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Abstract—Phasor measurement unit (PMU) provides beneficial 

information for dynamic power system stability, analysis and 
control. One main application of such useful information is data-
driven analysis and control. This paper presents an approach for 
optimal signal selection and controller structure determination in 
PMU-based power system stabilizer (PSS) design.  An algorithm 
is suggested for selecting the optimal input and output signals for 
PSS, in which a combination of system clustering, modal analysis 
and principal component analysis (PCA) techniques is used. The 
solution for the optimal PSS input-output selection is determined 
to increase the observability and damping of the power system. 
The approach can efficiently reduce the number of input-output 
signals, while the overall performance is not deteriorated. Then, a 
Linear Matrix Inequality-based technique is elaborated to design 
the PMU-based PSS parameters. The stabilizer design approach is 
formulated as a convex optimization problem and the appropriate 
stabilizer for pole allocation of the closed-loop model is designed.  
This method is simulated on two sample power systems. Also, to 
compare the results with the previous methods, the system is 
simulated and the results of two previously-developed algorithms 
are compared with the proposed approach. The results show the 
benefit of the suggested method in reducing the required signals, 
which decreases the number of required PMUs, while the system 
damping is not affected. 
 
 

Index Terms—System Clustering, Modal Analysis, Principal 
Component Analysis, Phasor Measurement Unit, Linear Matrix 
Inequalities, Power System Stabilizer.  
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𝐴𝐴𝑐𝑐 ,𝐵𝐵𝑐𝑐 ,𝐶𝐶𝑐𝑐,𝐷𝐷𝑐𝑐  Controller parameters. 
𝐴𝐴𝑐𝑐𝑐𝑐 Closed-loop state matrix. 
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I.  INTRODUCTION 
HIS introduction consists of four parts that present the 
motivation of the topic, the literature review, the paper 

contribution and the paper structure. 

A.  Motivation 
With the advent of phasor measurement units (PMUs) in the 

last decades, extensive approaches in power system monitoring, 
state estimation, stability and control has been developed [1]. 
One interesting application of PMU signals is in Wide-Area 
Damping Controller (WADC) [2]-[5]. In the past, the power 
system stabilizers and controllers used local signals, while 
PMUs bring this opportunity to use both local and remote 
signals of a network to the stabilizers and controllers [6]-[7]. 
According to the high cost of instrument installation, such as 
the communication platform, the number of remote signals 
should be selected in an optimal manner [8]. 

The location of the universal measurement signals (the inputs 
of the power system stabilizer (PSS)) must be defined in order 
to have the most observability with a smaller number of PMUs. 
Similarly, the location of the universal control signals (the 
outputs of the PSS) is defined so that maximum controllability 
is ensured [9]. The smaller number of measurement signals in 
the network results in less communication links, while a smaller 
number of control loops leads to less system complexity.  

B.  Relevant Literature 
The recent technology in PSS design is devoted to using 

appropriate PMU signals for controlling purposes [10]. The 
methods discussed in the literature for choosing the PSS inputs 
can be divided in two categories: (i) geometric criteria of 
observability and controllability based on modal analysis [11]-
[13]; (ii) exploiting heuristic optimization methods for finding 
optimal criteria based on residuals [14]-[15].  

Reviewing the state-of-the-art methods show that the final 
number of the signals is still high and therefore the 
implementation of all PMU signals is not cost effective. For 
instance, in [16], modal analysis is used for selecting both the 
input and output signals, resulting in a large number of selected 
signals, which increases the complexity of calculations.  

In [8], the online wide-area signal selection based on the 
residue method is exploited for Wide Area Controller (WAC) 
signal selection. Although much research has been done in this 
regard, there are still more efforts needed to optimally reduce 
the number of signals while maintaining the overall 
performance. 

On the other hand, after the wide-area signals are selected, 
the wide-area controller can be designed based on the 
measurements received from the PMUs. In recent years, some 
papers present approaches in this regard. For instance, in [17]-
[20], a distributed networked wide-area system is designed.  
In [21] the controller structure is assumed unknown and the 
particle swarm optimization method is used to find the optimum 
controller parameters. In [22]-[23], the reinforcement learning 
is exploited for wide-area controller design, where the approach 
is able to update the controller parameters due to possible load 
changes. This area needs much more effective researches to 
provide an appropriate controller design approach. 

C.  Contribution 
To determine the optimal input-output signals of PSS from 

PMU signals, this paper presents an algorithm to find the 
optimum signals and minimize the number of required signals. 
First, the buses of the system are clustered optimally with the 
Imperialist Competitive Algorithm (ICA) as an optimization 
problem.  

