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ABSTRACT In this work, a generalized mathematical formulation is proposed to model a generic public
transport system, and a mixed-integer linear programming (MILP) optimization is used to determine the
optimal design of the system in terms of charging infrastructure deployment (with on-route and off-route
charging), battery sizing, and charging schedules for each route in the network. Three case studies are
used to validate the proposed model while demonstrating its universal applicability. First, the design of
three individual routes with different characteristics is demonstrated. Then, a large-scale generic transport
system with 180 routes, consisting of urban and suburban routes with varying characteristics is considered
and the optimal design is obtained. Afterwards, the use of the proposed model for a long-term transport
system planning problem is demonstrated by adapting the system to a 2030 scenario based on forecasted
technological advancements. The proposed formulation is shown to be highly versatile in modeling a wide
variety of components in an electric bus (EB) transport system and in achieving an optimal design with
minimal TOC.

INDEX TERMS Electric buses, mixed-integer linear programming, charging infrastructure.

NOMENCLATURE
A. ACRONYMS
AML Algebraic Modeling System
CC City Center
DC Depot Charger
DER Distributed Energy Resource
EB Electric Bus
ESS Energy Storage System
EV Electric Vehicle
FC Flash Charger
FLC Fuzzy Logic Controller
GA Genetic Algorithm
HF High Frequency
LD Long Distance
LF Low Frequency
LV Low Voltage

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohsin Jamil .

MD Medium Distance
MILP Mixed-Integer Linear Programming
MIP Mixed-Integer Programming
MPC Model Predictive Control
MV Medium Voltage
NLP Non-Linear Programming
SD Short Distance
SoC State-of-Charge
SU Suburban
TC Terminal Charger
TOC Total Ownership Cost

B. SETS AND INDICES
i Index for stops.
j Index for trips.
k Index for buses.
r Index for routes.
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1 Index of the first element in a set.
end Index of the last element in a set.
Ir Set of all stops in route r.
Jr Set of all trips in route r.
K r Set of all buses in route r.
R Set of all routes.
H Set of all available on-route charger types.

C. VARIABLES AND PARAMETERS
dsr Average daily distance driven on route r .
Lr Length of route r.
Ns
r Number of stops in route r .

ddr Average distance between stops on route r .
Hr Operating hours of route r (time difference

between first and last bus of the day)
T r Average duration of route r.
N t
r Daily number of trips for route r.

TOC Total annual ownership cost of all routes.
Cdepot
r Total annual cost of all depot chargers in route r .

Cbatteries
r Total annual cost of all batteries in route r .

Cchargers
r Total annual cost of all chargers in route r .

Conroute
r Total annual cost of batteries in route r .

Coffroute
r Total annual cost of off-route charging in

route r .
dr Binary variable indicating depot existence in

route r .
Cd Annual ownership cost of a depot charger.
bk,r Capacity of battery on bus k on route r .
CB Annual ownership cost of batteries, per kWh.
xi,h,r Binary variable indicating presence of on-route

charger type h, at stop i, in route r
CC
h Annual ownership cost of on-route charger

type h.
ei,j,r Energy charged at stop i, during trip j, in route r .
CE
i,j,r Energy cost per unit at stop i during trip j,

in route r .
dyear Number of days in a year.
nbusr Number of buses deployed to route r .
Fbr Frequency of buses is route r.
Ei,j,k,r Battery SoC at stop i during trip j, on bus k ,

in route r .
B̄ Upper bound for the batteries’ SoC.
B Lower bound for the batteries’ SoC.
Eh Maximum charge capacity of onroute charger

type h.
EDC Maximum charge capacity of the depot charger.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The transport sector is simultaneously a major greenhouse
gas emitter [1] and energy consumer worldwide, with its
share of global energy consumption reaching a record high
in 2019 [2]. With the increasing popularity of electric vehi-
cles (EVs) as a highly versatile distributed energy resource
(DER), the transport sector becomes a strategic priority in

energy systems research and development. There have been
numerous research studies aiming at harnessing the bene-
fits of consumer-owned EVs for modern smart grids (SGs)
through the use of modern control strategies [3]–[5]. Electric
buses (EBs) seem to be less often investigated, which can be
used to bring about techno-economic benefits in SG operation
if optimized [6], [7].

In the context of public transport systems, the transition to
a fully electric fleet is quite easy to carry out for three main
reasons: First, due to heavy usage, public transport buses are
frequently replaced and thus EBs can gradually replace con-
ventional buses in the fleet without causing any interruption.
Second, public transportation schedules are largely fixed (on
the short-to-medium term), and thus individual upgrades to
EBs can be seamlessly performed. Third, investment stabil-
ity is mostly guaranteed in the public transportation sector,
which facilitates the acquisition of new EB technologies [8].
In addition to the aforementioned facts, EB fleets have been
shown to have a lower total ownership cost (TOC) compared
to their conventional counterparts [9].

With all this being said, the main challenge hindering the
transition thereto is the complexity involving designing an
optimal charging infrastructure which meets the needs of the
transport system and adheres to techno-economic constraints
while maintaining the minimal TOC of the system [8]. With
this being the primary motivation behind this work, a survey
or recent scientific literature has been performed to identify
the state-of-the-art progress on this topic.

B. STATE-OF-THE-ART SURVEY
In a recent study [10], the design of an EB transport sys-
tem was optimized in terms of the fleet size and mix (with
specifications of different bus types), and the charging infras-
tructure. The study identified that range limitation is indeed
a main hurdle in electrification of public transport systems
and that optimal design thereof is of paramount importance.
By modeling the transport network of two European cities,
a genetic algorithm (GA) was used obtain the optimal mix of
EB models and the required number of each. The objective
function of the GA was formulated as the TOC.

