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Abstract—In power system static security analysis, it often
requires to calculate continuous power flow from a certain
load condition to a bifurcation point along a given direction,
which is referred to as the maximum loadability problem. This
paper proposes a convex optimization method for maximum
loadability problem over meshed power grids based on the
semidefinite relaxation approach. Because the objective is to
maximize the load increasing distance, convex relaxation model is
generally inexact, unlike the situation in cost-minimum optimal
power flow problem. Inspired by the rank penalty method, this
paper proposes an iterative procedure to retrieve the maximum
loadability. The convex quadratic term representing the penalty
on the rank of matrix variable is updated in each iteration based
on the latest solution. In order to expedite convergence, generator
reactive power is also included in the objective function, which
has been reported in literature. Numeric tests on some small-
scale systems validate its effectiveness. Any sparsity-exploration
and acceleration techniques for semidefinite programming can
improve the efficiency of the proposed approach.

Index Terms—maximum loadability, meshed network, convex
optimization, semidefinite programming

NOMENCLATURE

Frequently used symbols and notations are defined here
for quick reference. Others are clarified following their first
appearance as required.

A. Parameters

Gij Conductance between bus i and j
Bij Admittance between bus i and j
V 2
im Upper limit of voltage amplitude at bus i

V 2
il Lower limit of voltage amplitude at bus i

pgim Upper limit of generation active power at bus i
pgil Lower limit of generation active power at bus i
qgim Upper limit of generation reactive power at bus i
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qgil Lower limit of generation reactive power at bus i
F l
ij Flow limit of transmission line l connecting buses

i and j
rlij , x

l
ij Resistance and reactance of line l.

pd0, qd0 Initial active and reactive power demand

B. Variables

pgi Active power generation at bus i.
qgi Reactive power generation at bus i.
pdi Active power demand at bus i.
qdi Reactive power demand at bus i.
ei, fi Real and imaginary part of complex voltage of bus

i in the rectangular coordinate

I. INTRODUCTION

A. Motivation and Background

With the growth of economy and power demand, modern
power systems are often operated under stressed conditions,
raising the risk of voltage collapse. Static voltage stability of
a power system is closely related to power flow solvability.
Since the nodal load demand is the parameter of power flow
routine, it is natural to ask how much load a power system
can carry before power flow equations become insolvable.
In this regard, a basic task is to examine the power flow
solution while increasing the system load along a direction,
until no solution exists. The corresponding distance reflects the
maximum loadability (MLA) of the power system associated
with the initial point and load increasing pattern, and offers
grid operator an intuitive index of security margin. However,
solving power flow equations near the boundary of infeasibility
encounters numeric issues due to the high condition number.
Special technique is needed to overcome this difficulty.

B. Relevant Literature

The major computation methods for MLA can be cate-
gorized into two types. One is the continuation power flow
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(CPF) method, and the other is optimization based approach.
CPF method starts from the current operation point, and
repeatedly solves power flow equations with the step increase
of load [1]–[4]. Around the voltage collapse point, special
prediction/correction methods are designed to avoid numeric
instability. Optimization based method computes the MLA
by solving a special optimal power flow problem which
maximizes the length of load increment subject to power
flow equations and other variable bound constraints [5]–[7].
According to [6], compared with CPF method, optimization
based approach is more flexible to deal with various operating
constraints, and takes advantage of off-the-shelf solvers.

Although CPF and optimization based methods are well
developed and have been applied in large-scale systems,
some issues remain. On the one hand, although the CPF
method is efficient, it encounters difficulty when constraints
are considered, such as power flow limits of transmission lines,
because the search direction is tightly coupled with the set of
binding constraints. However, before the problem is solved, it
is not clear which constraint will be binding. On the other
hand, although optimization method can deal with various
constraints, MLA gives rise to a non-convex program, and
the computational performance of general-purpose nonlinear
programming solvers may be sensitive to system parameter,
depending on the algorithm used. Even for a small-scale
system, a solver may fail to report a solution, given the tough
structure near a bifurcation point.

