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Abstract—This paper proposes a new strategy for an 

independent system operator (ISO) to trade demand response 
(DR) with different DR aggregators while considering various 
operational constraints. The ISO determines the energy 
scheduling and reserve deployment in a pre-emptive market 
while setting DR contracts with the DR aggregators. The ISO 
applies a two-stage stochastic programming to cope with the 
uncertainty associated with wind power production. DR 
aggregators’ behavior is modeled through a profit 
maximization function. Aggregators determine their DR 
trading shares with ISO and customers through three DR 
options, including load curtailment, load shifting and load 
recovery. A stochastic bilevel problem is formulated in which 
in the upper-level the ISO minimizes the total operation cost 
and in the lower-level the DR aggregator maximizes the profit. 
Afterwards, the problem is transferred to a single-level 
mathematical problem with equilibrium constraints (MPEC) by 
replacing the lower-level program with its Karush-Kuhn-
Tucker (KKT) conditions. As a result, the total operation cost 
is reduced using the proposed method comparatively to 
running the program without considering the lower-level. 
 

Index Terms—demand response, day-ahead market, 
stochastic bilevel programming, two-stage programming. 

I.  NOMENCLATURE 

A.  Indices (sets) and abbreviations 

DBK  Set of demand response offers between 
DR aggregator and customer.

DRK  Set of demand response offers between 
ISO and DR aggregator. 

g  ( )NG  Index (set) of generating units.
gen   Generator units. 
k  ( )NK  Index (set) of demand response offers.
l  ( )NL  Index (set) of transmission lines.
LC   Load curtailment option. 
LS  Load shifting option. 
LR  Load recovery option. 
n  ( )NN  Index (set) of nodes. 
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s ( )NS Index (set) of scenarios.
scen Superscripts for wind scenarios. 
shed  Superscripts for load shedding.
spill  Superscripts for wind spillage. 
t ( )NT Index (set) of hours. 

, ,TC TS TR Set of times for load curtailment, shift 
and recovery options. 

ˆ , ,X LC LS LR∈ Superscripts for LC and LS and LR.

B.  Parameters 
gen
tgC Production cost of generator units.

,up down
tg tgC C Up/down reserve cost of generator units.

. .,strt up sht dwn
g gC C  Generator start-up/shut-down cost.

spill
tnsCs Wind spillage cost per scenario.

,up down
tgs tgsCs Cs  Up/down reserve cost per scenario.
voll
tnsCs Value of loss of load per scenario.

ˆ ˆ, ,,Cost X Cost X
tnk tnkDR DB  Cost of offer k from demand response 

option X̂ . 
ˆ ˆ, ,,Min X Min X

tnk tnkDRK DBK  Minimum offer k  from demand 
response option X̂ . 

ˆ ˆ, ,,Max X Max X
tnk tnkDRK DBK  Maximum offer k  from demand 

response option X̂ . 
ˆ ˆ,min ,max,X X

nk nkLCD LCD  Min/max time for offer k  from demand 
response option X̂ . 

tnLD  Forecasted load. 

X̂
nkMC Maximum number of calling DR option 

X̂ per day. 
max min,l lpf pf Maximum/minimum transmission line 

capacity. 
max min,g gP P  Maximum and minimum capacity of 

generating units. 
max, max,,up down
g gR R  Maximum up/down reserve.

,up dwon
g gRmp Rmp Maximum ramp-up/-down.

nlX Transmission lines inductance.
C.  Binary variables 

, ,u y z Binary variables for on/off, start-up and
shut-down status. 

ub On/off for demand response offers from 
DR aggregator viewpoint.

D.  Variables 
ˆ ˆ
,X XCRK CBK  Total cost of demand response 

scheduling for demand response option
X̂ .

ˆ ˆ
,X XDRK DBK  Demand response scheduling for demand 

response option X̂ . 
P Thermal power generation.

  

Optimal Scheduling of Demand Response in 
Pre-emptive Markets based on Stochastic 

Bilevel Programming Method 
Saber Talari, Student Member, IEEE, Miadreza Shafie-khah, Senior Member, IEEE, Fei Wang, Senior 
Member, IEEE, Jamshid Aghaei, Senior Member, IEEE, and João P. S. Catalão, Senior Member, IEEE 



0278-0046 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2017.2786288, IEEE
Transactions on Industrial Electronics

 

,pf pfs  Power line flows day-ahead/balancing.
 

,up down

tg tgR R  Up/down reserve of units. 

,up down

tgs tgsRs Rs  Up/down reserve of units for scenarios.

W  Wind power generation. 
θ  Voltage angle. 

II.  INTRODUCTION 
A.  Motivation 

EMAND-SIDE management has been widely utilized in 
electricity markets especially after huge application of 
smart facilities like intelligent electric devices (IEDs) and 

advanced metering infrastructures (AMIs). These technologies 
enable independent system operators (ISOs) to implement 
demand response (DR) with more details and higher 
accuracy [1].  
Aggregators for performing DR have been introduced to make 
an easier interaction between customers and ISO. Likewise, 
DR aggregators play an important role to achieve all targets of 
DR implementation such as reducing peak demand, improving 
the power systems security, decreasing the negative effects 
caused by the uncertainty of renewable energy sources (RESs) 
on power system operation and enhancing the economic 
aspects of electricity market [2].  

In fact, DR aggregators serve as interfaces between 
customers and ISO and enable the participation of customers 
in the wholesale market [3]. Indeed, DR aggregators face two 
challenges including with customers in lower-level and with 
ISO in upper-level. In the upper-level, DR aggregator is 
challenged in selling DR products to ISO in a contract with the 
best quantity and the best price. In other words, DR aggregator 
seeks to define optimal trading options in the wholesale 
market. In the lower-level, DR aggregator buys DR from 
customers and looks for implementing DR with the highest 
profit, while precisely modeling the customers’ limitations and 
constraints.  