The authors in [11] used an enhanced GA algorithm com-
bined with a departure time adjustment procedure to optimize
EB deployment scheduling for a given bus route. The pro-
posedmodel was applied to a bus route from a real-world pub-
lic transit system in Nanjing, China. The results of the study
showed that by applying the proposed model to optimize EB
deployment and scheduling on that route, the operating costs
are decreased due to the reduced number of deployed buses
and drivers, as compared to experience-based scheduling
used in the real-world scenario.

Another study [12] utilized a GA as an optimization
approach for EB-based public transport systems. A real-
world transit network in China was modeled, and the objec-
tive was to determine the optimal EB scheduling and charging
infrastructure in order to meet the (constraint) scheduled
routes with minimal charging costs. A sensitivity analysis
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TABLE 1. A synopsis of recently published studies addressing the optimization of EB public transportation networks.

was used to assess the economic viability of the charging
power and discharging depth (direct functions of charging
infrastructure and EB schedules, respectively).

In [13], the target of the study was to evaluate the inter-
action between EB public transportation networks and the
electrical grid, in the presence of dynamic pricing. A non-
linear programming (NLP) model was used to determine the
optimal charging schedule for EBs of eight EB routes in
Shenzhen, China. The proposed optimization framework was
employed to determine the charging schedules which would
provide a tradeoff between meeting the transportation net-
work constraints and minimizing the power grid congestions.

Similarly, [14] aimed at optimizing the power exchange
between the public transport network and the power grid
through the use of fuzzy logic control (FLC) to control the
energy flow between the charging infrastructure and the EBs
in the predefined transport network. The proposed model was
used to perform simulations based on EB routes in Assam,
India, and was shown to improve the voltage profile of the
power grid while adhering to the transport network require-
ments and route schedules.

While the main focus of some studies was optimizing
the EB schedules, others were concerned with optimizing
the charging infrastructure, given a specified EB fleet. The
previous studies [10], [12], like many others, considered only
the presence of a charger at the EB depot, meaning they to
return to the original depot in order to recharge. Other studies
tackled this problem by considering other locations for energy
storage systems (ESSs) and/or fast chargers throughout the
network which can be used to charge the EBs without having
to make a full trip back.

In [15], mixed-integer programming (MIP) was used to
minimize the TOC of a real world transportation network
of a town in the United States. The optimal deployment of
fast charging stations and ESS throughout the network was
achieved. Similarly, another study [16] utilized MIP to for
optimal charging station planning for a transport network
of a city in China. The objective in this case was to deter-
mine the optimal sizing and siting of the charging stations,

which minimizes the total cost at each stage of the planning
problem.

The most recent scientific literature addressing the prob-
lem of optimizing EB public transport networks have been
surveyed, and compiled in Table 1. The conducted literature
survey led to two main findings:

• All surveyed scientific publications have been con-
cerned with the optimization of one or two elements
of the transport system, with the other aspects being
considered as model constraints.

• All studies were performed on specific case studies
based on existing transport networks in real-world cities.
No studies were found to model generic networks or
testing the universal applicability of the proposedmodel.

Accordingly, the novel contributions and objectives of this
work can be summarized as follows:

• A universal mathematical model for fully electric public
transportation networks is developed and formulated as a
mixed-integer linear programming (MILP) optimization
problem with the objective of minimizing the TOC.

• The nature of the proposed model is universal, i.e., any
set of routes, buses, and type of charging infrastructure
can be considered as a parameter or a decision vari-
able. In this sense, the model is highly versatile and
can be used to optimize existing systems or to design
new ones.

This manuscript is organized as follows: Section I introduced
the background and motivation behind this work and high-
lighted the contributions. In Section II, the modeling of a
public transport model is introduced by describing all the
components of the system. In Section III, the mathematical
formulation of the MILP optimization model is presented. In
Section IV, three different case studies are performed in order
to validate and demonstrate the proposedmodel. In Section V,
a discussion of the applicability of the proposed model is
presented, in addition to suggestions for future work aiming
at extending or enhancing this model. Finally, in Section VI
the conclusions of this study are summarized.
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FIGURE 1. Illustration of a generic public transport network and its components: depots, buses, routes, stops, terminals, and charging infrastructure.

II. PUBLIC TRANSPORT NETWORK MODEL
In Fig. 1, a public transport system is illustrated along with its
components. A generic system is comprised of the following
components:
• Depot: The depot is where the buses are dispatched
from, and is where they park and charge while they are
not in service.

• Electric Bus: The electric buses (EBs) are the backbone
of the network, traversing the routes with passengers on
board. EBs have onboard batteries which are recharged
at designated charging locations in the network.

• Routes: The routes are the paths which EBs must tra-
verse to transport passengers. Routes are made up of bus
stops and are scheduled. The scheduling can be based
on a specific time at which the EB must arrive/depart
from/to each spot, or a frequency for the EBs to traverse
the route (e,g. 1 bus to pass by a stop every X minutes).

• Terminals: Terminals are usually bus stops at which
several routes intersect and therefore have an allocated
area and infrastructure for use by the EBs.

• Charging Infrastructure: The charging infrastructure
provides the energy needs of the system. The chargers
where buses can recharge their batteries can be off-route
(e.g. at depots) or on-route (e.g. at terminals).

