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 Abstract—This paper focuses on the long-term planning of 
power systems considering the impacts of Electrical Energy 
Storage Devices (ESSD) as well as Demand Response Programs 
(DRPs). The proposed model incorporates a two-stage 
optimization strategy in order to reduce the computational 
burden of the nonlinear problem. The upper-level of 
optimization model includes investment decision variables 
(long-term planning) while in the lower-level, the optimal 
operation of the model for short-term horizon has been 
addressed. In the operational stage, the optimal scheduling of 
power system in the presence of suggested ESSD size and 
location from the upper level is evaluated. Moreover, the Time-
of-Use (ToU) Demand Response (DR) pricing scheme has been 
applied in the operational stage to evaluate its capability to 
reduce the total operating costs. The simulation results on the 
standard 6-bus test system validates the applicability of the 
proposed two-stage optimization model and illustrates that the 
optimal sizing and location of ESSDs along with DRP 
implementation could effectively reduce the total systems costs 
and improve the power system load factor. 

Keywords—Demand Response Programs, Electrical Energy 
Storage Devices, Smart Grids, Time of Use Strategy, Two-Stage 
Optimization. 

NOMENCLATURE  

Indices 

i Index for bus  
d Index for day  
s  Index for EES  
l  Index for line 
t,t' Index for time 

Variables 

PGi,t,d  Power generation of unit i at time t 
PDi,t,d Demand at bus i at time t 
SUi,t,d Binary decision variable of start-up 
SUCi,t,d Start-up cost of unit i at time t 
SDi,t,d Binary decision variable of shut-down 
SDCi,t,d Shut-down cost of unit i at time t 
Ii,t,d Binary decision variable of unit commitment   
Ki,s Binary decision variable of EES s at bus i   

,~
, ,
EES

s t dP  Charge/discharge power of EES s 

, ,
EES
s t dEng  Stored energy at EES s 

δi,t,d Voltage bus angle 

λi,t,d Locational marginal price at bus i at time t 

Parameters 

NB Number of thermal units 
NT Number of hours under study 
NL Number of transmission lines 
NEES Number of EES devices 
Costi,s Capital cost of EES s per kWh 
Budgetmax

 Maximum budget for EES installation investment 
EESmax

 Maximum capacity addition of  EES devices 
RUi Ramp-up for unit i 
RDi Ramp-down for unit i 
Xl Reactance of transmission line l 
α, β Acceptable range for DR implementation  
ω Maximum acceptable change for hourly demand 
Ti

on, Ti
off Minimum up/down time of unit i 

STUi, SDUi Start-up/shut-down cost of unit i 

Symbols 

max, min Maximum and Minimum 
New, Old After and before DR implementation 
S, R Sending, Receiving end bus 

I. INTRODUCTION  

The need for flexibility in distribution grids will increase 
as they evolve from ones characterized by the unidirectional 
flow of electricity (from large centralized generators) to a 
system characterized by bi-directional power flow between 
traditional generators and increasingly small-scale 
prosumers. Prosumers utilize Distributed Energy Resources 
(DER), which are often intermittent, allowing them to take 
on a more proactive and dynamic role in electricity 
consumption and production. Key to this increased flexibility 
will be the use of Electrical Energy Storage Devices (EESD). 
The role of EESD in increasing the flexibility of distribution 
grids has been widely discussed [1], [2]. However, EESDs 
are still relatively expensive to procure and install and 
therefore, it is essential to determine the optimal size and 
location of these devices. 

A. Motivation 

This need to determine the optimal size and location of 
EESD within a distribution network motivates the study 
presented in this paper. Investments in EESDs typically carry 
a high upfront capital cost and thus it is essential that their 
size and location are optimized for the given system.  
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If the EESDs are sized incorrectly or placed in the wrong 
location, it could negate their positive benefits and even 
results in economic and technical repercussions for the 
grid [3].  

As opposed to the traditional flat-rate electricity tariffs, 
increased participated in price-based Demand Response 
(DR) programs is making time-varying Time-of-Use (ToU) 
electricity rates more popular. The main premise of price-
based DR programs is to provide price signals to end users, 
incentivizing them to use electricity during periods of low 
prices and reduce consumption during periods of high prices, 
which results from shifting consumption from peak-load 
periods to off-peak load periods. The incorporation of EESD 
into grids with ToU program participation is an important 
area for research as EESD can assist with the temporal shift 
of energy and could have a major impact on the success of 
ToU programs. This scenario of having EESDs in grids with 
ToU program implementation motivates this study.  

