Industrial Informatics,
2019.

[11] S. Ahmadian and A. R. Khanteymoori, “Training back propagation neural
networks using asexual reproduction optimization,” in 7th Conference on
Information and Knowledge Technology (IKT). IEEE, 2015, pp. 1–6.

[12] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep neural
networks,” in Artificial Intelligence in the Age of Neural Networks and Brain
Computing. Elsevier, 2019, pp. 293–312.

[13] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural
networks through neuroevolution,” Nature Machine Intelligence, vol. 1,
no. 1, pp. 24–35, 2019.

[14] A. Baldominos, Y. Saez, and P. Isasi, “On the automated, evolutionary
design of neural networks: past, present, and future,” Neural Computing
and Applications, pp. 1–27, 2019.

[15] M. Bińkowski, G. Marti, and P. Donnat, “Autoregressive convolutional
neural networks for asynchronous time series,” Proceedings of the 35th
International Conference on Machine Learning, pp. 580–589, 2017.

[16] I. Koprinska, D. Wu, and Z. Wang, “Convolutional neural networks for
energy time series forecasting,” in 2018 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[17] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and
A. Iosifidis, “Forecasting stock prices from the limit order book using
convolutional neural networks,” in 2017 IEEE 19th Conference on Business
Informatics (CBI), vol. 1. IEEE, 2017, pp. 7–12.

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances
in engineering software, vol. 69, pp. 46–61, 2014.

[19] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An improved grey
wolf optimizer for solving engineering problems,” Expert Systems with
Applications, vol. 166, p. 113917, 2020.

[20] J. C. Bansal and S. Singh, “A better exploration strategy in grey wolf
optimizer,” Journal of Ambient Intelligence and Humanized Computing, pp.
1–20, 2020.

[21] M. Khubroo and S. J. Mousavirad, “A levy flight-based decomposition multi-
objective optimization based on grey wolf optimizer,” in 2019 9th Inter-
national Conference on Computer and Knowledge Engineering (ICCKE).
IEEE, 2019, pp. 155–161.

[22] H. Chantar, M. Mafarja, H. Alsawalqah, A. A. Heidari, I. Aljarah, and
H. Faris, “Feature selection using binary grey wolf optimizer with elite-based
crossover for arabic text classification,” Neural Computing and Applications,
vol. 32, no. 16, pp. 12 201–12 220, 2020.

[23] F. Jiang, Z. Peng, and J. He, “Short-term load forecasting based on
support vector regression with improved grey wolf optimizer,” in 2018 Tenth
International Conference on Advanced Computational Intelligence (ICACI).
IEEE, 2018, pp. 807–812.

[24] S. Dai, D. Niu, and Y. Li, “Daily peak load forecasting based on complete
ensemble empirical mode decomposition with adaptive noise and support

vector machine optimized by modified grey wolf optimization algorithm,”
Energies, vol. 11, no. 1, p. 163, 2018.

[25] S. Shang, K.-N. He, Z.-B. Wang, T. Yang, M. Liu, and X. Li, “Sea clutter
suppression method of hfswr based on rbf neural network model optimized
by improved gwo algorithm,” Computational Intelligence and Neuroscience,
vol. 2020, 2020.

[26] M. Madhiarasan, S. Deepa et al., “Elman neural network with modified grey
wolf optimizer for enhanced wind speed forecasting,” Circuits and Systems,
vol. 7, no. 10, p. 2975, 2016.

[27] H. Liu, H. Wu, and Y. Li, “Smart wind speed forecasting using ewt
decomposition, gwo evolutionary optimization, relm learning and iewt
reconstruction,” Energy Conversion and Management, vol. 161, pp. 266–
283, 2018.

[28] L. Ge, Y. Xian, Z. Wang, B. Gao, F. Chi, and K. Sun, “A gwo-grnn based
model for short-term load forecasting of regional distribution network,”
CSEE Journal of Power and Energy Systems, 2020.

[29] H. Xie, L. Zhang, and C. P. Lim, “Evolving cnn-lstm models for time series
prediction using enhanced grey wolf optimizer,” IEEE Access, vol. 8, pp.
161 519–161 541, 2020.

[30] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture search,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 19–34.

[31] A. Kavousi-Fard, H. Samet, and F. Marzbani, “A new hybrid modified firefly
algorithm and support vector regression model for accurate short term load
forecasting,” Expert systems with applications, vol. 41, no. 13, pp. 6047–
6056, 2014.

[32] H.-Z. Li, S. Guo, C.-J. Li, and J.-Q. Sun, “A hybrid annual power load
forecasting model based on generalized regression neural network with fruit
fly optimization algorithm,” Knowledge-Based Systems, vol. 37, pp. 378–
387, 2013.

[33] [Online]. Available: https://aemo.com.au/en/energy-
systems/electricity/national-electricity-market-nem/data-nem

[34] N. A. Shrivastava, A. Khosravi, and B. K. Panigrahi, “Prediction interval
estimation of electricity prices using pso-tuned support vector machines,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 322–331,
2015.

[35] W. Zhu, W. Yeh, J. Chen, D. Chen, A. Li, and Y. Lin, “Evolutionary
convolutional neural networks using abc,” in Proceedings of the 2019 11th
International Conference on Machine Learning and Computing. ACM,
2019, pp. 156–162.

[36] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Transactions on Evolution-
ary Computation, 2019.

[37] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary convolutional neural
networks: An application to handwriting recognition,” Neurocomputing, vol.
283, pp. 38–52, 2018.

[38] G. E. Box and G. M. Jenkins, “Time series analysis: Forecasting and control
san francisco,” Calif: Holden-Day, 1976.

[39] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors),”
The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[40] L. Peng, S. Liu, R. Liu, and L. Wang, “Effective long short-term memory
with differential evolution algorithm for electricity price prediction,” Energy,
vol. 162, pp. 1301–1314, 2018.

[41] L. Hernández, C. Baladrón, J. M. Aguiar, B. Carro, A. Sánchez-Esguevillas,
and J. Lloret, “Artificial neural networks for short-term load forecasting in
microgrids environment,” Energy, vol. 75, pp. 252–264, 2014.

[42] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[43] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[44] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 2016, pp. 785–794.

[45] H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting—a
novel pooling deep rnn,” IEEE Transactions on Smart Grid, vol. 9, no. 5,
pp. 5271–5280, 2017.

[46] S. Li, L. Goel, and P. Wang, “An ensemble approach for short-term load
forecasting by extreme learning machine,” Applied Energy, vol. 170, pp.
22–29, 2016.

[47] N. Wei, C. Li, J. Duan, J. Liu, and F. Zeng, “Daily natural gas load
forecasting based on a hybrid deep learning model,” Energies, vol. 12, no. 2,
p. 218, 2019.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 13,2021 at 14:29:22 UTC from IEEE Xplore. Restrictions apply.