As illustrated in Fig 1, three main types of chargers are
currently available commercially [17]–[19]. The first is the
depot charger (DC), typically used to charge the buses during
the time when they are out of service and parked at the depot
(off-route). DCs typically have rated powers ranging from 50
kW to 100 kW, intended for slow charging of the batteries
overnight or while they are out of service.

The second type of chargers is the terminal charger (TC).
As the name suggests, a TC is typically installed for on-route

charging at main terminals, with its rated power ranging from
500 kW to 600 kW. The TC charges the onboard battery
through a converter, typically connected to the medium volt-
age (MV) power grid through a substation transformer at the
terminal, as illustrated in Fig 2.

FIGURE 2. Schematic of a TC grid connection.

FIGURE 3. Schematic of a FC grid connection.

The third type is the flash charger (FC), used for on-route
fast charging at regular stops, typically has a rated power
ranging from 400 kW to 500 kW. Unlike the TC, the FC is
installed at regular stops, and thus is connected to the low
voltage (LV) power grid, typically coupled with a battery to
avoid causing a load spike on the LV grid, which would be
more sensitive to such load fluctuations as opposed to theMV
ones. Another reason that buses spend more time stopped at
terminals (a few minutes) compared to regular stops (a few
seconds).

In fact, this is the main technical difference between TCs
and FCs. Although their costs and rated powers are similar,
the main different influencing the choice between the maxi-
mum time at which EBs can spend charging at either.

From a cost perspective, on-route chargers are typically
associated with much higher (an order of magnitude) cap-
ital costs than depot chargers. The investment is justified
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by their fast charging rates, which allow EBs to charge on-
route, decreasing the parking time at the depot, and thereby
minimizing the number of idle buses in the network and total
investment in batteries. This is one of the trade-offs which
upholds the need for an optimization model for designing the
charging infrastructure.

Accordingly, all three types of commercially available
charging infrastructures (DC, TC, and FC chargers) and their
aforementioned technical and economic characteristics are to
be considered in the current model.

Most commercially available EBs are fitted with batteries
with capacities ranging from 80 kWh to 320kWh [20], [21].
As such, in the current model the battery capacity of EBs
assigned to each route are modeled as a design variable for
the optimization problem.

Defining generic routes is crucial to establish an adequate
framework for the optimization model. Routes can be catego-
rized based on two key parameters [10], [22]:
• Average Distance Between Stops: This parameter is an
indicator of the route location. Routes within large cities
or densely populated areas are associated with shorter
average distances between stops compared to those in
suburban areas. This is expressed as:

d sr =
Lr

N s
r − 1

(1)

where d sr is the average distance between stops for route
r . Lr is the length of route r , and N s

r is the number of
stops in route r .

• Average Daily Distance: Considering normal operation
in which an EB is assigned a specific route each day, this
is expressed as:

ddr =
Hr
Tr
· Lr = N t

r · Lr (2)

where ddr is the average daily distance on route r . Hr
is circulating hours of route r (difference between first
and last bus of the day), Tr is the average duration of the
route, and N t

r is the daily number of trips in route r.
Having defined these two key parameters, generic routes
can be categorized into different types to provide physical
meaning. In this study, the categorization defined in Table 2 is
used to describe different routes in the case studies. Accord-
ingly, generic routes can be categorized into city (CC) or
suburban (SU) routes based on d sr , or as short (SD), medium
(MD), or long distance (LD) based on ddr .

III. OPTIMIZATION MODEL
As any optimization problem, the proposed MILP model
consists of two main elements: the objective function and
problem constraints, which are detailed subsequently.

A. OBJECTIVE FUNCTION
Note that in the current formulation the TOC is calculated
as an annual value. Electricity charging costs are operating
costs and therefore the annual value can be calculated directly.
However, the charging infrastructure and battery costs have

capital investments, and therefore the capital cost is divided
by the equipment lifetime and summed to the yearly operating
costs to obtain their equivalent annual cost:

annual cost =
capital cost
life time

+ annual operating cost (3)

The objective function to be minimized represents the TOC
of the transport system and is shown in (4). For each route
in the system, the annual TOC is calculated as the summa-
tion of five cost terms. The five cost terms, from left to
right, correspond to: the annual running cost of the depot
station(s), annual ownership costs of batteries for all buses in
circulation, annual ownership cost of all the entire charging
infrastructure, annual electricity cost for on-route charging
(by TCs and FCs), and finally the annual electricity cost
for off-route charging (by DCs). Each of the five terms is
elaborated in (4)-(9).

min TOC
=

∑
r∈R

(
Cdepot
r +Cbatteries

r +Cchargers
r +Conroute

r +Coffroute
r

)
(4)

Cdepot
r
= dr · Cd (5)
Cbatteries
r

=

∑
k∈Br

(
bk,r · CB

)
(6)

Cchargers
r

=

∑
i∈I r

∑
h∈H

xi,h,r · CC
h (7)

Conroute
r

=

∑
i∈I r

∑
j∈J r

(
ei,j,r · CE

i,j,r

)
· dyear · nbusr (8)

Coffroute
r
= eend,r · CE

end,end,r · dyear · n
bus
r (9)

The first term (Cdepot
r ) corresponds to the depot charger

annual TOC for each route r and is expressed in (5). The term
is a multiplication of a binary variable (dr ) representing the
existence of the depot charger (for route r) multiplied by the
annual ownership cost of running a depot charger (Cd ).
The second term, Cbatteries

r , is the annual TOC of all batter-
ies in route r and is shown in (6). For each route, this is the