The best approach for scheduling of power systems from 
ISO’s viewpoint with DR aggregators is considering both 
levels simultaneously. In other words, once an ISO is running 
a day-ahead market with DR aggregators, the lower-level 
(interaction between DR aggregators and customers) and the 
customers’ constraints play an important role to make the final 
decisions related to DR precisely and economically.  Hence, 
since most of the electricity markets are going to incorporate 
DR aggregators, considering this approach is desirable. 
Bilevel programming is one way to formulate both upper and 
lower-level [4], [5]. A bilevel program can be turned into a 
single-level mathematical problem by replacing the lower-
level problem with its Karush-Kuhn-Tucker (KKT) [6] 
optimality conditions. 

B.  Literature review 
Some markets, such as the ones in Singapore, ERCOT, 

PJM, Alberta, Ontario [7], have already allowed the 
participation of DR aggregators, and some others, such as 
Australian National Electricity Market (NEM) [8], are going 
to allow in the near future. Some researchers have tried to 
consider DR in the market with the concept of DR aggregators 
[9]–[12].  

In [9], small loads are aggregated to participate in the 
market for balance management in German balancing 
mechanism. In [10], domestic appliances of individual 
customers are considered as bottom-up aggregators which 

aggregate their reserve bids to offer in the day-ahead reserve 
market particularly in Portuguese territory reserve  market. A 
game-theoretic framework for interaction between DR 
aggregators and electricity generators along with DR 
aggregator and customers is applied, separately to provide 
profit for all players in [11]. In [12], a bilevel method is 
applied which in the upper-level, local marginal prices are 
obtained through performing the unit commitment. In the 
lower-level, DR is scheduled by minimizing the total 
operation cost. DR aggregator in [13] solves a two-stage 
model in which in the first stage, distribution network operator 
(DNO) minimizes the power loss and in the second stage 
demand response providers (DRPs) minimize the electricity 
bill. Authors in [14] have studied three levels including an 
operator for the minimization of operation cost, DR aggregator 
for maximization of profit and end-user for maximization of 
payoff function. However, the network and its constraints 
have not been considered, and the problem was solved just by 
passing and exchanging the reward price to different players.  

In [15], the authors only considered the upper-level for 
optimal hourly DR scheduling in a day-ahead market. They 
applied four options including load curtailment (LC), load 
shifting (LS), onsite generation and energy storage (ES) 
systems. They also implemented these options on lower-level 
in another work [16] to maximize the DR aggregators’ profit. 
In [17], the optimal scheduling in day-ahead market has been 
conducted from wind power producer viewpoint. Indeed, DR 
aggregators deal with wind power producers in upper-level 
instead of ISO. In another work [18], a bilevel approach has 
been applied to consider upper-level including wind power 
producer-DR aggregator and lower-level including DR 
aggregator-customer. In upper-level, wind power producer 
wants to cope with their production uncertainty by making DR 
contract with DR aggregators. In lower-level, the DR 
aggregator tries to maximize its revenue. Reference [19] 
proposed a bilevel programming for DR scheduling, in which 
DR aggregator’s profit for participation in the day-ahead and 
real-time markets is maximized in the upper-level, and the 
cost of providing power balance in the real-time market is 
minimized in the lower-level. The research in [20] considered 
both upper-level (ISO-DR aggregator) and lower-level (DR 
aggregator-customer) separately. This program has been run in 
a day-ahead market considering uncertain prices and tried to 
mix the results of each level to get the optimum solution. They 
also considered taking a risk using the conditional value-at-
risk, although the two levels are not studied at the same time; 
therefore, the results are not reliable and accurate.  

In Table I, key relevant references to the current work are 
summarized. For each reference, the point of view, the 
objective function of different levels (if there is any), and the 
difference (or deficits) of the reference compared with the 
current work are outlined.  Accordingly, there is no study that 
has optimized the objective functions of ISO and DR 
aggregators at the same time, in a bilevel programming 
approach, in the presence of network constraints and 
considering the uncertainty of wind farms (WFs) from ISO’s 
viewpoint. 

C.  Contributions and Aims  
A new strategy for an ISO to trade DR with different DR 

aggregators while considering various operational constraints 
is proposed in this paper. ISO determines the energy 
scheduling and reserve deployment in a pre-emptive market 
while setting DR contracts with the DR aggregators. ISO 
applies a two-stage stochastic programming to cope with the 

D
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uncertainty associated with wind power production. In this 
program, ISO makes the day-ahead decisions through having a 
look at the balancing market. DR aggregators’ behavior is 
modeled through profit maximization function. Aggregators 
determine their DR trading shares with ISO and customers 
through three DR options including LC, LS and load recovery 
(LR). A stochastic bilevel problem is formulated which in the 
upper-level, ISO minimizes the total operation cost and in 
lower-level, DR aggregator maximizes the profit. Afterward, 
the problem is transferred to a single-level mathematical 
problem with equilibrium constraints through replacing the 
lower-level program with its Karush-Kuhn-Tucker (KKT) 
conditions. 

Moreover, the nonlinearities of the derived problem are 
linearized through a proposed mathematical method. A 6-bus 
case study is utilized to assess the proposed strategy.  

The uncertainty of wind power is considered through 
generating scenarios in the second stage of upper-level.  

The main contributions of this paper are as follows: 
• Modeling of the interaction between ISO and DR 

aggregators as well as the interaction between DR 
aggregators and customers for short-term scheduling in 
the presence of WFs. 

• Solving a two-stage stochastic programming for 
minimizing the total operation cost while considering all 
network constraints and scenario generation for 
uncertainty handling of WF production and maximizing 
DR aggregator profit at the same time. 