Next, for each bus cluster, the generators are clustered. As 
the number of the received data is very high, it is necessary to 
use the Principal Component Analysis (PCA) technique in each 
clustering process to decrease the computation time. Finally, a 
limited number of generators is selected as a representation of 
the whole system, which are the candidates for input and output 
signals. Finally, by applying modal analysis, the optimal 
number of signals are obtained. Compared to the state-of-the-
art approaches, the method results in the least number of input-
output signals, while the overall performance is still very much 
satisfactory. 

The other major contribution and the main advantage over 
[1] is in designing the controller using the determined signals. 
This paper exploits the Linear Matrix Inequality (LMI) 
technique to design the controller. The approach is based on 
allocating the poles of the overall closed-loop model in an 
appropriate region, which assures damping of oscillations. To 
achieve this goal, the controller structure is determined 
according to the optimal input-output signals found in the first 
part. Then, the LMI technique is exploited to allocate system 
poles, appropriately. It is important to mention that the problem 
is inherently in the form of Bilinear Matrix Inequality (BMI). 
However, we can use convexification approaches to overcome 
the bilinear terms and solve the problem by convex 
optimization. 

D.  Paper Structure 
The structure of this paper is as follows. In Section II, the 

problem definition is presented. The proposed approach for 
input-output signal selection is described in section III, which 
consists of four sections: (i) PCA technique; (ii) formulation of 
optimal clustering; (iii) modal analysis; (iv) algorithm for 
selecting the optimal input and output signals of the PSS based 
on PMU data. In Section IV, the algorithm for designing the 
PSS using the LMI technique is described. The suggested 
approach is applied on two test systems in section V, followed 
by the discussion and conclusion in sections VI and VII. 

II.  PROBLEM DEFINITION 
In traditional power systems, the PSS inputs and outputs 

were local signals of the power plant, while by the usage of 
PMUs in nowadays power systems, the PSS signals can be 
selected from both local and non-local signals.  

Fig. 1 presents a schematic of the power system equipped 
with universal PSSs that receive signals from different parts of 
the power system. This paper considers a similar structure, 
where the inputs and outputs of the PSS can be selected from 
local or non-local signals. The main objective is to present an 
optimal approach for designing such universal PSSs.  

 
 

T 
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Fig. 1. A sample structure of universal PSS with data of PMUs. 
 

Here, PSS design by using PMU data in a large-scale power 
system is performed in two steps, as shown in Fig.2. 

1- Selecting inputs and outputs of PSS. 
2- Designing the selected PSSs.  
In the first step, PMUs gather information from the buses and 

generators. It is important to determine which PMU information 
should be sent to a PSS, and vice versa. It means that the input 
and output signals of PSSs should be designed. In the second 
step, the internal structure of the PSS is designed.    

Assume that the linearized model of a power system is 
defined as below: 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢                                     (1) 
  𝑦𝑦 = 𝐶𝐶𝑥𝑥                                              (2) 

where 𝑥𝑥, 𝑢𝑢, and 𝑦𝑦 are the system states, inputs and outputs, 
respectively.  

Each PSS is installed on one generator and its input is 
received, both from its generator and the PMUs. Assuming 𝑛𝑛 
PSSs in a universal structure as Fig. 1, its transfer function and 
state-space models can be written as follows: 

               �̇�𝑥𝑐𝑐 = 𝐴𝐴𝑐𝑐𝑥𝑥𝑐𝑐 + 𝐵𝐵𝑐𝑐𝑦𝑦                                            (3) 
      𝑢𝑢 = 𝐶𝐶𝑐𝑐𝑥𝑥𝑐𝑐 + 𝐷𝐷𝑐𝑐𝑦𝑦                                            (4) 

                   𝑘𝑘(𝑠𝑠) = 𝐶𝐶𝑐𝑐(𝑆𝑆𝑆𝑆 −  𝐴𝐴𝑐𝑐)−1𝐵𝐵𝑐𝑐 + 𝐷𝐷𝑐𝑐                      (5) 

         𝑘𝑘(𝑠𝑠) = �

𝑘𝑘11(𝑠𝑠) 𝑘𝑘12(𝑠𝑠) … 𝑘𝑘1𝑛𝑛(𝑠𝑠)
𝑘𝑘21(𝑠𝑠) 𝑘𝑘22(𝑠𝑠) … 𝑘𝑘2𝑛𝑛(𝑠𝑠)
⋮

𝑘𝑘𝑛𝑛1(𝑠𝑠)
⋮

𝑘𝑘𝑛𝑛2(𝑠𝑠)
⋮ ⋮

… 𝑘𝑘𝑛𝑛𝑛𝑛(𝑠𝑠)

�                       (6) 

Consequently, the power system closed-loop model is given 
as follows: 