Since the pioneer work in [8], [9], convex relaxation method
is shown to be promising in optimal power flow problem,
including semidefinite programming (SDP) relaxation [8] and
second-order cone programming (SOCP) relaxation [9]. Con-
vex relaxation has been used in the MLA problem. In [10], the
SDP relaxation is employed to construct sufficient conditions
for power flow insolvability and approximate voltage stability
margins. Because SOCP is more tractable from the compu-
tational perspective, the SOCP relaxation is used to calculate
voltage stability margins in [11]. Unlike the cost-minimum
optimal power flow problem, in which convex relaxation is
exact under come mild conditions, there is no guarantee that
convex relaxation will be exact in MLA or voltage stability
problem. In fact, the optimality gap of the SOCP relaxation
may be very large. In a recent study [12], a sufficient condition
for non-singularity of power flow Jacobian is derived and
formulated as second-order cones, which is further combined
with the SOCP relaxation of optimal power flow.

As mentioned above, when applied in the MLA problem,
convex relaxations are generally inexact, and hence the ob-
tained optimal solution is optimistic, or in other words, the
system will get crashed in practice before the load can reach
the indicated level. On this account, tightening the convex
relaxation, at least estimating a gap of the relaxed solution,
is also important in practical usage.

C. Contributions and Organization

In this paper, we propose a sequential SDP method to solve
the MLA problem. It starts with the renowned SDP relaxation

(SDR); if the result is inexact, which can be easily examined
by checking the singular values of the solution matrix, rank
penalty term is added in the objective function and the new
problem is solved again. In addition to the fixed penalty term
that associated with generator reactive power proposed in [13],
[14], the proposed approach exploits a variable penalty term,
which guarantees to find a feasible solution. Compared to
the CPF method, it inherits the advantage of optimization
based formulation; furthermore, it leverages the computational
superiority of convex optimization, compared to the traditional
ones that directly handles non-convex formulations. Unlike
a local nonlinear programming solver that needs an initial
guess, the start point of the penalty model is offered by the
SDP relaxation, while the SDP solver makes no reference
to a manually supplied initiation. Finally, a sequential SOCP
method is proposed in [15] to cope with general power flow
optimization problems in distribution networks. The power
flow model therein is established based on branch flow e-
quations, which is only suitable for radial power grids. In
this paper, the most common bus injection power flow model
(BIM) is used, which is valid for both meshed and radial
networks. The penalty terms also exhibit different meanings
because the SOCP model has no rank information. Compared
to the earlier studies, we adopt penalty functions in the MLA
optimization problem and output the result according to the
algorithm convergence criteria, thus ensuring the feasibility
and correctness of the final solution. A possible shortcoming
might be the efficiency, as the SDP model uses a square (not
vector) matrix variable. Nonetheless, any sparsity-exploration
and acceleration techniques for SDP can improve the efficien-
cy of the proposed approach.

The rest of this paper is organized as follows. The basic
formulation and compact form of the MLA problem are
presented in Section II. The sequential SDP algorithm is also
developed in this section. The algorithm is compared with
some popular solvers in case study, and results are reported in
Section III. Finally, conclusions are drawn in Section IV.

II. MAXIMUM LOADABILITY PROBLEM

The MLA problem aims to maximize the load increasing
distance subject to power flow equations are other system
operation constraints. Most symbols and notations will be
borrowed from [8].

A. Mathematical Formulation

The power grid is modeled by a graph N = (B,L), where
B denotes the set of buses; its cardinality is |B| = n. Without
loss of generality, bus n is chosen as the slack bus; L denotes
the set of lines. The nodal admittance matrix is Y ∈ Cn×n,
where Cn×n is the set of n × n complex matrix, and its
elements is Yij = Gij + iBij , ∀i, j ∈ B, where i =

√
−1. Let

pgi and qgi be the active and reactive output of generator at bus i
(pgi = qgi = 0 if there is no generator at that bus), respectively.
Let pdi and qdi be active and reactive power consumptions at
bus i (pdi = qdi = 0 if there is no load at that bus), respectively.
The complex voltage of bus i in the rectangular coordinate can



be expressed as Vi = ei + ifi. With above notations, power
flow equations can be expressed as follows

pgi − pdi =

n∑
j=1

Gij(eiej + fifj)

−
n∑

j=1

Bij(eifj − ejfi), ∀i ∈ B

(1)

qgi − qdi = −
n∑

j=1

Bij(eiej + fifj)

−
n∑

j=1

Gij(eifj − ejfi), ∀i ∈ B

(2)

e2i + f2
i − V 2

im ≤ 0, ∀i ∈ B (3)

V 2
il − e2i − f2

i ≤ 0, ∀i ∈ B (4)

Vnl ≤ en ≤ Vnm, fn = 0 (5)

pgil ≤ pgi ≤ pgim, qgil ≤ qgi ≤ qgim, ∀i ∈ B (6)

(ei − ej)
2 + (fi − fj)