TABLE 2. Categorization of generic routes into City (CC), Suburban (SU),
Short (SD), Medium (MD), and Long (LD).
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summation of the battery costs of each bus k deployed to this
route (Br is the set of all buses deployed to route r) which is
calculated as the capacity of each battery (bk,r ) multiplied by
its annual ownership cost (CB) per-kWh.
The third term (Cchargers

r ) is shown in (7) and corresponds
to the annual cost of the charging infrastructure on each
route r . Here, i and h are the positive integer indices for
the stops and charger type, respectively, and I r and H are
the set of all stops in route r and set of available on-route
charger types, respectively. For each route r , xi,h,r is a binary
variable indicating the presence of a charger of type h at stop i,
and CC

h is the annual ownership cost of a charger of type h.
Accordingly, Cchargers

r is calculated for each route r as the
sum of the annual cost of all present charger types (decided by
the binary variable) at each stop, and is summed for all stops.

The fourth and fifth terms in (8) and (9) correspond to the
total cost of energy supplied to recharge the batteries through
on-route and off-route chargers, respectively.

In Eq. (8), j corresponds to the index of the trip in J r , which
is the set of all daily trips made on route r (the number of
daily trips made on each route is determined by the frequency
of the route). For each route r, ei,j,r and CE

i,j,r are the energy
charged at stop i during trip j, and the corresponding cost per
unit of electricity, respectively. dyear is the number of days
in a year, set as 365, and nbusr is the total number of buses
traversing the route. This last value can be calculated based
on the two parameters of each route which were introduced
in (1) and (2), as is shown in (10):

nbusr =
Hr
N t
r
· Fbr (10)

In (10), Fbr is the frequency of buses is route r and the other
variables have been defined in Section II.A.2. Accordingly,
Conroute
r is calculated for each route r as the sum of the annual

cost of electricity charged at all stops, for all trips.
In Eq. (9), the final term of the TOC objective function is

shown (Coffroute
r ) which is the cost of electricity charged off-

route (while the EBs parked or are not in service) for route r .
In this equation, eend,r and CE

end,end,r and correspond to the
energy charged at the end of the route (i.e., off-route), and the
corresponding cost per unit of electricity, respectively. It is
important to note that in this formulation, the last stop in a
bus schedule corresponds to the depot. However, this does
not dictate the presence of a charger at the depot (DC), which
is a decision variable dependent on the binary variable dr .
With all the terms being defined, the objective function for
the transport system TOC is evaluated as the summation of
the total costs of all routes in the network, denoted by set R.

B. CONSTRAINTS
The constraints of the optimization problem can be divided
into four groups:

1) INFRASTRUCTURE CONSTRAINTS
The first constraint is associated with the charging infrastruc-
ture, and guarantees that at each stop there is only one type of

charger installed (based on the binary decision variable xi,h,r
which was previously introduced), as is represented in (11).∑

h∈H

xi,h,r ≤ 1, ∀r ∈ R, ∀i ∈ I r (11)

2) BATTERY CONSTRAINTS
The second set of constraints are associated with the batteries
onboard the EBs, and are represented by (12)-(14). To protect
the health of the batteries, for each bus k , the battery State-of-
Charge (SoC), denoted by Ei,j,k,r , must be within the upper
and lower bounds B̄ and B, as set by (12) and (13), respec-
tively. As defined in the previous section, bk,r is the capacity
of the battery installed on bus k deployed to route r . In (14),
sets the SoC boundary conditions to be at the maximum value
(B̄ · bk,r ) I.e., the EB starts each trip from the depot with
full charge. It is important to note that with the circular bus
route nature, the first and last stops are the same. I.e., stop
i = 1 is the same as i = end. Hence, the SoC at both, E1,j,k,r
and Eend,j,k,r , are equal as set by (14). Constraints (12)-(14)
are applied globally: at each stop in each route for all buses
deployed to all routes.

Ei,j,k,r ≤ B̄ · bk,r , ∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r , ∀k ∈ K r

(12)

Ei,j,k,r ≥ B · bk,r , ∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r , ∀k ∈ K r

(13)

E1,j,k,r = Eend,j,k,r = B̄ · bk,r ,

∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r , ∀k ∈ K r (14)

3) CHARGED ENERGY CONSTRAINTS
The third set of constraints in (15)-(21) are related to the
energy exchange between the EBs and the charging infras-
tructure. First, (15) ensures that energy can only be injected
from the electrical grid to the EBs through the chargers and
not vice-versa. This constraint can easily be modified or
removed in case bi-directional energy flow with the power
grid is possible and to be considered. Constraint (16) dictates
that if there is no charger installed at a stop (xi,h,r = 0),
then the energy exchanged at that stop must be equal to zero
(ei,j,r = 0). Constraint (17) sets the charging power according
to the charger type installed at a stop (xi,1, xi,2, etc.), matching
it to the corresponding maximum charging capacity of this
charger type (E1, E2, etc.).