        � �̇�𝑥�̇�𝑥𝑐𝑐
� = �𝐴𝐴 + 𝐵𝐵𝐷𝐷𝑐𝑐𝐶𝐶 𝐵𝐵𝐶𝐶𝑐𝑐

𝐵𝐵𝑐𝑐𝐶𝐶 𝐴𝐴𝑐𝑐
� �
𝑥𝑥
𝑥𝑥𝑐𝑐�               (7) 

The above structure demonstrates the wide-area control 
structure. The unknown matrices in (7) are 𝐴𝐴𝑐𝑐,𝐵𝐵𝑐𝑐 ,𝐶𝐶𝑐𝑐,𝐷𝐷𝑐𝑐 . In 
Section III, a method for the best input-output PSS selection is 
elaborated, which determines the elements of (6) that should 
assuredly be non-zero. Then, in Section IV, the controller 
unknown parameters (𝐴𝐴𝑐𝑐 ,𝐵𝐵𝑐𝑐 ,𝐶𝐶𝑐𝑐,𝐷𝐷𝑐𝑐) are designed.                                    

III.  PSS SIGNAL SELECTION PRELIMINARIES 
In this paper, an algorithm based on candidate input and 

output signals is suggested. The information of the buses and 
generators of a power system is extracted to find the best input 
and output signals of the PSS. By applying modal analysis, the 
optimal number of signals is obtained. The overall design 
procedure of the proposed approach for the PSS input-output 
selection is illustrated in Fig. 3. 

In the proposed approach, first, the buses of the system are 
optimally clustered with the ICA. Next, in each bus cluster, 
generators are optimally clustered. 

 

 
Fig. 2. PSS design by using PMU data in a large-scale system. 

 

 
Fig. 3.  The overall schematic of the PSS input-output selection approach. 

 
Please note that according to the huge amount of data, 

clustering is done in two steps such that the optimum number 
of generators for PSS allocation is determined. To reduce the 
number of received data, the PCA technique is proposed in both 
clustering steps. Finally, a limited number of generators is 
selected for PSS allocation. In the end, the Modal analysis is 
applied on the system to determine the input/output pairs of the 
signal. Successive usage of the clustering technique on the 
reduced data results in a smaller number of required controllers 
compared to the previous technique. 

The calculated (input) output signals are devoted to those 
generators that are selected in the steps of the proposed 
algorithm in Fig. 3. To clarify the methodology, the theory is 
elaborated in the following subsections. 

A.  Principal Component Analysis 
Principal component analysis (PCA) is a known method for 

reducing the dimension of data or feature without loss of 
information. This method aims to convert the main features to 
a smaller number with a linear combination of the main 
features. Usually, the subset of k principal components contains 
the information similar to the main data set. The algorithm is 
described as follows [24]: 

Assume a set of n-dimension features’ vector  
𝑥𝑥𝑗𝑗 (𝑗𝑗 = 1,2, … ,𝑛𝑛), in which, each feature has 𝑚𝑚 patterns. 
Therefore, the data set is a 𝑚𝑚 × 𝑛𝑛 matrix (𝑋𝑋𝑚𝑚×𝑛𝑛). Then, the 
steps of PCA technique are as follows:  

Power 
system 

𝑃𝑃𝑀𝑀𝑈𝑈1 

𝑃𝑃𝑆𝑆𝑆𝑆𝑟𝑟  

𝐺𝐺1 

𝐺𝐺𝑟𝑟  

𝑃𝑃𝑆𝑆𝑆𝑆1 

𝑃𝑃𝑀𝑀𝑈𝑈𝑟𝑟  

⋮ ⋮ 

Selecting 
input and 
output of 

PSS 

PSS 
Design 

Power 
system 

PMU 
data 

Stop 

Use modal analysis on clusters to 
find the I/O signals 

 

For each cluster obtained in step 2, apply 
PCA technique to generators’ 

information matrix and cluster generators 

Start 

Prepare a rich suitable database 
from power system results 

Apply PCA technique to the 
data matrix of buses and 
cluster them using ICA 
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1- The average of each dimension is calculated.  
            𝑥𝑥𝑖𝑖𝑗𝑗′ = 𝑥𝑥𝑖𝑖𝑗𝑗 −

1
𝑚𝑚
∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑚𝑚
𝑖𝑖=1                                        (8) 

2- Each feature is subtracted from its mean and the 
normalized feature matrix 𝑋𝑋′𝑚𝑚×𝑛𝑛 is created. 

3- The covariance of normalized feature matrix is given as:  
        𝐶𝐶𝑚𝑚×𝑛𝑛 = 1

𝑛𝑛−1
𝑋𝑋′𝑋𝑋′𝑇𝑇                                            (9) 

4- The eigenvalues and eigenvectors of the covariance matrix 
are calculated. 