• Applying stochastic bilevel programming techniques for 
solving two objective functions for DR scheduling in a 
pre-emptive market from ISO’s viewpoint. 

• Linearizing the dual problem of the lower-level  
of DR scheduling problem for making decisions by the 
ISO through a mixed-integer linear programming 
(MILP) approach.  

D.  Paper organization 
The remaining parts of the paper are as follows. Section III 

presents the framework of the proposed bilevel model. Section 
IV provides the corresponding mixed-integer linear problem 
of upper- and lower-level, the mixed-integer nonlinear 
problem of the duality of lower-level and its equivalent linear 
form. Numerical results illustrating the proposed method are 
provided in Section V. Section VI makes some concluding 
remarks.  

III.  PROBLEM STATEMENT 

In this section, different aspects of the modeling in this 
paper are presented. The structure of DR aggregators, their 
contracts with customers and ISO are explained and 
formulated.  

The strategy of ISO for the operation of the network is 
presented, and the market mechanism and the approach for 
uncertainty handling are outlined. Finally, the strategy for 
interaction among ISO, DR aggregator and customers at the 
same time is expressed as a bilevel model. 

A.  DR Aggregator’s Perspective 
The structure of proposed DR aggregator for the 

implementing DR scheduling is shown in Fig. 1.  
Accordingly, the participation of customers in the 

electricity market is maximized through DR aggregator in a 
day-ahead market. In other words, DR aggregators provide 
some customer services in order to assess the DR provisions 

and make the customers aware of their flexible consumption 
value. Therefore, customers tend to participate in DR more 
than when they cannot evaluate the profitability of 
participation in DR.  

DR aggregators can be the existing market participants 
such as load/serving entity, distribution network operators or 
microgrid operators [16].  

According to Fig. 1, DR aggregators are supposed as non-
profit independent organizations that each one serves 
customers located at an especial bus in the transmission 
network.  

TABLE I 
Taxonomy of key relevant papers and the differences with the current 

work 

Reference Viewpoint Level 1 Level 2 Deficit

[14] ISO Minimization of 
total cost 

Maximization 
of DR 

aggregators’ 
profit & 

maximization 
of customers’ 

payoff

Lack of 
considering 

network and its 
constraints and 

uncertainty 
handling 

[15] ISO Minimization 
total cost - 

Lack of 
considering DR 

aggregator’s 
objective 
function 

[16] DR 
aggregator - 

Maximization 
the DR 

aggregator’s 
profit 

Lack of 
considering 

ISO’s objective 
function

[17] Wind power 
producer 

Minimization 
negative effect 

of WF 
uncertainty 

- 

- It is not from 
ISO’s viewpoint  

- Considering 
just one level 
without DR 
aggregator 
objective 
function

[18] Wind power 
producer 

Minimization 
negative effect 

of WF 
uncertainty 

Maximization 
the DR 

aggregator’s 
profit 

Lack of being 
ISO’s viewpoint 

[19] DR 
aggregator 

Maximizing DR 
aggregator profit 
for participation 

in day-ahead 
market and real-

time market 

Minimizing 
cost of power 

balance in real-
time market 

- Lack of being 
ISO’s viewpoint 

- Different 
objective 

function in levels 

[20] ISO Minimization of 
total cost 

Maximization 
of DR 

aggregators’ 
profit 

Lack of solving 
two levels at the 
same time with a 

bilevel 
programming

 

 
Fig. 1. Proposed bilevel model. 
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According to the framework, DR aggregators enroll 
customers for DR participation and submit DR offers with 
relative constraints to ISO.  

In this model, DR aggregators actively communicate with 
ISO and customers to take the highest advantages of DR. In 
the day-ahead market for starting DR programs; ISO starts the 
DR programs through sending the required information to 
aggregators to register their DR bids. ISOs and DR 
aggregators can utilize a variety of systems and technologies 
to communicate demand response signals, ranging from 
internet-based protocols to dedicated networks communicating 
via DNP3. Moreover, the NAESB WEQ standards include 
requirements for all data flow from registration through to 
performance evaluation of demand sources involving 
deployment. Automated demand response (AutoDR) 
communication protocols, which are designed especially for 
large electricity customers and industrial customers, can be 
utilized for this purpose as well.  

DR aggregators design the proper contract schemes for the 
customer and assess the DR capability of loads to help them 
for qualification themselves to participate in DR programs.  

The contract between DR aggregator and customer is in a 
way that DR aggregator bids to the customer according to the 
assessment conducted on customers’ capabilities through 
transferred data from customers to DR aggregator. Likewise, a 
range of load reduction quantity is determined in the contract, 
based on customers’ physical load reduction strategies.  

In the next stage, aggregators run DR contracts in day-
ahead market to define optimal DR offer through maximizing 
their profit, and this data will be sent to ISO [16]. In the 
current paper, DR aggregators form DR offers of three load 
reduction options including LC, LS, and LR are considered. 

B.  ISO’s Perspective 
In this paper, the network is supposed to include renewable 

energy sources like WFs; therefore, the stochastic nature of 
wind power production should be modeled in a scenario-based 
method to show the possible events in the real-time.  

Wind speed is an uncertain variable followed by 
unpredictable power generation of wind power generator. 
Wind speed profile in one area is conformed approximately to 
the Rayleigh distribution [21]. To form the probability 
distribution function (PDF), some parameters should be 
calculated from given historical data processing [22], [23]. 
The equation of converting wind speed to electric power is a 
linear one extracted from [23]. Based on Monte-Carlo 
Simulation method (MCS) and using constructed Rayleigh 
PDF, several scenarios are generated to illustrate the behavior 
of wind power generator in real-time. To this end, an uniform 
random variable is generated and assigned to the mentioned 
PDF. Afterwards, a wind speed with a probability is obtained 
followed by the amount of wind power generation. Finally, 
with a scenario reduction method (forward method) the 
desired amount of scenarios can be achieved. This procedure 
is demonstrated in Fig. 2. 