While ToU DR programs are applied on the short-term 
operational time frame, the determination of the optimal size 
and location of EESDs is a long-term planning decision. 
Thus, by investigating the optimization of both long-term 
and short-term time frames, it is thought that the load factor 
of the EESD will be increased which will result in a cost-
optimal operation of a distribution grid.  

B. Literature Review 

The use of EESD in active distribution networks was 
considered by [1] who investigated the optimal sizing of a 
EESD in order to minimize occurrences of over- and under-
voltage issues within the distribution network. Uncertainties 
associated with demand and generation from RES were 
considered. A two-stage stochastic model was formulated 
using novel techniques of scenario reduction so to improve 
the accuracy and computational time needed to determine an 
optimal solution. The need to install EESDs in distribution 
networks is becoming more important with the increased 
penetration of variable renewable energy sources (RES). 
This has been recognized by a large and growing body of 
research into the optimal sizing, placement, type,  
and operation of EESD in various electrical grid typologies 
[2], [3].  

The optimal planning and operation of energy storage 
devices was investigated in [4]. This paper decomposed the 
long term-planning model into a two-stage one in order to 
determine the co-optimal siting and sizing of RES and EESD 
in low-voltage distribution networks. The computational 
burden of this problem was also reduced by using mixed-
integer programming techniques.  

A mixed-integer non-linear programming model was 
developed in [5] and determines the optimal spinning reserve 
for power system taking into account the presence of RES 
and  EESD and the sizing of the EESD was done so as to 
minimize the uncertainties normally associated with RES. A 
two-stage stochastic predictive control model was developed 
by [6] in order to determine the optimal operation of the 
EESD as well as generation outputs and the size of the 
EESD. The main source of uncertainty in this paper was the 
fluctuations in the wind energy resource.    

The optimal operation of a multi-microgrid system using 
a bi-level problem was developed by [7]. This paper used a 
ToU tariff regime and roust programming which took into 
account the uncertainty surrounding RES, day-ahead market 
prices, the use of Electric Vehicles in a stochastic manner. 
The planning of EESD in energy and reserve markets was 
undertaken by [2] where the authors again used a bi-level 
problem to determine the optimal sizing and placement of 
EESD devices subject to profit constraints. The authors 
compare a primal decomposition method with sub-gradient 
cutting planes against an exact linear programming approach 
in order to investigate the accuracy and scalability of the 
proposed algorithm. The authors also chose two EES 
technologies, namely Compressed Air Energy Storage 
(CAES) and lithium-ion batteries in order to investigate the 
performance of the two technologies under different 
regulatory and market constructs.  

The effects of uncertainties associated with RES, 
specifically wind power, on the ESSD optimal configuration 
were investigated by [8]. The authors sought to minimize 
three different and unharmonious objective functions which 
were operating costs, deviation of the voltage in the network 
and the emission associated with the operation of the energy 
system. A framework using two metaheuristic algorithms, 
the gravity search algorithm and a hybrid Particle Swarm 
Optimization/Genetic algorithm was used to find the solution 
and multi-criteria decision-making techniques were applied 
to help to determine an optimal solution considering the three 
separate optimization functions. While the uncertainties 
associated with wind energy were studied by [8], the 
uncertainties associated with Solar photovoltaic (PV) 
generation were studied by [9]. The study showed that using 
time-flexible operational regimes can help account for the 
natural variation normally associated with PV generation. 
Another study which investigated the sizing and location of 
EESDs in conjunction with PV was carried out by [10], 
which sought to use EESDs to minimize the voltage  
fluctuations associated with the use of PV through real-
power injections and absorptions by EESDs. A bi-level 
optimization model based on a genetic algorithm was used.  

The provision of flexibility using EESD in community 
energy programs was investigated by [11]. In the paper, a 
multi-objective optimization framework was developed to 
investigate energy arbitrage situations for the community 
energy project. Six different EESD technologies, namely 
chemical batteries, were studied and used in feasibility and a 
techno-economic model of a community energy system.   

The effects of integrating DR programs taking into 
account wind energy sources were studied by [12]. Prospect 
theory was used to characterize customer attitudes towards 
risk and Variant Roth-Erev (VRE) was used to determine the 
uncertainty surrounding participation in the DR program. A 
DR scheduling tool was developed and used to assess the 
expected impact of demand response on the generation 
adequacy of the system.  