        𝐶𝐶𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖  , 𝑖𝑖 = 1,2, … ,𝑛𝑛                                (10) 
5- The principal components are the eigenvectors of the 

largest eigenvalues. The first  𝑘𝑘 eigenvectors (𝑘𝑘 ≤ 𝑛𝑛) 
related to the 𝑘𝑘 largest eigenvalues are selected to represent 
the raw feature vectors with low dimension. 
               𝑉𝑉𝑛𝑛×𝑘𝑘 = [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘]                                    (11) 
The amount of 𝑘𝑘 is defined by a minimum threshold value, 
having 𝛼𝛼 as the accuracy of approximation of the 𝑘𝑘 largest 
eigenvectors: 

            ∑ 𝜆𝜆𝑖𝑖
𝑘𝑘
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 ≥ 𝛼𝛼                                                    (12) 

6-  According to 𝑉𝑉𝑛𝑛×𝑘𝑘, the low dimensional feature vectors 
are computed as principal components: 

      𝑃𝑃𝑗𝑗 = 𝑉𝑉𝑇𝑇𝑥𝑥𝑗𝑗𝑇𝑇  , 𝑗𝑗 = 1,2, … , 𝑘𝑘                              (13) 

B.  Formulation of the Clustering as an Optimization Problem  
Clustering means identifying the homogeneous groups of 

data, which are called clusters. Data of each cluster must be 
alike and be different from the other clusters. The concept of 
distance is used as a basis of data similarity. Euclidean distance 
is the most usable similarity criterion. As the distance is 
inversely proportional to the similarity, for clustering, it is 
needed to minimize the distance of the data. 

Assuming 𝑑𝑑 data , 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑑𝑑) will be sectionalized to 
𝑐𝑐 clusters. Consider 𝐶𝐶𝑗𝑗  (𝑗𝑗 = 1,2, … , 𝑐𝑐) as the cluster center and 
𝑑𝑑𝑖𝑖 as the distance of 𝑥𝑥𝑖𝑖 from the nearest cluster center. The goal 
is to minimize the total of these distances. The clustering 
problem can be defined as an optimization problem, given by: 

min∑ min
𝑗𝑗
�𝑥𝑥𝑖𝑖 − 𝐶𝐶𝑗𝑗�2

𝑑𝑑
𝑖𝑖=1                 (14)

        𝑖𝑖 = 1,2, … ,𝑑𝑑    𝑗𝑗 = 1,2, … , 𝑐𝑐  
In the literature, there are several algorithms for solving the 

above problem. In this paper, this minimization problem is 
solved by ICA [25]. ICA starts with an initial population called 
country. Some of the countries are selected as imperialist. The 
others named colony are divided among the imperialists. The 
number of colonies of each imperialist depends on how much 
powerful it is. Then, the colonies start to move toward the 
related imperialist and the imperialistic competition begins. 
Along with the competition, if a colony gains more power than 
its imperialist, the position of them is exchanged and the colony 
becomes an imperialist. If an imperialist releases all its 
colonies, it becomes a powerless country and it will be 
eliminated. The competition is continued until all the colonies 
are assigned to the only one imperialist that is the most 
powerful. 

C.  Modal Transformation 
Based on the Modal transform, the power system model is 

given as follows: 

 �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 →   �̇�𝑧 = 𝐹𝐹𝑧𝑧 + 𝐺𝐺𝑢𝑢                   (15) 
  𝑦𝑦 = 𝐶𝐶𝑥𝑥  →   𝑦𝑦 = 𝐻𝐻𝑧𝑧                     (16) 

where, 
           𝐹𝐹 = 𝛷𝛷−1 𝐴𝐴𝛷𝛷                                                   (17) 

  𝐺𝐺 = 𝛷𝛷−1 𝐵𝐵 = 𝛹𝛹𝐵𝐵                        (18) 
  𝐻𝐻 = 𝐶𝐶𝛷𝛷                                 (19) 

where Φ and Ψ are right and left modal matrices, respectively.  
If the row ith of G equals to zero, it means that the inputs do 

not affect the ith mode. Therefore, the elements of G are defined 
as modal controllability factors. Similarly, if the ith column of 
H equals to zero, it means that the ith mode of outputs is not 
observable. Thus, its elements are defined as modal 
observability factors. The controllability and observability 
factors are defined below: 

       𝑓𝑓𝑐𝑐𝑖𝑖(𝑙𝑙𝑖𝑖) = 𝜓𝜓𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖   , 𝑙𝑙𝑖𝑖 = 1,2, … ,𝑚𝑚𝑖𝑖 (20) 
       𝑓𝑓𝑜𝑜𝑖𝑖(𝑙𝑙𝑜𝑜) = 𝑐𝑐𝑐𝑐𝑜𝑜𝜙𝜙𝑖𝑖   , 𝑙𝑙𝑜𝑜 = 1,2, … , 𝑝𝑝𝑜𝑜 (21) 

where 𝑙𝑙𝑖𝑖, 𝑙𝑙𝑜𝑜 and i are inputs, outputs and their modes of system 
and mi and po are the number of inputs and outputs. 