2

r2ij + x2
ij

≤ (F l
ij)

2, ∀l ∈ L (7)

where equalities (1) and (2) are nodal active and reactive power
balancing conditions in the rectangular coordinate; constraints
(3) and (4) restrict bus voltage magnitude within the interval
[Vil, Vim]; (5) enforces the voltage at the slack bus being a real
number; (6) is generator capacity constraint, where pgil and
qgil are the minimal active and reactive output, respectively;
pgim and qgim are the maximal active and reactive output,
respectively. (7) imposes current flow limit F l

ij if transmission
line l connecting buses i and j. The reason we choose current
restriction instead of power restriction is that the thermal limit
of a transmission line mainly depends on the current it carries,
and the current at the head and tail buses are equal, while
inflow and outflow of a line can be different due to losses.
In fact, different line flow limit constraints lead to minor
differences. In the MLA problem, system load grows from
an specified point pd0i , qd0i , ∀i along direction ∆p, ∆q, and
thus can be expressed by

pd = pd0 + λ∆p

qd = qd0 + λ∆q
(8)

where scaler variable λ indicates the distance moved from the
known operating point along the given direction. In summary,
the MLA problem can be presented as

max{λ | (1)− (8)} (9)

B. SDP Relaxation Model

Problem (9) is non-convex due to quadratic equalities (1)
and (2) as well as non-convex quadratic inequality (4). SDP
relaxation can be applied. In SDP relaxation model, we use the
following notations, which have been devised in [8]. Vectors
b1, b2, · · · , bn denote the i-th column of an n × n identity
matrix. Vectors dlij = bi− bj , ∀l ∈ L. Voltage real part vector

is e = [e1, e2, · · · , en], and voltage imaginary part vector is
f = [f1, f2, · · · , fn]. x = [eT , fT ]T , and matrices

Yk = bkb
T
k Y ∈ Cn×n

Mk =

[
bkb

T
k 0

0 bkb
T
k

]
, Nl =

[
dlijd

lT
ij 0

0 dlijd
lT
ij

]
∈ R2n×2n

Zk =
1

2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]
∈ R2n×2n

Z̄k = −1

2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]
∈ R2n×2n

where operators Re{·} and Im{·} represent the element-wise
real and imaginary part of a complex vector or matrix. With the
help of the above notations, the compact form of constraints
(1), (2), (3), (4) and (7) can be represented by

xTZkx = Pin,k(λ), ∀k ∈ B (10)

xT Z̄kx = Qin,k(λ), ∀k ∈ B (11)

V 2
kl ≤ xTMkx ≤ V 2

km, ∀k ∈ B (12)

xTNlx ≤ (zlijF
l
ij)

2, ∀l ∈ L (13)

where scalars Pin,k(λ) = pgk − pdk and Qin,k(λ) = qgk − qdk
are active and reactive power injections, respectively, and they
implicitly depends on λ following the linear relationship (8).
Constraints (12) include constraints (3) and (4), and in (13),
(zlij)

2 = (rlij)
2 + (xl

ij)
2 is the impedance of line l. Because

quadratic form has the following transformation

xTQx = Tr(xTQx) = Tr(QxxT )

where Tr(·) is the matrix trace operator. Define matrix variable
X = xxT ∈ Rn×n, then (10)-(13) can be linearized as

Tr(ZkX) = Pin,k, ∀k ∈ B (14)
Tr(Z̄kX) = Qin,k, ∀k ∈ B (15)

V 2
kl ≤ Tr(MkX) ≤ V 2

km, ∀k ∈ B (16)

Tr(NlX) ≤ (zlijF
l
ij)

2, ∀l ∈ L (17)

and problem (9) can be equivalently reformulated as

max{λ | (5)− (6), (8), (14)− (17), Rank(X) = 1} (18)

The last constraint ensures the feasibility of rank-1 decom-
position X = xxT , which means a meaningful power flow
status can be recovered. However, rank-1 constraint remains
non-convex. To remove non-convexity, it is replaced with a
linear matrix inequality, and the SDP relaxation model reads

max{λ | (5)− (6), (8), (14)− (17), X ≽ 0} (19)

SDP (19) can be solved by conic programming solvers such
as MOSEK, SDPT3 and SEDUMI. If the optimal solution
of problem (19) is rank-1, satisfying the rank constraint in
(18), then the decomposition X = xxT recovers the optimal
solution x of problem (9). However, in most cases, the relaxed
solution has a rank higher than 1, and the corresponding λ is
only an upper bound of the true maximum loadability. Hence,
further methods are required to attain a rank-1 solution.