Based on Fig. 1, ISO runs a pre-emptive market which 
describes an interaction among day-ahead market and 
balancing market [24]. This market framework can cope with 
the uncertainty of renewable generation why enough flexible 
capacity is made available for balancing through day-ahead 
energy reserve dispatch. The structure can be seen in Fig. 1.  

In fact, day-ahead energy dispatch decisions account for 
balancing operation through different scenarios which contain 
possible events in real-time [24]. ISO receives generating 
companies (GENCOs) offers for energy and up/down reserve. 

 
Fig. 2. Scenario generation flowchart. 

 
ISO also receives the DR offers from DR aggregators, and 

when the ISO clears the market, hourly DR scheduling will be 
sent to DR aggregators. DR options, strategies and framework 
proposed to ISO are similar to ones are proposed to customers 
by DR aggregators. A two-stage stochastic model is applied 
for short-term scheduling. The first-stage decisions are those 
made for day-ahead market including energy and reserve of 
GENCOs as well as DR scheduling for aggregators in each 
scheduling hour. The second-stage decisions are those that 
related to the realization of scenarios including the 
deployment of the reserve, force load reduction and wind 
spillage. 

C.  Demand Response Options 
DR aggregator can be designed for a specific class of 

customers [15], however, in this paper; we consider a 
comprehensive DR aggregator scheme which considers all 
customers and causes further reduction in a number of DR 
correspondence with consumers. Three load reduction 
strategies including LC, LS, and LR are utilized as DR options 
to participate in the day-ahead market and are expressed 
below. 
    1)  Load curtailment 

In LC option, customers reduce their consumption based on 
the program without shifting to other hours [15], [16]. The LC 
contracts include a number of offers k which each offer has a 
specific price according to an agreement among ISO and DR 
aggregators ,Cost LC

tnkDR  or DR aggregator and customers
,Cost LC

tnkDB . The DR cost is non-linear, however we apply price-

quota curve approach for linearization and the customers react 
to different prices in a stepwise way. The price of each step is 
constant and the quantity is a decision variable in a special 
range for each step. The stepwise function is shown in Fig. 3. 
A similar price pattern is obtained for LS and for the lower-
level contract between DR aggregators and customers.  

Accordingly, the higher incentive the aggregator offers, the 
higher volume of load reduction will be selected by customers. 

The LC contract also has a maximum and minimum 
quantity of load curtailment for each LC offer which is in 
equation (2) where LC

tnku is a binary variable to show if the LC 
offer is scheduled (equal to 1). The exact volume of LC 
quantity LC

tnkDRK of offer k at time t   for LC option is 
scheduled for DR aggregator bus n and the total cost for LC 
will be obtained by (1). The equation (3) indicates when the 
offer t will be started 1LC

tnky =  and when it will be terminated
1LC

tnkz = . Equation (4) is for preventing any coincidence in 
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starting and terminating. Minimum and maximum durations of 
load reduction are in (5) – (6) and the maximum number of 
LC in a day is given in (7).       
    2)  Load shifting and load recovery 

In LS option, customers’ loads are curtailed with the 
potential of shifting to another time within the same day [15], 
[16]. The shifting and supplying total volume of curtailed 
loads with the potential of shifting (as LS) will be conducted 
in other hours of the day as an LR option. The modeling of LS 
contract is similar to LC which is given in (1) – (7) ( X̂ LS∈ ). 
The modeling of a combination of LS and LR is presented in  
(8) – (10). According to (8), the volume of LR offer k  at  

time t , LR
tnkDRK  has a limitation and should be lower than a 

specific amount defined in the contract. Moreover, as (10) 
shows, the total volume of LS in a day should be equal the 
total volume of LS. Meanwhile, the LR and LS should not be 
taken place at the same time given in (9).  

In fact, LS presents how much load can be shifted in a 
certain peak time, while LR manages and controls to recover 
shifted loads through its precise program in order to avoid 
peak demand in off-peak hours and wind power spillage, 
especially in the morning when the wind speed is usually high. 

ˆ ˆ ˆ, , ,X X Cost X
tn tnk tnk

k KD

CDR DRK DR t TS n
∈

= ∀ ∈ ∀   (1) 

ˆ ˆ ˆ ˆ ˆ, , , , ,M in X X X M ax X X
tnk tnk tnk tnk tnkDR K u DR K DR K u t T S n k≤ ≤ ∀ ∈ ∀ ∀ (2) 

ˆ ˆˆ ˆ

1
X XX X

tnk t nk tnk tnku u y z−− = −   (3) 

ˆ ˆ 1X X
tnk tnky z+ ≤  (4) 
max, 1

ˆ ˆ
LC

nkt LCD
X X
tnk tnk

t

z y
−+

≥  (5) 

min 1
ˆ ˆ ˆ ˆ,min

1( )
nkt LCD

X X X X
tnk nk tnk t nk

t

u LCD u u
+ −

−≥ −  (6) 

ˆ ˆX X
tnk nk

t

y MC≤  
(7) 

 max, , , ,LR LR LR
tnk tnk tnkDRK DRK u t TR n k≤ ∀ ∈ ∀ ∀    (8) 

1LR LS
tnk tnku u+ ≤   (9) 

, ,LR LS
tnk tnk

t TR t TS

DRK DRK n k
∈ ∈

= ∀ ∀    (10) 
 

D.  Bilevel Model 

The decision-making problem pertaining to system 
operations that jointly minimizes the total operation cost and 
maximizes the DR aggregator profit can be formulated as a 
bilevel programming problem.  

