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Abstract—Day-ahead electricity price forecasting (DAEPF) plays a very important role in the decision-making optimization of 
electricity market participants, the dispatch control of independent system operators (ISOs) and the strategy formulation of energy 
trading. Unified modeling that only fits a single mapping relation between the historical data and future data usually produces larger 
errors because the different fluctuation patterns in electricity price data show different mapping relations. A daily pattern prediction 
(DPP) based classification modeling approach for DAEPF is proposed to solve this problem. The basic idea is that first recognize the 
price pattern of the next day from the “rough” day-ahead forecasting results provided by conventional forecasting methods and then 
perform classification modeling to further improve the forecasting accuracy through building a specific forecasting model for each 
pattern. The proposed approach consists of four steps. First, K-means is utilized to group all the historical daily electricity price curves 
into several clusters in order to assign each daily curve a pattern label for the training of the following daily pattern recognition (DPR) 
model and classification modeling. Second, a DPP model is proposed to recognize the price pattern of the next day from the forecasting 
results provided by multiple conventional forecasting methods. A weighted voting mechanism (WVM) method is proposed in this step to 
combine multiple day-ahead pattern predictions to obtain a more accurate DPP result. Third, the classification forecasting model of 
each different daily pattern can be established according to the clustering results in step 1. Fourth, the credibility of DPP result is 
checked to eventually determine whether the proposed classification DAEPF modeling approach can be adopted or not. A case study 
using the real electricity price data from the PJM market indicates that the proposed approach presents a better performance than 
unified modeling for a certain daily pattern whose DPP results show high reliability and accuracy. 

Keywords—Electricity price; day-ahead forecasting; classification modeling; daily pattern prediction; weighted voting mechanism 

Nomenclature 

EPF Electricity price forecasting RBF Radial basis function 
DAEPF Day-ahead electricity price forecasting ELM Extreme learning machine 
ISO Independent system operator AR Autoregression 
DR Demand response MA Moving average 
DPP Daily pattern prediction ARIMA Autoregressive integrated moving average 

DPR Daily pattern recognition GARCH Generalized autoregressive conditional 
heteroskedastic 

WVM Weight voting mechanism MAPE Mean absolute percentage error 
ANN Artifical neural network RMSE Root mean square error 
SVM Support vector machine SDE Standard deviation of errors 
LSSVM Least square support vector machine ENN Elman nerual network 
SVC Support vector classification ED Effective distances 
SVR Support vector regression ER Effective radius 
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1.Introduction 

1.1. Background 

The power industry market reform all over the world has made electricity prices become the core of market operation and 
electricity energy trading [1-4]. The time scales of electricity price forecasting (EPF) include long term (years), midterm (months), 
short term (days) and very short term (hours) [5]. Accurate EPF in all time scales is necessary for market participants and market 
operation [6-8]. In particular, day-ahead electricity price forecasting (DAEPF) has already been analysed due to its importance for 
the day-ahead market. For example, sellers and buyers need DAEPF to strategically submit their bids and offers before a certain 
closing time of the day-ahead energy market for the delivery of electricity during each hour of the next day [9] and independent 
system operators (ISOs) need DAEPF to foresee and deal with those possible abnormal conditions such as extreme high or low 
values and great fluctuations of electricity prices, so as to operate accordingly to guarantee the stability and orderly competition of 
the electricity market. Only with an accurate DAEPF can the maximum profit for all market participants be obtained as well as the 
minimum risk for the ISOs. However, the characteristics of electricity prices, such as non-stationarity, high volatility, seasonality 
and calendar effect [10, 11], make EPF more complex and challenging than electricity load or renewable energy power 
forecasting [12-16], particularly in the presence of demand response (DR), which brings uncertainty to electricity prices [17-21]. 

1.2. Literature review and motivation 

The objective of forecasting is to fit the mapping relations between the future values of a forecasted variable (output) and the 
historical data of any related impact factors including the forecasted variable itself (input) as accurately as possible. Basically, the 
forecasting accuracy depends on the two following aspects. As shown in Fig. 1, the first aspect is the expression of the forecasting 
problem, i.e. how we formulate the problem logically and mathematically, which mainly determines how complex the forecasting 
will be and how difficult the modeling will be. The second aspect is the specific adopted forecasting method, which is composed 
of two sub-aspects including modeling theory, which is application dependent; and the model optimization to decide the optimal 
structure and parameters of the established model. 