According to the modal analysis, the best selection for inputs 
and outputs are the signals that have the maximum observability 
and controllability modal factors (according to the elements in 
G and H matrices).  

The signal with the highest observability factor is the best 
candidate for being selected as an input, and similarly the signal 
with the highest controllability factor is the most appropriate 
one as an output. Briefly, the PSS inputs and outputs are 
selected based on the signals with the highest observability and 
controllability, respectively. 
D.  Suggested Algorithm for Selecting Optimal Input and 
Output Signals of PSS Based on PMU Data 

The flowchart of the proposed algorithm is shown in Fig. 4. 
First, a suitable database is prepared. For this purpose, the 
different faults are applied to the power system and all data that 
are received directly from PMUs, such as the angle of bus 
voltage and the generators’ rotor angles, are saved. Then, the 
data matrix of buses is constructed.  

To reduce the number of received data, the PCA technique 
(as described in section A) is applied to the data matrix of buses. 
According to B, the optimal clustering is done with ICA on the 
reduced data matrix. 

After bus clustering, the data matrix of generators is 
constructed for each cluster of buses, and similarly the PCA 
technique is applied to each data matrix of generators. Then, the 
generators of each bus cluster are optimally clustered. Finally, 
by using modal analysis on every cluster of generators, the 
optimal input and output signals are found. The number of 
inputs and outputs equals to the number of final generators’ 
clusters because, in each cluster, one generator is selected as a 
location for installing PSS (input) and one generator is selected 
as a location for applying the control signal of PSS (output) with 
modal analysis. It is assumed that each PSS has a lead-lag form 
as follows [26]: 

        𝐶𝐶(𝑆𝑆) = 1.4 𝐾𝐾 (𝑇𝑇1𝑠𝑠+1)(𝑇𝑇3𝑠𝑠+1) 
(𝑇𝑇2𝑠𝑠+1)(𝑇𝑇4𝑠𝑠+1)

                                  (22) 
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Fig. 4. The flowchart of the proposed algorithm 

IV.  FORMULATING PSS DESIGN METHOD USING MATRIX 
INEQUALITIES  

In Section III, the procedure for selecting the inputs and 
outputs of PSS was explained. The aim of this section is to 
design the PSSs using the LMI technique. The theory is to place 
the closed-loop poles of the system in a desired region that 
assures an appropriate performance of the system. 

In this technique, pole placement is achieved via LMIs such 
that the PSS gain is limited. In other words, the theory of matrix 
inequalities is used to place the poles in the desired region and 
at the same time, the static gain of the controller is limited, 
which results in a system with low gain and high damping.    

The LMI region 𝐷𝐷 is a subset of a complex plane, which is 
defined as below [27]: 

 𝐷𝐷 = {𝑠𝑠 ∈ 𝐶𝐶|𝐿𝐿 + 𝑠𝑠.𝑀𝑀 + �̅�𝑠.𝑀𝑀𝑇𝑇 < 0}                             (23) 

where 𝐿𝐿 and 𝑀𝑀 are symmetric real matrices. 
 To locate all eigenvalues of 𝐴𝐴𝑐𝑐𝑐𝑐 (The closed-loop system 

model defined in (7)) in the LMI region, there should be a real 
symmetrical positive definite matrix 𝑄𝑄 that is satisfied in the 
following inequality:  

𝐿𝐿 ⊗ 𝑄𝑄 + 𝑀𝑀⊗ (𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄) + 𝑀𝑀𝑇𝑇 ⊗ �𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇� < 0           (24) 

To have a desirable control performance, the composite LMI 
region is used, which is an intersection of three regions as 
shown in Fig. 5. 

1- A half-plane (𝑅𝑅𝑅𝑅(𝑠𝑠) < −𝜎𝜎), to have a minimum settling 
time and satisfy a relative stability margin. The matrices 
in (24) are 𝐿𝐿 = 2𝜎𝜎,𝑀𝑀 = 1. 

2- A disk which is centered in origin with radius 𝑟𝑟 to avoid 
large control input. The matrices in (24) are,  
𝐿𝐿 = �−𝑟𝑟 0

0 −𝑟𝑟� ,𝑀𝑀 = �0 1
0 0�.  