C. Contribution 

The main contribution of this paper is the development of 
a two-stage optimization framework from which the optimal 
size and location of EESDs can be determined (Fig. 1).  
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Fig. 1. Conceptual model for two-stage planning framework. 

This is done by decomposing the problem into: 
• A slave problem for the short-term operational 

timeframe.  
• A master problem for the long-term planning timeframe.  

The slave problem was solved as a linear unit 
commitment problem with the objective of finding the 
optimal operational status of the network (including 
generation units). In the slave problem, the impacts of ToU 
rates are considered.  The ToU pricing regime was combined 
with EESDs to attempt to level out differences between the 
peak-demand and off-peak times. This will improve the 
ESSDs load factor through the use of peak shaving and 
valley filling. In addition, EESD states-of-charge (SoC) are 
considered for the short-term operational timeframe 
optimization. The slave problem is dependent on the master 
problem, in which the long-term problem is solved, 
determining the optimal siting and sizing of the EESDs. This 
approach, which is formulated and tested in this paper helps 
reduce the computational burden associated with the 
optimization of EESD employment in smart grids.  

D. Paper Organization 

This manuscript is organized as follows: Section II 
introduces the conceptualization of the proposed 
optimization model and explains how this formulation can 
help reduce the computational burden. The mathematical 
formulation is presented in Section III which also includes 
details of how the EESDs were incorporated into the 
optimization problem. The results testing the proposed model 
are shown in Section IV. Corresponding conclusions and 
discussion are in Section V. 

II. CONCEPTUALIZATION OF TWO-STAGE MODEL 

Attempting to model the optimal sizing and siting 
problem in of ESSDs in SG will result in a highly non-linear 
formulation, with the computational burden varying 
exponentially with the problem size [13]. In this study we 
propose a two-stage formulation in order to reduce the 
computational complexity of the problem. The optimization 
problem is decomposed into a slave problem (short-term) 
and a master problem (long-term). 

The slave problem is formulated as a mixed-integer linear 
programming problem (MILP), based on the unit 
commitment problem presented in [14], which takes into 
consideration ToU DR program implementation for  
day-ahead operation.  

In the current formulation, the hourly EESD SoC is also 
considered for the day-ahead operation optimization. 
However, in order to compute the optimal solution for this 
problem, the siting and sizing of the EESDs in the network 
need to be predetermined. This is the output of the master 
problem, and hence the slave problem is dependent on it. 

In the master problem, the optimal sizing and siting of 
EESDs is determined by considering the year-ahead time 
horizon with a daily resolution (365 days considered). The 
optimal solution for the EESD size and location is obtained 
for each day along with the corresponding total investment 
cost, which can then be used as inputs for the slave problem. 
Although possible, it is not feasible to solve the slave 
problem for every single day considered. Instead, a 
representative day(s) can be used to obtain the total 
operational cost, which can then be used as an input to re-
compute new EESDs sizing and siting from the master 
problem. This iterative procedure is undergone until there is 
a convergent solution for the size and location of the EESDs 
in the network. Note that although the slave problem is 
formulated as a linear one, the master problem is non-linear. 
In this paper, since the main objective is to propose this 
formulation and validate its applicability, we use an 
exhaustive search algorithm (enumeration-based) to compute 
the optimal solution of the master problem. In small grids 
this will not affect the computational effort and may fact be 
faster than other alternatives. However, for application on 
larger networks, it may be better to employ more 
computationally-efficient algorithms such as meta-heuristic 
optimization techniques to solve the master problem.  

III. MATHEMATICAL PROBLEM FORMULATION 

In this section, the mathematical formulation of the 
proposed two-stage optimization model is provided. The aim 
of the proposed planning problem is to determine the optimal 
size and location for EES devices in SGs considering the 
ToU regime.  

A. Objective Function 

The main objective function of the two-stage 
optimization model is to minimize the investment costs 
(INVC) of EES devices and the total operating cost (TOPC) 
over the planning horizon: 

( )

, , ,
1 1

365

, , , , , ,
1 1 1

ESS B

B T

N N

i s i s i s
s i

N N

ci i t d i t d i t d
d i t

Min TC INVC TOPC

INVC ESS K Cost

TOPC F PG SUC SDC

= =

= = =

= +

=

 = + + 





 
(1) 

The objective function of the master problem is shown as 
the first part of the objective function while the second part 
of the objective function is associated with the annual 
operational cost addressed by the slave problem. The 
operational cost is calculated on a daily basis and the system 
operator performs the unit commitment (UC) problem to 
determine the optimal status and generation levels of power 
plants as well as the state of charge (SoC) of EES devices if 
they are available. The total cost (TC) is the summation of 
both master and slave sub-problems.  
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B. Master Problem Constraints 