In terms of the second aspect, various DAEPF forecasting methods have been proposed. Time series methods such as 
autoregressive integrated moving average (ARIMA) [22, 23], generalized autoregressive conditional heteroskedastic (GARCH) 
[24]; machine learning methods such as artificial neural networks (ANN) [25,26] and support vector machine (SVM) [27,28]; 
hybrid methods such as two-stage hybrid model based on panel cointegration and particle filter [29], hybrid chaotic gravitational 
search algorithm-least square support vector machine (LSSVM) [30], hybrid models such as combining LSSVM and ARIMA, or 
combining ANN, an adaptive neuro-fuzzy inference system and ARMA [31, 32], and dynamic choice artificial neural network 
[33], etc. Although the above forecasting methods have achieved good forecasting results in some designed scenarios, it is 
difficult to further improve the forecasting accuracy if we only focus on the optimization of forecasting methods themselves. 
Because for a given forecasting issue, the expression of forecasting mainly determines the upper bound of forecasting accuracy 
while forecasting methods are just used to close this upper bound. Hence, more attention should be paid to more reasonable 
formulation of the forecasting problem to further improve the accuracy of DAEPF. 

In terms of the first aspect (expression of the forecasting problem), there are two different modeling approaches: unified 
modeling and classification modeling. Unified modeling directly uses historical data to forecast future data and establishes only 
one single forecasting model without classification. Classification modeling first divides historical data into several clusters 
according to the daily fluctuation patterns and then build a forecasting model for each cluster [34]. Classification modeling 
usually outperforms the unified modeling. The reasons are illustrated as follows. Most of the forecasting methods usually divide 
all data into two subsets: training set and testing set. The data in training set is used to learn the mapping relation between the 
input (historical data) and output (future data) while the data in testing set is used to test the forecasting accuracy. For a certain 
forecasting method, the forecasting accuracy is mainly determined by whether the mapping relations between training set and 
testing set are close or not. Apparently, large errors will occur if the mapping relation between the input and output in testing set 
is different from it in training set. In other words, it should be ensured that the mapping relations between the training set and 
testing set are as close as possible in order to obtain more accurate forecasting results. Actually, there are several different 
fluctuation patterns in the daily electricity price data, which means there must exist different mapping relations between the 
historical data and future data. However, the unified modeling just fits a single mapping relation between the historical data and 
future data to perform the forecasting. Therefore, the cases, the mapping relations between the training set and testing set are 
totally different, will most likely happen in unified modeling, which will result in large forecasting errors. By contrast, 
classification modeling groups all historical data with different fluctuation patterns into different clusters and establish a model for 
each cluster. Thus, the mapping relations between the input and output in the same cluster are close, hence the classification 
modeling can produce more accurate forecasting results. 
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The key to classification modeling is the pattern prediction of next day. Because if we want to perform classification modeling, 
we first must know the pattern of next day so that we can choose the corresponding classification model to perform the 
forecasting. It should be noted that the pattern prediction must be accurate and reliable. Otherwise, the wrong classification model 
will be chosen and large forecasting errors will occur. Several studies concerning pattern prediction have been conducted. 
Martínez Álvarez et al. [35] presented an approach to forecast the behavior of time series based on the similarity of pattern 
sequences. First, clustering techniques were applied to group and label the samples of historical dataset, then the pattern sequence 
before the day to be predicted with a window size W was searched in the whole historical pattern sequence and the prediction was 
calculated by averaging all the samples after the matched sequence. Jin et al. [36] used ANN to conduct the pattern prediction by 
training the relationship between previous pattern sequences and the pattern for the next day, and the forecasting results were 
generated by averaging the historical data belonging to the predicted pattern. These two studies have indicated the feasibility of 
pattern prediction and obtained satisfactory results in some certain cases. However, they only focused on how to predict the future 
pattern while the pattern prediction results were not used to further perform the classification modeling. 

  
Fig. 1. Two aspects affecting the forecasting accuracy: Expression form and forecasting model 

Accurate price pattern prediction is not easy to realize but possible. Although current forecasting methods cannot directly provide 
very accurate DAEPF results, at least the general trend could be obtained, which contains the pattern information of the next day. If 
we can accurately recognize the pattern from this “rough” forecasting result, classification modeling can then be applied to further 
improve the forecasting results. Even if we can only accurately predict one of the patterns, the forecasting results corresponding to 
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that pattern can be improved. In other words, as long as we can accurately predict a specific pattern, it is still of significance for 
improving the overall accuracy. 

1.3. Contributions 

The main contributions of this paper can be summarized as follows:  
(1) The error generation mechanism of unified modeling and the superiority of classification modeling are revealed. Unified 

modeling that only fits a single mapping relation between the historical data and future data usually produces larger errors because 
the different fluctuation patterns in electricity price data show different mapping relations. Classification modeling establish a 
model for each different pattern so as to better fit the multiple mapping relations separately. 