Constraints (18) and (19) imposes xi,h,r that there can only
be one type of charger at each stop in each route. In case there
is a depot charger (dr = 1), constrain (20) limits charging at
the end of each trip to correspond to the maximum charging
capacity of the depot charger (EDC ). Constraint (21) imposes
that there must be a charger installed at the first/last stop of
each route, such that if there is no depot charger (dr = 0),
charger type 1 (e.g. terminal charger) is imposed on that stop
to comply with constraint (14). In this sense, the model opti-
mizes the design of the system by choosing between the depot
charger and the cheapest opportunity charger depending on
which is more cost effective. In real-life terms, this is seen in
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the case that some routes start/end at terminal (with a TC) and
other start and end at the main depot (with a DC).

ei,j,r ≥ 0, ∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r (15)∑
h∈H

xi,h,r = 0 H⇒ ei,j,r = 0, ∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r

(16)

xi,h,r = 1 H⇒ ei,j,r ≤ Eh, ∀r ∈ R, ∀i ∈ I r , ∀j ∈ J r

(17)∑
h∈H

xi,h,r ≥ 0, ∀r ∈ R, ∀i ∈ I r (18)∑
h∈H

xi,h,r ≤ 1, ∀r ∈ R, ∀i ∈ I r (19)

dr = 1 H⇒ eend,j,r ≤ EDC , ∀r ∈ R, ∀j ∈ J r (20)

dr = 0 H⇒, xend,1,r = 1, ∀r ∈ R (21)

4) ENERGY BALANCE CONSTRAINTS
The final constraint in (22) is associated with the total energy
balance of the system, such that the total SoC consumed by
all buses is equal to the total SoC charged.

The equation is applied for all buses deployed to all routes
in the network, such that for each bus, the sum of the SoC
difference between all subsequent stops (Ei,j,k,r −Ei−1,j,k,r ),
must be equal to the total energy charged at all stops (includ-
ing the terminal or depot).∑
i=2...end

(
Ei,j,k,r − Ei−1,j,k,r + ei,j,k,r

)
= 0

∀r ∈ R, ∀j ∈ J r , ∀k ∈ K r (22)

C. COMPUTATIONAL IMPLEMENTATION
The YALMIP package (version R20181012) was used as
the algebraic modeling language (AML) for the proposed
model, on MATLAB (version R2019b). The Gurobi solver
(version 8.0) was used to optimize the system using MILP.

Here it is important to note that the model of the system
and the optimization algorithm employed are distinct. The
main objective of this work is to formulate a generalized
mathematical formulation which allows the modeling of all
components of any generic fully electric public transport
network. Given that the design problem is offline in nature,
the choice of deterministic optimization is generally favored
over a meta-heuristic one, which would yield sub-optimal
solutions. The choice of a MILP optimization solver was due
to its deterministic nature which guarantees the global opti-
mal value for any given case using the proposed formulation.

IV. CASE STUDIES
A. DESCRIPTION OF THE DIFFERENT CASE STUDIES
In order to validate and demonstrate the universal applicabil-
ity of the proposed optimization model on a wide range of
problems, three case studies were performed:

1. In the first case study, three generic routes are con-
structed with different lengths. The proposed model is
used to determine the optimal design, sizing, and siting

of the charging infrastructure in addition to the sizing
of the batteries for each of the given routes.

2. In the second case study, a generic transportation net-
work is constructed based on a combination of 180 dif-
ferent routes, belonging to all six categories (CC-SD,
CC-MD, CC-LD, SU-SD, SU-MD, and SU-LD). The
optimal design, sizing, and siting of the charging infras-
tructure in addition to the sizing of the batteries for
all deployed EBs and routes in the entire system is
determined.

3. In the third case study, a long-term transport network
planning problem is investigated, by studying the effect
of long-term (10-year ahead) forecasted change on
battery costs on the results obtained in the second
case study. A comparative analysis is then performed
between the present-day (2020) and future (2030) sce-
narios in terms of the TOC of the network and its
respective breakdown.

The three defined case studies allow the validation of the pro-
posed model in terms of its applicability on different classes
of transport system design problems, namely the optimization
of specific routes, design of large-scale system, and long-term
optimal investment planning of large-scale transport systems.

TABLE 3. Specifications of routes used for the first case study.

TABLE 4. Classification of commerically available EBs according to
average energy consumption [2], [7], [8].

TABLE 5. Techno-economic specifications of chargers.

TABLE 6. Techno-economic specifications of batteries.
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FIGURE 4. Charger deployment for Route A.

FIGURE 5. Battery SoC variation (top) and energy charged at each station
(bottom) during the full daily cycle of Route A.

B. CASE STUDY DEFINITIONS AND RESULTS
1) OPTIMAL DESIGN OF INDIVIDUAL BUS ROUTES (CASE
STUDY 1)
In this first case study, the objective is to test and validate
the proposed mathematical formulation, by attempting to
determine the optimal charging infrastructure deployment
and battery sizing for individual EB routes. For this purpose,
three generic routes are constructed with different lengths,
as detailed in Table 3. Based on length of the route, different
bus sizes are needed for each route, whose specifications are
in accordance with Table 4. Techno-economic specifications
of commercially available chargers to choose from and the
batteries are provided in Tables 5 and 6, respectively (based
on information by ABB Canada and Siemens [18], [19]). The
latter are constrained between 80 kWh and 320 kWh with
20 kWh increments. In the first case study, nbusr is set to unity
for all routes, i.e. one EB dispatched to each route.

The result for the optimal charger deployment in Route A
is shown in Fig. 4. As can be seen, only the depot charger

FIGURE 6. Charger deployment for Route B.

FIGURE 7. Battery SoC variation (top) and energy charged at each station
(bottom) during the full daily cycle of Route B.

with a 50 kW power rating is sufficient to sustain the energy
demand of the EB throughout its 5 cycles of the route per day.
The result of the optimal battery capacity was 260 kWh.
In Fig. 5, one can see that a full charge at the depot can sustain
the full daily cycle of the route by the EB before reaching the
minimum bound of 10% SoC.