3- A sector with the vertex in the origin and the interior angle 
𝜃𝜃, to have maximum damping 𝜉𝜉 = 𝑐𝑐𝑐𝑐𝑠𝑠−1𝜃𝜃, and minimum 
overshoot. The matrices in (24) are 𝐿𝐿 = 0,𝑀𝑀 =
� 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃
−𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃�. 

 
Fig. 5.  Composite LMI region [27]. 
 
According to (24), the matrix inequalities for three regions is 

defined respectively as: 
2𝜎𝜎 ⊗ 𝑄𝑄 + 𝐴𝐴𝑐𝑐𝑙𝑙.𝑄𝑄 + 𝑄𝑄. 𝐴𝐴𝑐𝑐𝑙𝑙𝑇𝑇 < 0         (25) 

        �
−𝑟𝑟.𝑄𝑄 𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄
𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇 −𝑟𝑟.𝑄𝑄� < 0           (26) 

       �𝑎𝑎.𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄 + 𝑎𝑎.𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇 𝑏𝑏.𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄 − 𝑏𝑏.𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇

𝑏𝑏.𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇 − 𝑏𝑏.𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄 𝑎𝑎.𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄 + 𝑎𝑎.𝑄𝑄.𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇
� < 0  (27) 

in which  𝑎𝑎 = sin𝜃𝜃 and 𝑏𝑏 = cos 𝜃𝜃.  
To locate the poles in the composite LMI region, there must 

be a common matrix 𝑄𝑄 that is satisfied in (25)-(27). Therefore, 
three matrix inequalities must be solved, simultaneously. 
However, a challenge in solving the matrix inequalities arises.  
𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄 is not convex because in 𝐴𝐴𝑐𝑐𝑐𝑐 there are unknown matrices 
𝐴𝐴𝑐𝑐 ,𝐵𝐵𝑐𝑐 ,𝐶𝐶𝑐𝑐,𝐷𝐷𝑐𝑐 . Therefore, in the  𝐴𝐴𝑐𝑐𝑐𝑐 .𝑄𝑄, there are some bilinear 
terms due to the multiplication of matrix 𝑄𝑄 and the controller 
matrices. Overall, the matrix inequalities in (25)-(27) are 
Bilinear Matrix Inequalities (BMIs) and the method in [28] can 
be used to convexify the inequalities. 

A.    Robust Performance in Various Operating Points 
It is necessary for the power system to have a proper 

performance in different operating points. In this paper, we used 
the polytopic model of the power system [29]. The idea is to 
derive a linear model for the power system in various operating 
points. Then, the overall model is a convex combination of the 
linear models. 

Assume an 𝑖𝑖th model of a power system in an operating point 
with matrices (𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖  and 𝐶𝐶𝑖𝑖). For 𝑚𝑚 different operating points, 
the polytopic model of the system is defined as follows: 
𝐴𝐴 = ∑ 𝜆𝜆𝑖𝑖𝑚𝑚

𝑖𝑖=1 𝐴𝐴𝑖𝑖,   𝜆𝜆𝑖𝑖 ≥ 0,     ∑ 𝜆𝜆𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 1        (28) 
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In the above definition, 𝐴𝐴𝑖𝑖 is called the side of the polytope, 
which is an 𝑛𝑛 dimensional matrix. 𝐴𝐴 is the polytopic model. 

To guarantee that the poles of the closed-loop system are 
placed in the composite LMI region, the LMIs according to 
each operating point in (25)-(27) must be derived and the 𝑚𝑚 sets 
of LMIs must be solved, simultaneously. 

  

V.  SIMULATION RESULTS 
The suggested algorithm is simulated on two test systems: a 

13-bus system and a 68-bus system. The systems are simulated 
in the power system toolbox (PST) [30]. The detailed results are 
also shared via https://doi.org/10.6084/m9.figshare.14994882 

A.    13-Bus System  
 In Fig. 6, the single line diagram of a two-region, four-

machine system is shown. The first step in applying the 
proposed approach of this paper is to gather the rich and suitable 
data from buses, transmission lines and generators through the 
installed PMUs. 

To find the location of PSSs and select the optimal inputs 
and outputs of them, the observability and controllability modal 
factors are computed for each generator. The results are shown 
in Table I.  

According to the result of the clustering, it has two generator 
clusters, (G1-G2) and (G3-G4). Thus, it needs two controllers. 
The location of the measurement signals (input of PSS) and 
control signals (output of PSS) are shown in Table II. 

The modes of the 13-bus system are shown in Figs. 7  
and 8 for both open-loop and suggested control strategies, 
respectively.  