As it is stated before, the master problem aims to find the 
optimal location and size of the EES devices. In this regard, 
the maximum capacities of the EES devices and the budget 
available for investment are the main constraints of the 
master problem. Eq. (2) expresses the total acceptable 
capacity for EES installations in the grid while Eq. (3) deals 
with the total budget that can be considered for the 
investment in this section from the point of view of the 
planner.   

max
, ,

1 1

EES BN N

i s i s
s i

ESS K EES
= =

≤  (2) 

max
, , ,

1 1

EES BN N

i s i s i s
s i

ESS K Cost Budget
= =

≤  (3) 

It should be noted that the commercial EES devices have 
discrete standard sizes and the investment cost per kWh of 
capacity of various batteries is different due to various 
reasons. Moreover, it is essential to define a binary decision 
variable for the optimal selection of EES devices at each bus 
(Ki,s). The maximum allowable capacity for EES is assumed 
to be EESmax

 while the annual budget for battery capacity 
addition is considered to be Budgetmax.  

C. Slave Problem Constraint 

The main core of the slave problem is the UC problem. In 
this study, a mixed integer linear programming (MILP) 
model was adopted in order to solve the UC problem. The 
main features of the UC based on a MILP framework have 
been reported in [14]. Eq. (4) deals with the polynomial 
quadratic cost function assumed in this paper for thermal 
power generating units. The piecewise linearization approach 
is adopted in this study and 200 segments are used to 
approximate the quadratic function. The UC problem 
considering the presence of EES devices has some inherent 
constraints as (5)-(22) demonstrate. For thermal power 
generating units, the minimum and the maximum acceptable 
generation level are shown in Eq. (5) whenever the unit is 
committed. The start-up and shut-down decision variables 
are associated with the status of power generating units and 
can be seen in (6). The start-up and shut-down costs are 
addressed by the unit start-up and shut-down costs and their 
binary decision variables yield, Eq. (7) and (8), respectively. 
Eq. (9) and (10) deal with the constraint of the hourly ramp 
rates for thermal power generating units. It is stated in the 
aforementioned constraints that the minimum generation 
levels of such units can be met at the first hour of start-up 
and before shutting-down. The minimum up and down time 
constraints are addressed in Eq. (11) and (12), respectively. 
The hourly load balance constraint is addressed in Eq. (13) 
considering the charging and discharging power of EES 
devices if they are to be used as determined by the master 
problem. The marginal value of this constraint is supposed to 
be the locational marginal price (LMP) for each hour in the 
day-ahead market equilibrium. Therefore, it can be used as 
the real-time prices for implementing the ToU programs. In 
this study, a ToU program was adopted based on this feature 
of market settlement. Therefore, the decision-making 
procedure can be performed by the consumers to modify 
their consumption level based on their preferences and power 
market signals. Details of this strategy can be found in [14]. 

Eqs. (14)-(19) deal with the EES constraints if the master 
problem suggests installing the storage devices in the system. 
The dynamic energy levels for EESs are provided in (14). 
Minimum and maximum acceptable levels for stored energy 
in the EESs are modelled by (15), while Eq. (16) deals with 
the initial and the final stored energy in the EES system. It is 
considered to be at the same levels for each day of operation. 
Eqs. (17) and (18) address the acceptable charging and 
discharging power of EES devices at each hour of operation, 
respectively. Since the operation strategy is based on an 
hourly resolution, the operator accepts one mode of operation 
for EES devices, i.e, charging or discharging mode. Eq. (19) 
enforces the operation of the EES devices in only one mode 
by adopting the corresponding binary decision variables for 
each mode of operation. The DC power flow equations are 
addressed in Eq. (20)-(22). The transmitted power through 
the lines is given by Eq. (20) and transmission lines 
capacities are shown in Eq. (21). The bus voltage angle of 
reference bus is considered to be zero, Eq. (22).   