(2) A daily pattern prediction (DPP) based classification modeling approach for DAEPF is proposed in this paper. The basic 
idea is that first recognize the price pattern of the next day from the “rough” day-ahead forecasting results provided by 
conventional forecasting methods and then perform classification modeling to further improve the forecasting accuracy. 
Furthermore, the proposed approach can be applied into other time series forecasting issues and is not limited to any specific 
algorithm. 

(3) A weighted voting mechanism (WVM) method is proposed in the step of price pattern prediction to combine multiple day-
ahead pattern predictions to obtain more accurate pattern prediction results. 

1.4. Structure of the paper 

The remainder of the paper is organized as follows. Section 2 describes the DPP-based classification modeling approach for 
DAEPF. Section 3 introduces the algorithms/methods adopted in the proposed approach in detail. Section 4 presents the case 
study using a real dataset from PJM market. Finally, Section 5 concludes the paper. 

2. Methodology  

The detailed framework of the proposed approach consisting of 4 main steps is shown in Fig. 2. In step1, all the historical daily 
electricity price curves are grouped into several non-overlapping clusters and each historical day is assigned a pattern label. The 
price pattern of the next day is predicted in step2. In step3, classification modeling is performed to build a forecasting model for 
each pattern. The credibility of the pattern prediction result will be checked in step 4 to determine whether the classification 
model established in step 3 can be used or not. If the pattern prediction results don’t pass the check, unified modeling will be 
directly used to produce the forecasting results.  

2.1 Electricity prices data clustering 

If we want to perform classification modeling, we need to know the specific pattern of each historical day. To this end, 
clustering is used to group the historical daily electricity price curves into n clusters based on the similarity of price pattern such 
that the electricity price in the same cluster show similar patterns while electricity price in different clusters exhibit distinct 
patterns. The purpose of this step is to mark a pattern label for each historical day indicating which cluster it belongs to. This label 
will be used as the output of the pattern recognition model in step 2.2. K-means, the most widely used clustering algorithms, is 
adopted to perform the clustering due to its attractive advantages such as fast computation speed and effective clustering results. 
Euclidean distance is used as the similarity metric. It should be noted that other clustering algorithms such as Fuzzy clustering 
also can be used to perform this step. 

2.2 Daily price pattern prediction 

We have obtained the pattern label by step1, the next step is to predict the pattern label of the next day so that we can perform 
the classification modeling. The daily price pattern prediction can be realized by the following three sub-steps. 

2.2.1 Multiple DAEPF modeling 

To recognize the price pattern of the next day, the “rough” DAEPF results for the next day are required. Hence, in this step, m 
different forecasting methods are selected to establish m DAEPF models. The reason for selecting multiple forecasting models 
instead of one single model is to make the pattern prediction more reliable. For each DAEPF model, the electricity price data of 
the previous three days is used as the input and the electricity price of the next day is used as the output of the forecasting models. 
Thus, m different DAEPF results can be obtained from these models. In this paper, five conventional forecasting methods 
including ARIMA, RBF neural network, support vector regression (SVR), Elman neural network and extreme learning machine 
(ELM) are adopted, which will be introduced in Section3. However, there are no constraints or preferences for the selection of the 
forecasting methods, which means any applicable method all could be used in this step for DAEPF modeling. 
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2.2.2 Daily pattern recognition (DPR) 
After obtaining the “rough” DAEPF results, the next step is to recognize the daily price pattern of the next day. A daily pattern 

recognition (DPR) model is established using support vector classification (SVC). The input vector of this DPR model is 
composed of the features extracted from the daily electricity price data, and the output is the corresponding daily pattern 
indicating which cluster it belongs to. We select six features (i.e. maximum price, minimum price, average price, price variance, 
difference between maximum and minimum prices, and average price volatility) instead of the whole daily electricity curve as the 
input of the DPR model due to the high computation complexity caused by the high dimension of the whole daily electricity price 
curve. So we can use this DPR model to recognize the daily price pattern of the “rough” DAEPF results provided by the m 
different DAEPF models in step2.1, m different DPP results for the next day can be obtained. 
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Fig. 2. Detailed framework of the proposed approach for DAEPF 

2.2.3 DPP by weighted voting mechanism (WVM) 
The purpose of this step is to combine the m pattern recognition results (m dimension) from step 2.3 together to obtain the final 

DPP result (1 dimension) for the next day. Usually, generating the final DPP result through a “simple majority” voting 
mechanism based on the pattern recognition results seems to be an easy way for this purpose. However, the m DAEPF models 
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exhibit different forecasting performances even under the same input vectors extracted from the same historical data, the 
prediction accuracy of these DAEPF models for a same day would be different. Therefore, the accuracy of each individual 
forecasting model should be considered when assigning the weight. To this end, a WVM method is proposed in this paper. The 
basic idea is that those individual models showing better performances should be assigned larger weight coefficients. The specific 
operative process of the proposed WVM is illustrated in Section 3.4. 