The generators’ voltage deviation to a 10% step disturbance 
in the first generator’s field voltage are displayed in Figs. 9 and 
10. The results demonstrate appropriate damping performance 
when the proposed controller is applied. 

 
Fig. 6. The single line diagram of the 13-bus (4-machine) system. 

 
TABLE I 

THE RESULTS OF MODAL ANALYSIS  

Generator Observability Modal Factor Controllability Modal Factor 

1 2.3364 2.3211 

2 2.2283 2.5578 

3 2.4388 2.3756 

4 2.5070 2.5541 

 

 TABLE II 
SELECTED INPUT AND OUTPUT SIGNALS WITH THE PROPOSED ALGORITHM 

FOR THE 13-BUS TEST SYSTEM 

Control signal location (output of 
PSS) 

Measurement signal location (input of 
PSS) 

G1-G2 G3-G4 
 

 

Fig. 7. Modes of the 13-bus system (Open-loop system). 
 

 

Fig. 8. Modes of the 13-bus system in case of the suggested control. 

 

Fig. 9. The response of the 13-bus system to a disturbance in case of the Open-
loop control. 

 
Fig. 10. The response of the 13-bus system to a disturbance in case of the 
suggested control. 
 

B.  68-Bus Test System 
In this sub-section, the approach is simulated on the 68 
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buses system with 16 machines [31], shown in Fig. 11. The first 
step is to gather the rich and suitable data from buses and 
generators through installed PMUs.  

For this system, 391 different faults such as three-phase 
fault, single/double/triple phase to ground fault, short circuit, 
loss of load and line outage are applied to most buses and lines. 
Then, the voltage angle of each bus in all 391 cases constructs 
a column of the data matrix of buses, leading to a 6120 × 68 
matrix that requires the PCA technique. The final reduced 
matrix is a 34 × 68 matrix, which helps to decrease the 
complexity of the calculation. The results of bus clustering are 
shown in Table III. For generator clustering, the data matrix is 
generated by saving the rotor angle of 391 cases. It is a 
7480 × 16 matrix, which is reduced to a 15 × 16 matrix with 
the PCA technique. 

 

 
Fig. 11. The single line of the 68-bus test system. 

 
The results of the generators clustering in each bus cluster are 

shown in Table IV. Finally, the generators are divided into 9 
clusters. Therefore, there are 9 pairs of inputs and outputs. 

To find the optimal input and output signals, the modal 
observability and controllability criteria are applied on each 
cluster. The results of Table V show that there are 3 universal 
control PSSs on generators 1, 2 and 4 that their output signals 
are applied to generators 12, 5 and 7, while the other 6 
controllers are locally on generators 13, 14, 15, 16, 11 and 9. 

To show the effectiveness of the proposed approach, it is 
compared with the conventional modal approach [11] and the 
sequential orthogonal (SO) [13] approach. Table VI shows the 
selected input and output signals of the above three approaches. 
It reveals that there are 15 input and output pairs selected by 
modal analysis, while the proposed approach results in 9 pairs. 

In the second step, the inputs and outputs selected by the 
proposed approach, as given in Table VI, are considered for the 
PSSs and the internal structure of the PSS according to the 
proposed approach in Section IV is designed.  
 

TABLE III 
THE RESULTS OF BUS CLUSTERING OF TEST SYSTEM 2 

Cluster Buses Generators’ 
numbers 

1 41-42-52-66-67-68 14-15-16 

2 19-22-23-29-40-49-50-54-55-56-57-58-59-
60-61-62-63 

2-3-4-5-6-7-8-9-
10-11 

3 36-37-39-43-44-65 13 

4 

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-
17-18-19-20-21-22-23-24-25-26-27-28-29-
30-31-32-33-34-35-38-45-46-47-48-51-53-

64 

1-12 

 

TABLE IV 
THE RESULTS OF GENERATOR CLUSTERING OF TEST SYSTEM 2 

Bus 
Cluster 

Generators of each bus 
cluster Clustered generators 

1 14-15-16 (16), (15-14) 

2 2-3-4-5-6-7-8-9-10-11 (2-5-10), (3-4-6-7-8), (9), (11) 

3 13 (13) 

4 1-12 (1), (12) 
 

 TABLE V 
SELECTED INPUT AND OUTPUT SIGNALS WITH THE SUGGESTED 

ALGORITHM FOR TEST SYSTEM 2 

Control signal location (output of 
PSS) 

measurement signal location (input of 
PSS) 

13-1-14-15-16-11-9-2-4 13-12-14-15-16-11-9-5-7 
 

TABLE VI 
COMPARISON OF SELECTED INPUT AND OUTPUT SIGNALS IN DIFFERENT 

ALGORITHMS FOR TEST SYSTEM 2 

Approach Control signal location 
(output of PSS) 

measurement signal location 
(input of PSS) 