( ) 2
, , , , , ,ci i t d i i i t d i i t dF PG a b PG c PG= + +  (4) 

min max
, , , , , ,i i t d i t d i i t dPG I PG PG I≤ ≤  (5) 

, , , , , , , 1,i t d i t d i t d i t dSU SD I I −− = −  (6) 

, , , ,i t d i t d iSUC SU STU=  (7) 

, , , ,i t d i t d iSDC SD SDU=  (8) 

( )min
, , , 1, , 1, , , , 1,i t d i t d i i t d i i t d i t dPG PG RU I PG I I− − −− ≤ + −  (9) 

( )min
, 1, , , , , , 1, , ,i t d i t d i i t d i i t d i t dPG PG RD I PG I I− −− ≤ + −  (10) 

( )
on 1

on on
, , , , , 1, 1... 1

it T

i t d i i t d i t d T i
t t

I T I I t N T
+ −

′ −
′=

≥ − ∀ = − +  (11) 

( ) ( )
off 1

off off
, , , 1, , ,1 1... 1

it T

i t d i i t d i t d T i
t t

I T I I t N T
+ −

′ −
′=

− ≥ − ∀ = − +  (12) 

, . , .
, , , , , , , , , , , ,

i

EES Dis EES Ch
i t d s t d i t d s t d l t d i t d

l NL

PG P PD P PL λ
∈

+ − − = ⊥  (13) 

, . , . , . , .
, , , 1, , , , ,. /EES EES EES Ch EES Ch EES Dis EES Dis

s t d s t d s t d s t dEng Eng P Pη η−= + −  (14) 
, ,

, ,
EES Min EES EES Max

s t dEng Eng Eng≤ ≤  (15) 

, 1, , 24,
EES EES
s t d s t dEng Eng= ==  (16) 

, . , ., , .
, , , ,0 EES Ch EES Ch Max EES Ch

s t d s t dP P I≤ ≤  (17) 
, . , ., , .

, , , ,0 EES Dis EES Dis Max EES Dis
s t d s t dP P I≤ ≤  (18) 

, . , .
, , , ,0 1EES Ch EES Dis

s t d s t dI I≤ + ≤  (19) 

( ), , , , , ,

1 S R
l t d l t d l t d

l

PL
X

δ δ= −  (20) 

min max
, ,l l t d lPL PL PL≤ ≤  (21) 

, , 0ref
l t dδ =  (22) 

In order to assess the ToU program in this study, a 
stimulated ToU framework was adopted as is suggested in 
[14]. The main advantage of this model is to consider the 
LMPs as real-time price signals. Therefore, the prosumers 
can easily formulate their strategies for optimal scheduling of 
the EES devices as well as ToU implementations during the 
operational horizons. Inside the slave model, a ToU 
implementation as a Linear Programming (LP) optimization 
problem was adopted and is as follows: 
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, , , ,
1 1

B TN N
New
i t d i t d

i t

Min PD λ
= =

×  (23) 

, , , ,
1 1

T TN N
New Old
i t d i t d

t t

PD PD
= =

=   (24) 

, , , , , ,(1 ) (1 ) 0 , 1Old New Old
i t d i t d i t dPD PD PDβ α α β− ≤ ≤ + ≤ ≤  (25) 

, , , 1,
New New
i t d i t dPD PD ω−− ≤  (26) 

, 1, , ,
New New
i t d i t dPD PD ω− − ≤  (27) 

This LP model for simulating the ToU implementation 
adopts the daily load change strategies. As it is stated before, 
λi,t,d is the locational marginal price obtained from the day-
ahead market clearing mechanism. The stimulated demand is 
denoted by the “New” superscript and it is the decision 
variable for this stage. Constraint (24) deals with the total 
consumed energy over the planning horizon and it should be 
the same as the energy requested by the aggregators before 
implementing the DRP. Constraint (25) confirms that the 
participation of the aggregators in the DRP is bounded. The 
hourly justification of the load demands is also constrained 
by the ability of aggregators to participate in the DRP, as 
shown in (26) and (27). The tendency of aggregators to 
change the demand from one hour to another is limited to ω. 

IV. SIMULATION RESULTS 

In order to evaluate the proposed model, the 6-bus 
standard test system has been considered in this paper. The 
single line diagram of the mentioned test system is provided 
in Fig. 2. The network has three thermal power generating 
units and three load centres.  

The power grid includes seven transmission lines. The 
hourly load demand before applying the demand response 
program is detailed in Table I. The load demand is 
distributed at 20%, 40%, and 40%, among buses 3, 4, and 5, 
respectively.  

Techno-economic data of the generating units and 
transmission lines are provided in Table II and Table III, 
respectively. The techno-economics data for EES devices are 
provide in the Tables IV and V, as well. For linearization of 
the quadratic generation cost function of the thermal units, 
the number of segments considered to be 200.  