 

ˆ,
3

Cost X
kDR

ˆ

1
X
kDRK

ˆ

2
X
kDRK

ˆ

3
X
kDRK

ˆ,
1

Cost X
kDR

ˆ,
2

Cost X
kDR

 
Fig. 3. DR price bidding.  

 
Fig.4. Interaction among different players. 

 
The upper-level problem deal with decisions to be made by 

ISO with the goal of reducing operation cost in the presence of 
different DR options and considering different wind 
production scenarios for increasing system security.  

The lower-level problem represents decisions to be made 
by DR aggregator and related to DR offers in contracts among 
ISO-DR aggregators as well as DR aggregators-customers 
with the target of maximization of DR aggregator profit.  

Since contracts among ISO-DR aggregators are in both 
upper- and lower-level, they will be scheduled at the same 
time through this proposed bilevel stochastic programming.  

The structure of this strategy and the interaction among 
different players are illustrated in Fig. 4. 

IV.  PROBLEM FORMULATION 

The stochastic day-ahead operation scheduling can be 
formulated as the stochastic bilevel model below: 

A.  Bilevel Programming 
According to Fig. 1, the upper-level is the minimization of 

total operation cost through a stochastic two-stage 
programming as MILP problem which the objective function 
is in equation (11) and constraints are in (12) – (38).  

The first and the second line of equation (11) is respect to 
first-stage of the program (here-and-now or day-ahead 
decisions) which includes generation cost of units, start-up and 
shut-down cost, units’ capacity cost of up- and down- reserve 
as well as total cost of demand response options (LS and LC). 
The third and fourth line of (11) are linked to second-stage of 
the program (wait-and-see or balancing operation decisions) 
[24] which includes the energy cost of units’ up- and down- 
reserve with wind spillage cost and forced load shedding in all 
scenarios. 

First-stage constraints are in (12) – (23). Equations (12) – 
(13) are maximum/minimum capacity limitation of units. Day-
ahead balance equation is in (14). Units’ up-/down- reserve 
limitations are in (15) – (16). Units’ ramp-up and down 
constraints are given in (17) – (18). Equations (19) – (20) 
represent the constraints that define the units’ start-up/shut-
down costs. DC power flow equation is presented in (21), and 
transmission line capacity is in (22). Equation (23) defines that 
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the amount of scheduled wind power should be less than the 
expected volume which is the forecasted amount of wind 
power. Meanwhile, (1) – (10) are applied for calculation of 
DR costs that ISO should pay to DR aggregators in the day-
ahead market.  

The second-stage constraints are in (24) – (29). Equation 
(24) is balancing condition for real-time market. DC power 
flow equations for real-time are shown in (25) – (26). Wind-
spillage should be lower than wind power of each scenario 
shown in (27). Limitations of up-/down-reserve for each 
scenario are shown in (28) – (29). The lower-level 
formulations are given in (30) – (44). The objective function, 
the maximization of DR aggregator profit as a linear problem, 
is given in (30). The first line of (30) is the revenue of DR 
aggregator from selling DR offers to ISO and the second line 
is the DR aggregators’ expenditures of purchasing DR from 
customers. The constraints (31) – (37) are for selling DR to 
ISO and constraints (38) – (44) are related to buying DR from 
customers. 

( )

( )

( )

( )

gen gen gen up up down down
tg tg tg tg tg tg tg

t NT g NG

LC LS
tn tn

n NN

up up down down
s tgs tgs tgs tgs

s S g NG

spill spill voll shed
tns tns tns tns

n NN

Minimize C P SUC C R C R

CDR CDR

Cs Rs Cs Rs

Cs W Cs Ls

π

∈ ∈

∈

∈ ∈

∈


+ + +


+ +


+ +


+ + 


 



 



 

(11) 

 

In (11), the here-and-now decision variables are

, , , , ,gen gen up down LC LS
tg tg tg tg tn tnP SUC R R CDR CDR and the wait-and-

see decision variables include , , ,up down spill shed
tgs tgs tns tnsRs Rs W Ls . 

These variables are defined through minimizing (11) with 
considering following constraints:  

max , ,gen up gen
tg tg g tgP R P u t g+ ≤ ∀ ∀  (12) 

min , ,gen down gen
tg tg g tgP R P u t g− ≥ ∀ ∀  (13) 

( ) , ,gen sch LC LS LR
tg tn tnk tnk tnk tn tl

g NG k KD l NL

p W DRK DRK DRK LD pf t n
∈ ∈ ∈

+ + + − = + ∀ ∀   (14) 

max,0 , ,up up
tg gR R t g≤ ≤ ∀ ∀  (15) 

max,0 , ,down down
tg gR R t g≤ ≤ ∀ ∀  (16) 

1 , ,gen gen up
t g tg gP P Rmp t g− − ≤ ∀ ∀  (17) 

1 , ,gen gen down
tg t g gP P Rmp t g−− ≤ ∀ ∀  (18) 

.
1( ), ,gen strt up gen gen

tg g tg t gSUC C u u t g−≥ − ∀ ∀  (19) 
.