With Route B being significantly longer (threefold the
distance of Route A), investment in a higher charging power
is necessary. In Fig. 6, the optimal deployment is shown to be
that of one 600 kW TC to sustain the route. With this, only
a 80 kWh battery is needed. As such, the optimal solution
as here as opposed to Route A consisted of investing in
a more powerful charger while saving the costs by using
smaller batteries on the deployed EB The optimal charging
schedule is shown in Fig. 7, where it can be seen that the EB
occasionally stops at charges at the TC to recharge its battery
throughout the day, guaranteeing a full SoC at the end of the
route for its next deployment.
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FIGURE 8. Charger deployment for Route C.

FIGURE 9. Battery SoC variation (top) and energy charged at each station
(bottom) during the full daily cycle of Route C.

For Route C (the longest of the three), the optimal charger
configuration consisted of both a 600 kWTC and a 50 kWDC
(as shown in Fig. 8), with a medium-sized 200 kWh battery
capacity for deployed EBs. The SoC variation throughout the
day (Fig. 9) shows that the EB stops to recharge its battery
every cycle of the route, gradually decreasing the SoC at the
end of every cycle. Finally, at the end of the day, the EB is
recharged at the depot to a full SoC for its next deployment.

The optimal annual TOC (objective function of the model)
and its breakdown for each route are detailed in Table 7 and
illustrated in Fig. 10 and detailed in Table 6.

One can observe that for the shortest Route (A), the lowest
TOC is encountered and investment in high capacity batteries
on board the deployed EB is sufficient to support the route
requirements. In this case, investment in high power and/or
fast chargers is not cost-effective, with the DC sufficing.

As the length of the route increases as in Route B, one
can see that a the optimal design involves investing more in

TABLE 7. Resulting optimal design and total ownership cost breakdown
for each of the first case study routes.

the charging infrastructure, and the tradeoff between battery
capacity and charging power becomes cost-effective. How-
ever, as the route length is further increased in Route C,
a more complex design is needed in terms of charger types
and battery sizing. It is noteworthy that for these three routes,
(all being CC-type routes), the installation of a FC is not
found to be cost-effective.

2) OPTIMAL DESIGN OF ELECTRIC BUS TRANSPORT SYSTEM
(CASE STUDY 2)
In the second case study, the proposed optimization model is
tested and validated for the design of a full electric bus trans-
port system. While the objective is to test the applicability of
the proposed model for any generic transport network, it is
important to also maintain the true-to-life nature of the case
study.

Therefore, two major cities with high EB presence who
also publicly provide their full bus route information have
been analyzed: Paris, France [23] and London, UK [24]. The
routes were categorized based on the categories proposed
in Table 2, and the corresponding statistics are presented
in Fig. 11. Due to the large metropolitan nature of both
transport networks, it was predictable that the routes would
be almost equally divided between CC and SU types (44%
and 56%, respectively). Also, as expected, the majority of
city routes were short-distance (CC-SD), while the majority
of suburban routes were long-distance (SU-LD), with the
two types combined making up more than half of the total
routes (53%).

Following this analysis, it is possible to generate a set
of routes which represents a generic public transport sys-
tem, while maintaining its realism by emulating the route
category distribution of real-life public transport systems.
Accordingly, a generic public transport network consisting
of 180 routes was constructed. The routes were generated
based on random pairs of dsr, and ddr values (defined in
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FIGURE 10. Breakdown of the optimal design TOC for the first case study routes: Route A TOC (left, total of 21918 EUR/year), Route
B TOC (center, total of 31181 EUR/year), Route C TOC (right, total of 49614 EUR/year).

FIGURE 11. Breakdown of the different route categories based on the
networks of RATP and TFL.

Section II and Table 2 ), while maintaining the share of the
route categories as per the real world systems (as in Fig. 11).
The key parameters (dsr, and d

d
r ) for each of the 180 routes

forming the generic public transport network are shown
in Fig. 12.

With the routes defined, the proposed MILP model can
be used to optimize the design of the charging infrastructure
and battery sizing to achieve a minimum TOC of this generic
transport network. The techno-economic specifications of the
EBs, chargers, and batteries are used according to Table 4,
Table 5, and Table 6, respectively. Average hourly electricity
prices for the European energy market [25] are used (dis-
tributed based on respective scheduling of stops). In addi-
tion, due to the nature of urban environments with frequent
breaking and stopping, an added penalty of 10% increased
electricity consumption per kilometer driven is used for CC
routes to estimate these effects in the generic network. The
frequency for all the routes is set to a high frequency (HF)
of 15minutes, and the EB deployment is calculated according
to (10).

The results for the optimal charger deployment and battery
sizing for the entire network are shown in Fig. 13. For CC-SD
and CC-MD routes, the charging infrastructure is seen to be
mainly comprised of TCs along with low-capacity batteries,
with a few exceptions where an additional DC and augmented
battery capacity is needed, when the distance between stops
is larger and the bus type has a higher consumption. Only
one CC-LD route requires the use of a FC, and this can be
attributed to the high power consumption of this route. For
suburban routes, it is clear that there is an increased reliance
on on-route charging with increased battery capacities. This
is especially the case for longer-distance routes, when the use
of FC becomes common, as the distance between stops and
the total length of the routes become very large.

The results in Fig. 14 for the TOC breakdown shows that
for all SD routes (CC or SU), the majority of the TOC corre-
sponds to battery costs, followed by charging infrastructure
and electricity costs. For MD and LD routes, the majority
of the TOC becomes that of the charging infrastructure, fol-
lowed by electricity (more prominent due to larger distances),
and then batteries (less prominent due to more frequent
on-route charging).