 
Fig. 2. Single-line diagram of 6-Bus test system [14] 

In the DRP implementation, the maximum allowed 
participation rate of each aggregator per hour is assumed to 
be 15% of the total load demand. In other words, the α and β 
are assumed to be 0.15. Moreover, the maximum change in 
the responsive load demand is considered to be 15 MW, i.e., 
ω=15 MW. 

We evaluated four case studies in this section (Fig. 3). In 
the base case scenario, we perform the UC problem without 
implementation of DRP and there is no ESS device installed 
in the power system. In the second scenario, we evaluate the 
optimal placement of ESS devices in order to reduce the total 
operation and investment cost of batteries in the long-term 
planning horizon. For the third and fourth scenarios the 
assessments of DRP and DRP with the ESS installation have 
been considered, respectively. It is noteworthy that the 
maximum size of ESS devices have been considered to be 
100 MWh with the size of 50 MWh or 100 MWh. In the base 
case scenario, the daily operational cost is obtained as 
91515.189 $/day. 

In the second scenario, the optimal solution is obtained as 
86669.15 $/day by installation of a 100 MWh ESS at bus 
B.4. The total cost for one year considering the investment 
cost of the suggested EES is obtained as M$ 32.63. In the 
third scenario, the optimum daily cost is obtained as 
84186.967 $/day and it means that by considering just the 
DRPs the daily operational cost will be reduced about 
7328.222 $/day.  

In other words, with the 7.5% reduction of peak load 
demand, the amount of cost reduction is about 8.0%. In the 
last scenario, by considering the DRP and ESS installation 
simultaneously, the daily operational cost would be 
82456.638 $/day which is the least cost operation obtained in 
this paper. The total cost in this case study considering the 
annual operating and installation costs of EES devices is M$ 
30.696. It is noteworthy that the annual cost without 
considering the EES installation for this case is M$ 30.728. 
Finally, the simulation results suggest that there is one ESS 
with the size of 50 MWh needed to be installed at bus B.4.  

TABLE I.  DAILY FORECASTED LOAD  

Time PDOld Time PDOld Time PDOld 
T1 179.2 T9 243.6 T17 268.8 
T2 168.0 T10 266.0 T18 268.8 
T3 162.4 T11 277.2 T19 260.4 
T4 156.8 T12 280.0 T20 245.4 
T5 156.8 T13 277.2 T21 225.6 
T6 162.4 T14 280.0 T22 208.2 
T7 179.2 T15 280.0 T23 195.6 
T8 212.8 T16 271.6 T24 180.4 

TABLE II.  GENERATION UNIT DATA 

Unit a b c PGmax PGmin 
G1 177 13.5 0.00045 220 100 
G2 130 40.0 0.00100 100 10 
G3 137 17.7 0.00500 70 10 

Unit MUT MDT RD, RU SU SD 
G1 4 4 110 100 50 
G2 3 2 100 200 100 
G3 1 1 40 0 0 

G3 

BUS 6BUS 5 BUS 4 

L3 L2 

BUS 3BUS 2 BUS 1 

G2 L1 G1 
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TABLE III.  TRANSMISSION LINE DATA 

Line From To Xl PLmax 

L1 1 2 0.170 200 

L2 1 4 0.258 100 

L3 2 4 0.197 100 

L4 5 6 0.140 100 

L5 3 6 0.018 100 

L6 2 3 0.037 100 

L7 4 5 0.037 100 

TABLE IV.  TECHNICAL CHARACTRISTICS OF EESS (P.U) 

EngEES,Min EngEES,Max PEES,Ch.,Max PEES,Dis.,Max Initial EngEES

0.20 1.00 0.2 0.2 0.50 

TABLE V.  ECONOMIC DATA OF EESS 

Size (MWh) )$/MWh(Cost  EESMax (MWh) Budget Max  (M$) 

50  12000 2x50 
1.5 

100 10000 1x100 

 

 

Fig. 3. Resulting hourly demand (MW) for each scenario. 

V. CONCLUSIONS 

In this study we propose a computationally-efficient 
method to determine optimal sizing and location of EESDs 
in smart grids. The proposed model decomposes the problem 
into a master (long-term) and a slave (short-term) problems. 
By testing the model on a six-bus test system, taking into 
account ToU pricing, hourly EESD SoC, and investments 
and operating costs, it was shown that a significant 
improvement of the load factor is achieved (5.3% without 
ToU and 3.75% with ToU, relative to the peak hour). For 
future work, it is suggested to investigate the use of meta-
heuristics to solve the master problem in the case of larger 
networks.  
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