The proposed 
approach 13-12-14-15-16-11-9-5-7 13-1-14-15-16-11-9-2-4 

Modal  
approach [11] 

5-16-3-12-8-10-5-2-9-7-8-
14-7-5-15 

5-2-3-12-11-10-13-11-16-7-
9-16-13-13-14 

SO  
Approach [13] 

16-10-8-3-9-2-12-5-7-10-
11-4-13-14 

16-4-12-11-2-6-8-5-10-7-3-
1-14-13 

 
The modes of the system are shown in Figs. 12 and 13. The 

voltage deviations of all generators to a 10% step disturbance 
in the first generator’s field voltage are displayed in Figs. 14 
and 15. The results show the effectiveness of the proposed 
approach in determining the optimal selection for the PSS 
signal, which effectively controls the system behavior in 
response to disturbances. 

 
Fig. 12. System modes (Open-loop system). 
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Fig. 13. System modes in case of the suggested control. 
 

 
Fig. 14. The response of the Open-loop system to a disturbance. 
 
 

 
Fig. 15. The response of the system to a disturbance in case of the suggested 
control. 

 

VI.  DISCUSSION 
This paper presents a method for optimal input and output 

PSS signal selection. The optimality of input/output selection is 
proved by two main concepts. a) The number of PMU signals 
is optimum b) The result of the closed loop system exploiting 
WAC is not deteriorated. Considering the 68-bus system, Table 
VI shows that the number of required inputs/outputs in the 
proposed approach is less than the Modal and SO approaches. 
Additionally, the simulation results of the closed loop system in 
Fig. 13 and Fig. 15 admits the controller capability in damping 
the power system oscillations. 

The proposed approach of this paper can be used for WADC 
design. Previously, some electric companies in different 
countries applied PMU-based PSSs or Wide Area Measurement 
System (WAMS)-based PSSs [32]-[33]. The approach of this 
paper can be used as an idea to improve the designed PSSs in 
real power systems that implement PMU/WADC structure. To 
implement the method completely, it is needed to simulate the 
power system under study in an appropriate software and use 
dynamical tests to gather required information from installed 
PMUs. Then, the power system model (1)-(2) can be identified 

using the gathered input-output information and the control 
design approach of Section IV can be exploited.  

Obviously, in reality, the WADC may encounter some 
problems which need to be handled by engineers. A challenge 
is the time delay in data transmission via the WADC which is 
approximately 110 ms. Two different strategies regarding this 
problem are proposed in the literature. One is to design time 
delay compensators to refine the impacts of time delay [32]. 
The other, is to design the controller such that the varying time 
delay with the bound of 110 ms does not affect the WADC. In 
the literature, Lyapunov Krasovski Functional (LKF) approach 
is suggested for this design procedure [34]. The research can be 
continued for considering the time delay impact in designing 
the WADC in presence of the probable delay in data 
transmission. 

The other problem is the packet loss or packet dropout [34]. 
When the PMU data is missed, the control centre is not able to 
make any decisions unless appropriate programs are 
implemented that can overcome the packet loss or dropout, 
mathematically. 

 

VII.  CONCLUSION 
In this paper, a method for optimal input and output PSS 

signal selection and their related controller design based on the 
data of PMU was proposed. First, the PSS input-output 
selection was carried out based on the modal analysis 
technique, and by clustering buses and generators in the system, 
an appropriate optimal strategy for signals’ selection was 
reached. The combination of generator clustering and bus 
clustering using modal analysis and PCA techniques resulted in 
the desirable damping with the least number of input and output 
signals. Then, the selected input-output signals were used in the 
PSS structure and exploiting the LMI techniques, the PSS 
parameters were designed. The developed algorithm has several 
computations that are completely offline and, after the design 
procedure, they can be implemented in practice with a low 
computational burden. Therefore, it is an appropriate algorithm 
for being implemented in power systems. The method was 
applied on two standard benchmarks. Compared to the previous 
approaches in this area, the suggested algorithm reduced the 
cost and complexity of the monitoring system while the control 
performance was not deteriorated.  

Briefly, the paper concludes the following points: 
• The overall damping of signals can be improved by a 

WAMS PSS (PMU-based PSS), instead of 
conventional PSSs. 

• By optimal selection of  input/output signals in a 
WAMS PSS, we can avoid too complicated structure 
with a reasonable damping of signals. 

• After selecting the input/output signals of the WAMS 
PSS, the control design techniques such as pole-
placement can be used to find the PSS parameters.  

 
The research can be continued in the future by considering 

the communication channel problems, such as time delay and 
packet dropout. Also, the real-time implementation of the 
approach is suggested. 
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