1( ), ,gen sht dwn gen gen
tg g t g tgSUC C u u t g−≥ − ∀ ∀  (20) 

1 01
( ), ,tl nl nl

n NN nl

pf t l
X

θ θ
∈

= − ∀ ∀   (21) 
min max , ,l tl lpf pf pf t l≤ ≤ ∀ ∀  (22) 

exp0 , ,sch
tn tnW W t n≤ ≤ ∀ ∀   (23) 

( ) ( ), , ,up down scen sch spill shed
tgs tgs tns tn tns tns tls tl

g NG l NL

Rs Rs W W W Ls pfs pf t n s
∈ ∈

+ + − − + =− − ∀ ∀ ∀   (24) 

1 01
( ), , ,tls nls nls

n NN nl

pfs t l s
X

θ θ
∈

= − ∀ ∀ ∀   (25) 

min max , ,l tls lpf pfs pf t l≤ ≤ ∀ ∀  (26) 

0 spill scen
tns tnsW W≤ ≤  (27) 

0 up up
tgs tgRs R≤ ≤  (28) 

0 down down
tgs tgRs R≤ ≤  (29) 

 

where 
, ,

, ,

( )

( )

LC Cost LC LS Cost LS
tnk tnk tnk tnk

t NT n NN k KD

LC Cost LC LS Cost LS
tnk tnk tnk tnk

Maximize DRK DR DRK DR

DBK DB DBK DB

∈ ∈ ∈
+

− +

    (30)

subject to: 
, : , , ,LC Max LC LC

tnk tnk tnk tnkDRK DRK u t TC n kα≤ ∀ ∈ ∀ ∀ (31)
, : , , ,LC Min LC LC

tnk tnk tnk tnkDRK DRK u t TC n kβ− ≤ − ∀ ∈ ∀ ∀ (32)
, : , , ,LS Max LS LS

tnk tnk tnk tnkDRK DRK u t TS n kγ≤ ∀ ∈ ∀ ∀ (33)
, : , , ,LS Min LS LS

tnk tnk tnk tnkDRK DRK u t TS n kλ− ≤ − ∀ ∈ ∀ ∀ (34)

 max, : , , ,LR LR LR
tnk tnk tnk tnkDRK DRK u t TR n kζ≤ ∀ ∈ ∀ ∀    (35)

1, , ,LR LS
tnk tnku u t n k+ ≤ ∀ ∀ ∀   (36)

: , ,LR LS
tnk tnk tnk

t TR t TS

DRK DRK n kμ
∈ ∈

= ∀ ∀    (37)

, : , , ,LC Max LC LC
tnk tnk tnk tnkDBK DBK u t TC n kσ≤ ∀ ∈ ∀ ∀ (38)

, : , , ,LC Min LC LC
tnk tnk tnk tnkDBK DBK u t TC n kρ− ≤ − ∀ ∈ ∀ ∀ (39)

, : , , ,LS Max LS LS
tnk tnk tnk tnkDBK DBK ub t TS n kϕ≤ ∀ ∈ ∀ ∀ (40)

, : , , ,LS Min LS LS
tnk tnk tnk tnkDBK DBK ub t TS n kτ− ≤ − ∀ ∈ ∀ ∀ (41)

max, : , , ,LR LR LR
tnk tnk tnk tnkDBK DBK ub t TR n kε≤ ∀ ∈ ∀ ∀  (42)

1, , ,LR LS
tnk tnkub ub t n k+ ≤ ∀ ∀ ∀  (43)

: , ,LR LS
tnk tnk tnk

t TR t TS

DBK DBK n kω
∈ ∈

= ∀ ∀   (44)

B.  Implementing Duality Theory 
In the bilevel problem, the lower-level problem can be 

turned into its dual problem. Since each primal constraints of 
the lower-level problem (30) – (44) is continuous and convex, 
it can be represented by its dual constraints and strong duality 
conditions [4]. The nonlinear dual problem of the lower level 
and its dual constraints beside strong duality conditions are 
given in (45) – (50). The nonlinear problem (45) can be 
transferred to the linear problem through equations (51) – 
(54). Equation (51) defines all nonlinear items which are a 
multiplication of a binary variable and positive variable like 

LC
tnk tnkuα  as a single positive variable like tnkα′ .  

In (52) a boundary is defined for the new variable tnkα ′  
where tnkSPP  is a large enough quantity compared with a 
range of 

tnkα ′  (about more than 10 times). LC
tnku′  is a new binary 

variable which determines if  new variables (e.g. 
tnkα′ ) are zero 

or equal to former variables (e.g. 
tnkα ). Eq. (52) determines 

that if 0LC
tnku′ = , the variable 0tnkα′ =  and consequently

0tnkα = . On the other hand, (53) – (54) specify that if 1LC
tnku ′ =  

then tnk tnkα α′ = . Therefore, the dual problem of lower-level 
will be turned into a linear problem. 

, ,

, , max,

, ,

LC Max LC LC Min LC
tnk tnk tnk tnk tnk tnk

t NT n NN k KD

LS Max LS LS Min LS LR LR
tnk tnk tnk tnk tnk tnk tnk tnk tnk

LC Max LC LC Min LC
tnk tnk tnk tnk tnk tnk
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tnk tnk
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e α β
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∈ ∈ ∈

−

+ − +

+ −
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, , max,Max LS LS Min LS LR LR
tnk tnk tnk tnk tnk tnk tnkub DBK ub DBKτ ε− +

 
(45) 

subject to: 
, , , ,Cost LC

tnk tnk tnkDR t n kα β− ≥ ∀ ∀ ∀  (46) 
, , , ,Cost LS

tnk tnk tnkDR t n kγ λ− ≥ ∀ ∀ ∀  (47) 

, , , ,Cost LC
tnk tnk tnkDB t n kσ ρ− ≥ − ∀ ∀ ∀  (48) 

, , , ,Cost LS
tnk tnk tnkDB t n kϕ τ− ≥ − ∀ ∀ ∀  (49) 

, , , , , , , 0 , ,tnk tnk tnk tnk tnk tnk tnk tnk t n kα β γ λ σ ρ ϕ τ ≥ ∀ ∀ ∀ (50) 
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Linearization: 

 .... , , ,LC LR
tnk tnk tnk tnk tnk tnku ub t n kα α ε ε′ ′= = ∀ ∀ ∀  (51) 

.... , , ,LC LR
tnk tnk tnk tnk tnk tnkSPP u SPP u t n kα ε′ ′ ′ ′≤ ≤ ∀ ∀ ∀  (52) 

(1 ) ..... (1 ), , ,LC LR
tnk tnk tnk tnk tnk tnk tnk tnkSPP u SPP u t n kα α ε ε′ ′ ′ ′≤ + − ≤ + − ∀ ∀ ∀ (53) 

(1 ) ... (1 ), , ,LC LR
tnk tnk tnk tnk tnk tnk tnk tnkSPP u SPP u t n kα α ε ε′ ′ ′ ′≥ − − ≥ − − ∀ ∀ ∀

 

C.  Equivalent Single-level Problem 

(54) 

The stochastic bilevel problem of (11) – (44) can be turned 
into stochastic one-level problem through incorporating primal 
constraints of lower-level and its dual strong condition and 
constraints into upper-level.  