C. The Sequential SDP Algorithm

In order to obtain a rank-1 solution, a sequential SDP algo-
rithm developed in [16] is applied, due to its good convergence
and computational efficiency. In MLA problem (18), we define
the following two sets

CX = {X ∈ Sn | X ≽ 0, (5)− (6), (8), (14)− (17)}
DY = {Y ∈ Sn | Rank(Y ) = 1}

Consider the following problem

max λ− α

2
∥X − Y ∥2

s.t. X ∈ CX , Y ∈ DY

(20)

where α is a positive penalty parameter, and ∥ · ∥ denotes
the Frobenius norm. If the optimal solution leads to a zero
penalty, i.e., X = Y , then X must be rank-1. Although
problem (20) is non-convex due to the existence of DY ,
the constraints imposed on X and Y are decoupled. This
fact motivates alternate optimization of X and Y until a
convergence tolerance is met.

To this end, we consider the rank-1 constrained problem

min
α

2
∥Xk − Y ∥2

s.t. Y ∈ DY

(21)

where Xk is constant. Problem (21) gives the best rank-1
approximation of Xk. Since Xk can be written as

Xk =
r∑

i=1

ηipip
T
i (22)

where η1 ≥ η2 ≥ · · · ≥ ηr ≥ 0 are the eigenvalues of
square matrix X and p1, · · · , pr ∈ Rn are the corresponding
eigenvectors. Clearly, η1p1pT1 is the best rank-1 approximation
[17], [18].

When Y = Yk is fixed, problem (20) comes down to the
SDP relaxation model with a rank penalty in the objective
function. In order to expedite convergence, the penalty terms
proposed in [13], [14], which are represented by reactive
power of generators, are also added into the objective function.
Hence we solve SDP

max
{
λ− α

2
∥X − Yk∥2 − β

∑
qgi | X ∈ CX

}
(23)

The sequential SDP algorithm is summarized as follows.
In Algorithm 1, we do not use a constant penalty parameter

α; instead, we increase its value from a small number, and
limit its largest value. The reason is: a small penalty at the
beginning helps locate the global optimal solution. Otherwise,
although a feasible rank-1 solution can be found quickly,
the optimality might be sacrificed. However, if the penalty
parameter goes too large, the problem will suffer from a high
conditional number, which brings numeric problems and does
not facilitate computation.

Algorithm 1 Sequential SDP for MLA
1: Select a convergence tolerance ε > 0, penalty coefficients

α0 > 0, β > 0, and penalty growth rate τ > 1, the
maximum penalty coefficient αmax > 0. Solve SDP
relaxation model (19). The optimal solution is X∗, and
the iteration index is k = 0.

2: Apply singular value decomposition to Xk, sort the sin-
gular values µ1 ≥ µ2 ≥ · · · ≥ µr ≥ 0 in a descent order.
If r = 1, X is exactly rank-1. In practice, we can accept
an approximate solution if µ2, · · · , µr are small enough.
Compute

R =

∑r
i=2 µi

µ1

if R < ε, terminate and report the optimal solution.
3: Let Yk = η1p1p

T
1 ; update αk+1 = min{ταk, αmax}, k =

k+1, and solve problem (23), the optimal solution is Xk.
Go to step 2.

TABLE I
COMPUTATION PERFORMANCE OF ALGORITHM 1

System λ Time(s) Iter

case6 1.0842 2.4211 0
case9 2.2892 2.2724 0
case30 1.0353 5.9049 1
case39 1.0903 12.9522 1

III. CASE STUDY

To verify the effectiveness of Algorithm 1, IEEE bench-
mark 6-bus, 9-bus, 30-bus and 39-bus systems are tested. All
numeric experiments are performed on a laptop with Intel i5-
7267U CPU and 8GB memory. Optimization problems are
coded in MATLAB with YALMIP interface [19], and solved
by MOSEK [20]. For comparison, the MLA problem (9)
in its original form is solved by general-purpose nonlinear
programming solvers, including global solvers BARON which
adopts branch-and-bound type method and SCIP. We also tried
IPOPT applying interior point method and SNOPT utilizing
sparse SQP (Sequential Quadratic Program) method, but they
failed to solve the problem. Since reactive power limits lead
the primal problem in SDR to be a mixed-integer one [21]
(due to bus type switch), reactive power limits are neglected
in our tests, which is also adopted in [11]. Computation results
are shown in Table I and Table II.