These patterns appear to be the same for both CC and SU
routes. That is, despite the fact that suburban routes have a
higher TOC than their city counterparts, the TOC breakdown
(percentage share of batteries, charging infrastructure, and
electricity consumption) is significantly more dependent on
the length of the route (SD/MD/LD) rather than the distance
between stops (CC/SU).

In order to analyze the effect of the route frequencies,
the simulation is repeated for the same network, albeit
with a low frequency (LF) 1 hour instead of 15 minutes
(i.e., all routes reduced by a factor of 4 compared to the former
HF case). The results are shown in Fig. 15.For the most
part, the solution is very similar to the HF case, with a few
differences noted. First, for SD routes, it can be observed that
with a lower overall number of buses traversing the routes,
it becomes more cost-effective to invest in DCs and larger
battery capacities. Overall, HF routes have a higher number of
TC due to their larger bus fleet, prioritizing cost reduction in
batteries while LF ones with smaller bus fleets rely on bigger
batteries with the additional DCs.
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FIGURE 12. Key parameters (dsr, and ddr ) for each of the 180 routes making up the generic public transport network for the second case study.

FIGURE 13. Results for the optimal charging infrastructure (top) and battery sizing (bottom) for all 180 routes of the generic public transport network
under study, with a HF.

FIGURE 14. Breakdown of the resulting TOC for all 180 routes of the generic public transport network under study, with a HF.

3) LONG-TERM INVESTMENT PLANNING FOR AN ELECTRIC
BUS TRANSPORT SYSTEM: 2030 SCENARIO (CASE STUDY 3)
The final case study used to validate the proposed model is
based on a long-term planning problem, in which investment
options are analyzed considering the forecasted change in the
cost of acquiring and operating technologies.

By considering the predictions made in the report by
Bloomberg [26], the constructed network in the previous case
study is modified for a 2030 scenario (10 years ahead) by
making the following modifications:
• Battery cost reduced to 62 EUR/kWh.
• Upper range of battery capacities increased to 400 kWh.
• Decrease in flash charger cost by 40% for stops close in
proximity (due to increased ease of sharing one trans-
former and converter for FCs closer to each other).

• Decrease in terminal charger cost by 10% due to tech-
nological advancements.

• Remove the electricity consumption penalty for CC
routes (due to the foreseen advance in regenerative
breaking technologies).

For this updated 2030 scenario, the model is re-run for both
the HF and LF cases, and the results are shown in Fig. 16 and
Fig. 17, respectively. Three main changes are observed:

First, there is a clear increase in DC deployment, with
larger battery capacities in CC-SD and SU-SD routes, regard-
less of the bus frequency. This effect is to be expected as the
estimated decrease in battery cost overcomes the advantages
of TCs.

Secondly, despite their (future) costs being sharply reduced
in this scenario, FCs appear even less often than they did
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FIGURE 15. Results for the optimal charging infrastructure (top) and battery sizing (bottom) for all 180 routes of the generic public transport network
under study, with a LF (reduced by a factor of 4 compared to the HF case).

FIGURE 16. Results for the optimal charging infrastructure (top) and battery sizing (bottom) for all 180 routes of the generic public transport
network under study, with a HF, repeated for the 2030 scenario.

(being deployed rarely and only for SU-MD and SU-LD due
to high power consumption requirements).

Third, for LF routes there is a significant increased reliance
on larger battery capacities and less on fast charging infras-
tructure, with batteries taking up a larger percentage share of
the route TOCs as opposed to the 2020/present-day scenario.
This may suggest that according to the assumptions used
for the 2030 scenario, benefits from cost reductions in
battery technologies will outweigh those in fast charging
technologies.

In Fig. 18, the percentage decrease in the TOC (relative
to the 2020/present-day scenario) is shown for all the routes
and for the HF and LF cases. It is clear that there is a
considerable decrease (>30%) in the TOC of SD routes, and a
smaller decrease (>10%) for LD ones. This is due to the same
reasons expressed above, with SD being shown to be more
dependent on larger battery capacities and thereby achieving

more saving with advanced and cheaper technologies thereof.
HF routes can be seen to expect higher cost reductions,
although this can be attributed to the fact that a larger fleet
translates to higher contribution from batteries, leading to a
greater impact of the aforementioned points, increasing the
overall cost reduction.

Overall, from this analysis one can see that the current
trend and policies in electrification of public transport sys-
tems are well justified for long-term prospects.

It is important to note that this case study is merely used
here to showcase the applicability of the proposed model in
analyzing future scenarios. The assumptions made for the
2030 scenario were for demonstration purposes, and an exact
analysis of forecasted techno-economic values is a very com-
plex problem and indeed out of the scope of the current work.
With this being said, the applicability of the proposed model
to analyze different forecasts for future scenarios has been
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FIGURE 17. Results for the optimal charging infrastructure (top) and battery sizing (bottom) for all 180 routes of the generic public transport network
under study, with a HF, repeated for the 2030 scenario.

FIGURE 18. Route TOC decrease in the 2030 scenario (relative to the 2020/present-day scenario), shown for the HF (top) and LF (bottom) cases.

validated, and is indeed recommended for future research
building up on this work, which is discussed in more detail
in the next section.