The strong duality theorem states that a feasible solution of 
the primal problem and dual problem are obtained if and only 
if primal and dual objective functions are equal [6]: 
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, , max,
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k

Max LC Min LC
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Max LS Min LS LR
k k k k k k

DBK DBK

DBK DBK DBK

σ ρ
ϕ τ ε

′ ′+ −
′ ′ ′+ − +

 
(55) 

 

Single-level mixed integer linear problem equivalent to 
(11) – (44) is achieved by minimizing the upper-level 
objective function and considering all upper-level constraints 
as well as primal and dual constraints of lower-level 
constraints which are given below. 

 

Minimize (11) (56) 
 

subject to: 
(1) – (10), (12) – (29) (57) 

(31) – (44), (46) – (55) (58) 

V.  NUMERICAL STUDIES 

A 6-bus system is applied to evaluate the proposed model 
in this paper; however, the model has been successfully tested 
on larger systems such as IEEE 24-bus system.  

The system shown in Fig. 5 includes 3 conventional 
generation units and a WF with the maximum capacity of 
20 MW. Each load bus has a DR aggregator.  

Three cases are considered to study the different states of 
this problem. The cases contain DR Price variation to show 
the effect of DR price on the outputs. In each case, the 
proposed model is compared with the case when DR 
aggregator-customer contract is not considered which we 
called here as being the model disregarding DR aggregator’s 
viewpoint (DDRV). In other words, since the proposed 
method has two levels and the second level is from DR 
aggregator’s viewpoint, in DDRV, the second level has been 
omitted and only the first level, which is the minimization of 
the total operation cost with DR options, has been considered.  

Hence, the impact of simultaneously considering ISO-DR 
aggregator contract and DR aggregator-customer contract is 
investigated versus considering only ISO-DR aggregator 
contracts, demonstrating the merits of the proposed model.  

Case 1 includes the main price scheme, which is placed as 
a reference to compare other cases. In case 2, the DR prices 
are 20% higher than the first case, and in case 3, conversely, 
DR Price is 20% lower than case 1. DR offer prices for load 
reduction of case 1 are categorized in Table II. DRC is 
relevant to DR offers of the ISO-DR aggregator contract, and 
DBC is related to offers of DR aggregators-customers 
contract. These DR prices are identified based on the price 
difference between selling and buying DR in the upper level 
and lower level. In fact, DR aggregator should take the 
advantages of DR price difference when buying from the 
customer and selling to ISO. Hence, the DR selling price has 
to be more than the DR buying price so that the DR aggregator 
can benefit from this market. These offers for all DR 
aggregators are the same. Other information about constraints 
of DR offers and options as well as 6-bus case study data are 
given in [25]. The problem is solved by solver CPLEX in 
GAMS [26] using a computer with 6 GB RAM and 2.6 GH, 
core i7 processor. The computation time is less than 1 second. 

The impact of the proposed model on load profile for the 
case 1 is demonstrated in Fig. 6. As can be seen, after running 
DR programs, LC, LS, and LR are applied to the load profile. 
Between hours 10 to 18, LR and LS are called. Therefore, the 
load curve for peak hours is shaved. However, this LC for 
proposed model is more than when just interaction between 
ISO and DR aggregator is considered as a DDRV method. The 
reason behind this is why unlike the DDRV method, in the 
proposed model is considering the interaction of both ISO-DR 
aggregator and DR aggregator-customer. Hence, the model 
includes the detail information of DR aggregator contract with 
customers, and it gives more precise results. Moreover, the 
curtailed loads are shifted to off-peak hours between hours 1 
to 8 and customers will consume their voluntary curtailed load 
in off-peak hours as LS and LR options. As a result of the 
previous phenomenon for LC, more load demands are shifted 
and recovered to the off-peak hours through the proposed 
model in compared with the DDRV method.  

In Table III, the impact of the proposed model on unit 
commitment in case 1 is illustrated. Accordingly, by 
implementing the proposed bilevel model, there is no need for 
committing the generator number 2 until hour 11. It causes a 
decrease in energy cost which is units’ generation and reserve 
cost following by a drop in total operation cost which is 
demonstrated in Table V. It is due to the fact that since the 
proposed model has a closer look at details of customer 
constraints and decision-making variables, the cheapest unit 
(G1) produces more power in proposed model to supply the 
both shifted and regular loads. 

DR 
Agg
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R

 
A

gg
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A

gg

Fig. 5. One-line diagram of studied 6-bus network. 
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TABLE II 
DR prices for 5 offers and two options in case 1 

 

CASE1 K1 
(€/MWh) 

K2 
(€/MWh) 

K3 
(€/MWh) 

K4
(€/MWh)

K5
(€/MWh)

DRC 
LC price 10 11 12 13 14

LS Price 10 11 12 13 14

DBC 
LC price 8 9 10 11 12

LS Price 8 9 10 11 12

 

  
Fig. 6. Impact of proposed DR model on load profile for case 1.  