TABLE II
COMPUTATION PERFORMANCE OF NLP SOLVERS

BARON SCIP

System λ Time(s) λ Time(s)

case6 1.0846 7.6950 1.0842 6.7736
case9 2.2892 6.2029 2.2892 54.1902

case30 1.0383 1011 Fail -
case39 1.0971 1008 Fail -



TABLE III
RELAXATION GAP OF λ IN MEDIUM-SCALE SYSTEMS

System SDR Iter1 Iter2 Gap(%)

case30 1.0413 1.0353 1.0349 0.61
case39 1.1159 1.0903 1.0902 2.30

TABLE IV
CONVERGENCE PERFORMANCE OF MEDIUM-SCALE SYSTEMS

System SDR Iter1 Iter2

case30 1.33 × 10−2 6.48 × 10−6 4.48 × 10−6

case39 1.93 × 10−2 1.05 × 10−5 6.69 × 10−6

From the numerical results of MLA in Table II, BARON can
handle all the IEEE instances whose scales are no larger than
the 39-bus one. SCIP can deal with the smallest two systems.
The optimal values will serve as the baseline for solution
accuracy. It can be observed from TABLE I that Algorithm
1 successfully solves all the testing systems. The MLA results
are very close to those offered by BARON, validating its
effectiveness. The computation time of BARON grows quickly
with the increase of system scale, while the computation time
of Algorithm 1 is acceptable in all instances.

For the former two systems, the initial SDP relaxation is
already exact. As for the latter two systems with larger scales,
additional iterations are needed to narrow the relaxation gap.
The loadability value λ in each iteration is shown in TABLE
III. It is observed that the objective value decreases gradually,
and the initial relaxation gap is 0.61% and 2.30% for the
30-bus system and 39-bus system, respectively. The value
sequence of R generated by Algorithm 1, which is used to
quantify the residual of non-zero eigenvalues, is shown in
TABLE IV. After two iterations, R has an order of magnitude
of 10−6, implying that the X matrix is almost rank-1. Indeed,
if the iteration continues, R decreases very slowly, and it is
very difficult to find an exact rank-1 solution. The error can be
seen from the optimal values shown in TABLE I and TABLE

TABLE V
CONVERGENCE PERFORMANCE OF 30-BUS SYSTEM UNDER DIFFERENT

PENALTY PARAMETER SETTINGS

Penalty Growth Rate

Initial Penalty Value 1.1 1.5 2.0

0.0016 3 2 3
0.0018 1 1 1
0.016 3 2 3
0.02 2 2 2
0.04 1 1 1
0.06 1 1 1
0.08 1 1 1
0.1 7 Fail Fail

0.13 7 Fail Fail
0.2 Fail Fail Fail

0.25 Fail Fail Fail

TABLE VI
CONVERGENCE PERFORMANCE OF 39-BUS SYSTEM UNDER DIFFERENT

PENALTY PARAMETER SETTINGS

Penalty Growth Rate

Initial Penalty Value 1.1 1.5 2.0

0.0012 1 1 1
0.005 1 1 1
0.01 2 2 2

0.013 2 2 2
0.015 3 2 2
0.018 2 Fail 3
0.02 2 2 Fail
0.04 Fail Fail 3
0.05 Fail Fail Fail
0.06 5 Fail Fail
0.08 Fail Fail Fail

II, which is in fact very small.
Finally, we test the convergence performance of medium

scale systems with different penalty parameters (initial value
and growth rate). Specifically, the total number of iterations
are tested. Results of the 30-bus system and the 39-bus system
are presented in Table V and Table VI, respectively. We can
see that the performance is mainly influenced by the initial
penalty. Algorithm 1 may fail to converge in 30 iterations if
it exceeds a certain value.

IV. CONCLUSIONS

The maximum loadability problem, a fundamental problem
related to power system steady-state operation and voltage
stability margin, can be formulated as a special power flow
optimization problem, and solved by sequential convex opti-
mization procedure. With rank penalty terms added in the SDP
relaxation model, the rank of the square matrix solution can
be reduced, and thus the solution quality can be improved.
Case studies show that general-purpose (local) nonlinear pro-
gramming solvers encounter difficulties when facing the MLA
problem, while branch-and-bound based global solvers are not
scalable and efficient. The proposed method also has some
shortcomings. 1) the performance is somehow sensitive to the
selection of penalty parameter. 2) solving SDPs repeatedly
may not be efficient for large-scale systems.
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