V. DISCUSSION AND RECOMMENDATIONS
FOR FUTURE WORK
The proposed MILP optimization model’s applicability on
any generic EB route or public transport system was demon-
strated. In the first case study the model was shown to
determine the optimal charging infrastructure deployment,
battery sizing, and charging schedule for individual routes.
In the second case study, the proposed model was shown to
determine the optimal design on the level of a full system,
determining the optimal charging infrastructure deployment,
battery sizing, and charging schedule for all routes which
guarantee the minimal TOC. Finally, in the third case study,
it was shown that the proposed model can be used to analyze
different future scenarios for long-term planning of planning
of public transport systems.

As such, the proposed model was shown to be versatile
in the sense that it can be used for a wide spectrum of
problems and applied on any generic transport network. This
also presents a lot of opportunities for future research building
up on this work. Several recommendations can be made for
future and follow-up studies by discussing the findings of this
work:
• The case studies were purposefully chosen as generic
cases in order to emphasize that the proposed model
is not case-specific and not specifically fitted to any
existing network structure or problem. While this is
useful to showcase the versatility and universal nature of
the proposed mathematical model, one limitation of the
use of generic case studies is the lack of a benchmark
to compare the optimal solution against. I.e., if no opti-
mization model is employed, then in this case the system
would be an ‘‘arbitrarily’’ or ‘‘heuristically’’ designed
one (in literature this is sometimes referred to as an
‘‘experience-based’’ approach [11]), and in the case of a
generic system there would be an infinitely large number
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of sub-optimal possible designs to consider. With MILP
optimization employed, being a deterministic method
in nature, the global optimal solution is guaranteed,
so this does not retract any of the conclusions made
from the performed case studies. However, since most
real-life systems are designed using said ‘‘experience-
based’’ approaches [11], it would be insightful to model
full-scale real-life public transport networks and high-
light the potential benefit of applying the proposed to
improve their design. Moreover, using the proposed
model to optimize real-life transport networks from dif-
ferent countries/regions may provide valuable insight
on regional differences to consider and evaluate design
considerations in different regions.

• Although hourly varying electricity prices correspond-
ing to modern SGs and their demand-side management
strategies were considered in this model and the case
studies, more complex grid interaction can be modeled
between EB networks and the power grid. Previous stud-
ies such as [13] have evaluated such ‘‘grid-interactive’’
bus operation problem for existing networks. The ben-
efits of grid-interaction can be leveraged if considered
early-on in the design phase, and can increase profitabil-
ity since ancillary services provided to the grid can bring
about considerable profit for the network owner [3].
No studies were found to consider this aspect. As such,
its incorporation into the optimization model is recom-
mended for future studies building up on this work.

• Accounting for resource sharing can be an interesting
and valuable point to consider. For instance, sharing
the charging infrastructure with other transport networks
(belonging to different owners/companies), or other
facilities such as EV parking lots [27] can be mutu-
ally beneficial to both parties and help decrease overall
TOC, and thereby recommended to be analyzed in future
work. Moreover, battery-swapping strategies for EVs
were shown to improve the techno-economic operation
of consumer-owned EVs, as shown in [28], and therefore
a potentially viable strategy to be used to further improve
EB systems.

• In the third case study, a 2030 scenario was analyzed
based on several assumptions for future technology
advancements. A similar sensitivity analysis is rec-
ommended to be performed for present-day scenarios,
albeit in different countries or regions. Globally, costs
of acquiring and operating different technologies, in
addition to implemented socio-economic policies signif-
icantly vary between different regions. This is recom-
mended as a future analysis as it can provide insight on
different transport electrification strategies required.

• The impact of regenerative breaking as a future tech-
nological advancement which can decrease city route
electricity consumption was briefly highlighted in the
third case study. Recently published works [29]–[32]
have investigated the use of intelligent control algo-
rithms to enhance the driving strategies, also with the

objective of decreasing losses due to frequent breaking
in urban settings. The incorporation of such algorithms
is recommended for incorporation in this model in future
follow-up work, in order to analyze the cost-efficiency
of acquiring these technologies on the design of the EB
transport systems.

• The proposed model was developed to consider any
type of on-route or off-route charging infrastructures
with any techno-economic properties. However, in the
performed case studies, only the two most common
on-route charges commercially available were consid-
ered. It is recommended that follow-up work consider
other newly emerging fast charging technologies [33].
On-site storage devices (which can be modeled as a
generic off-route charging infrastructure in the proposed
formulation), especially newly emerging technologies
such as fuel cells 34] or flywheels [35], should also be
considered in the design of public transport systems.

VI. CONCLUSION
In this study, a mathematical model for fully-electric public
transportation networks was formulated, andMILP optimiza-
tion was implemented to minimize the TOC of a public trans-
port system. The generic nature of the model was guaranteed
by allowing the consideration of any set of routes, different
EB models, battery capacities, and different charging tech-
nologies as input for the model. In this sense, the model is
versatile and can be used to optimize already existing systems
or design new ones due to its generic formulation. Three
case studies were used to validate the proposed model while
demonstrating its universal applicability. First, the design
of three individual routes with different characteristics was
demonstrated. Then, a large-scale generic transport system
with 180 routes, consisting of urban and suburban routes with
varying characteristics was considered and the optimal design
was obtained and analyzed in detail. Afterwards, the use of
the proposed model for a long-term transport system plan-
ning problem was demonstrated by adapting the system to
a 2030 scenario based on forecasted technological advance-
ments. The proposed formulation was shown to be highly
versatile in modeling a wide variety of components in an EB
transport system and in achieving an optimal designwithmin-
imal TOC. Several recommendations for future work were
made, including the incorporation of power grid-interactive
designs for future transport systems, considering the interac-
tion with other transport networks or EV parking lots, or the
consideration of on-route charging through newly emerging
technologies.
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