In the second case, with increasing the DR offer price for 
both ISO-DR aggregator contracts and DR aggregator-
customers, no change for load reduction is taken place based 
on Fig. 7. However it was expected that higher DR price leads 
to less scheduled load reduction. Therefore, it can be 
concluded that increasing DR price at least up to 20% has no 
negative impact on customers’ DR participation. Moreover, 
the amount of load that should be recovered based on LR at 
each off-peak hour is different in case 2 compared with case 1 
for both DDRV and the proposed method. Because according 
to the model, the consumption can be freely shifted to each 
off-peak hour up to 2 MW. Hence, loads are generally shifted 
to hours with more generation. For example, at hour 5, G1 
generates 193.78 MW in case 2 in the proposed bilevel model, 
while this generation is 187.69 MW in case 1. Therefore, as 
can be seen in Fig. 7, the recovered loads at hour 5 in case 2 
are more than this volume in case 1. In addition, there is no 
difference between unit commitment status of cases 1 and 2 
because the higher DR price does not aid to improve system 
operation condition. As it was expected, the higher price for 
DR offer is considered, the higher total operation cost, DR 
implementation cost and energy cost take place which is 
illustrated in Table V.  

The load profile in case 3 for the proposed bilevel model 
has no remarkable changes compared with cases 1 and 2. This 
reflects the fact that DR price variation within ±20% has no 
impact on the load reduction pattern for the proposed method. 
On the other hand, load reduction in DDRV method in case 3 
at hour 11 is less than case 1 and case 2 according to Fig. 8, 
while the DR price in case 3 is lower and the load reduction is 
supposed to be equal or higher than other cases. The reason is 
due to lack of enough accuracy for the DDRV model. Another 
difference is in the amount of load that is shifted and 
recovered at hours 1 to 8; the reason is similar to what 
happens in case 1 and case 2 in this term. On the other hand, 
in this case, according to Table IV, the unit commitment status 
in both conventional and proposed bilevel methods is the 
same, because the DR price is low and it is better to apply DR 
instead of turning on the generators, even for DDRV. In other 
words, unlike the case 1, generator number 2 is not scheduled 
and committed for the first 8 hours even in the DDRV method.  

TABLE III 
Unit commitment status of units comparison among proposed bilevel 

model and conventional method for case 1 
 

unit DDRV method (Hours 1 to 24)
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
unit Proposed bilevel method (Hours 1 to 24)
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
 

 
Fig. 7.  Impact of proposed DR model on load profile for case 2.  

 

 

 
Fig. 8.  Impact of proposed DR model on load profile for case 3.  

 

 
Moreover, according to the Table V, the total operation 

cost of two methods in case 3 are relatively the same. It is 
concluded that low price of DR offers is not able to 
demonstrate the positive impact of the proposed bilevel 
method, because in reality, too low DR prices cannot be 
reasonable and applicable for DR implementation.  

Security cost, which is the cost of dealing with balancing 
market scenarios in the second stage, is lower in the proposed 
bilevel method in case 1 and 2; however, this cost is the same 
in the third case based on Table V. 

A sensitivity analysis for DR prices is conducted for the 
proposed model which is demonstrated in Fig. 9. Accordingly, 
case 1 is assumed as the base of DR price. The DR price will 
vary between ±5%	and ±30% . Meanwhile, the impact of 
different WF maximum capacities is studied. As expected, 
with increasing DR prices, total operation cost generally 
grows for each WF capacity. Moreover, the larger WF is 
installed, the lower total operation cost is obtained. However, 
installing more than 22 MW WF will cause an increase in total 
operation cost due to and increase the wind spillage cost. 
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TABLE IV 
Unit commitment status of units comparison among proposed bilevel 

model and conventional method for case 3 
 

unit DDRV method  (Hours 1 to 24) 
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
unit Proposed bilevel method (Hours 1 to 24)
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
TABLE V 

Different costs in all cases based on two methods 
 

Case Method Total operation 
cost (€) 

Energy 
cost (€) 

Security 
cost (€) 

DR 
cost (€) 

Case1 
DDRV 90158 88878 862 2142
Bilevel 88475 86664 835 2646

Case2 
DDRV 90574 88881 862 2554
Bilevel 89004 86664 835 3175

Case3 
DDRV 87740 86876 835 1699
Bilevel 87946 86664 835 2117

 
 

 
Fig. 9. The impact of DR prices and WF capacity on total operation cost. 

VI.  CONCLUSIONS 

A stochastic bilevel problem has been formulated in which 
the upper-level problem aims to minimize the total operation 
cost of the ISO and the lower-level problem seeks the 
maximum profit of DR aggregators. A two-stage stochastic 
programming is applied to cope with the uncertainty of wind 
power production. DR aggregators’ behavior was modeled 
through profit maximization functions. Aggregators determine 
their DR trading shares with ISO and customers through three 
DR options, namely LC, LS, and LR. Comparisons among the 
proposed bilevel model and the DDRV method as well as 
different prices for DR offers were performed in a 6-bus 
system. The results demonstrated that the proposed method 
could reduce more loads in peak hours followed by more load 
recovery in off-peak hours. Moreover, the total cost was 
reduced compared with the DDRV method. These 
improvements and differences among the proposed bilevel 
method and DDRV method are due to the fact that the 
scheduling in the proposed method was performed based on 
more information related to DR and had a closer look at 
details of customer constraints. However, when the prices of 
DR offers were low, there was no remarkable difference 
between operation costs in the proposed method and DDRV 
method. Likewise, the operation cost was reduced when a 
higher capacity of WF was used; however, after a specific 
higher capacity of WF the operation cost increased due to 
wind spillage cost. Enabling the customers for choosing the 

DR aggregator and making a competition among DR 
aggregators can be a very interesting suggestion for future 
work. Moreover, a more detailed modeling for load reduction 
can be performed with considering ramp rate constraint of 
load reduction as a future work. Another future work can be 
considering the DR uncertainty within the model. 
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