2.3 Classification modeling 

After obtaining the specific pattern of each historical day by step1 and the predicted pattern of the next day by step 2, the next 
step (step3) is to perform classification modeling to build n forecasting model for n clusters. For each cluster, the historical daily 
electricity price data in the same cluster will be used to train the classification model. Specifically, the electricity price data of the 
previous three days is used as the input and the electricity price of the next day is used as the output of the forecasting models. 
Then choose the corresponding model according to the DPP result to produce the final forecasting result. Note the same five 
forecasting methods adopted in step 2.1 will be used in this step in order to make a fair comparison between the proposed 
classification modeling and unified modeling. 

2.4 Credibility check 

Even if we have used multiple forecasting methods and WVM method to predict the daily price pattern of the next day, it still 
cannot be ensured that the DPP result is absolutely accurate. Hence, credibility check is conducted in this step to eventually 
determine whether the proposed classification DAEPF modeling approach for a certain pattern can work or not. If the final DPP 
result for a certain pattern shows high credibility, the classification DAEPF model selected in step 3 is accepted to forecast the 
electricity price for the next day. Otherwise, the proposed classification forecasting method cannot be used. Instead, the “rough” 
forecasting results from step 2.1 will be used as the final forecasting result. For more details about credibility check, please see 
Section 3.5. 

3. Main algorithms 

In this section, the specific algorithms/methods adopted in the proposed approach will be introduced. All of the 
algorithms/methods can be divided into five categories corresponding to the steps in Section 2: clustering algorithms, forecasting 
methods, classification methods, weight optimization methods and credibility check methods. It should be emphasized the 
proposed approach is not limited to specific algorithms/methods, other algorithms/methods that can realize the same function also 
can be used. 

3.1. K-means clustering algorithm 

As one of the unsupervised learning methods, K-means [37] divides the d-dimensional vector space of data point xi, D = {xi | 
i=1,2,…,d} into k categories by minimizing the objective function: 
  2

1
=

n

i j
i

F arg min


 x c  (1) 

where cj stands for the k-cluster centroids in center set C = {cj | j=1,2,…,k}. 
To minimize the objective function, K-means performs two-step procedures iteratively during the clustering. First, k-cluster 

centroids cj (j=1,2,…,k) are initialized randomly and all the d-dimensional data points are assigned to the closest centroid by 
implementing the Euclidean distance calculation. Second, new cluster centroids are calculated by the assigned data from the first 
step in each category. This iteration is repeated until cj is stabilized. 

3.2. Forecasting methods 

3.2.1 Autoregressive integrated moving average (ARIMA) 
ARIMA [22] is a forecasting procedure consisting of autoregression (AR), moving average (MA) and integration (I) to analyze 

and forecast time series. An ARIMA-based forecasting model with appropriate parameters could be used based on historical 
electricity prices to predict future them where the model should be updated throughout time in order to maintain a relative high 
accuracy using the closest electricity price data. 

Assuming that the electricity prices time series are represented by Pt, the parts of Pt are described as: 
 ( ) ( ) ( )tP f t g t X t    (2) 
where f(t) stands for the non-periodic increasing trend in Pt , g(t) represents the periodic change trend in Pt, and X(t) is a stationary 
stochastic process reflecting the random fluctuation of electricity prices. 

These three parts should be treated in a forecasting mode to improve its performance. The ARIMA method provides a 
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difference operator,  , and a periodic difference operator, 24 , to eliminate the increasing and periodic variable trends in a 
nonstationary time series, respectively. The ARIMA-based model used for DAEPF is described as: 
 

24( ) ( )d D
t tB P B      (3) 

 2
1 2( ) 1 p

pB B B B        (4) 
 2

1 2( ) 1 q
qB B B B        (5) 

 1 B    (6) 
 24

24 1 B    (7) 
where B is the time shift operator,   and 24 represent the difference operator and the periodic difference operator, p, q, d, D, φ1, 
φ2…φp and ω1,ω2…ωq are all the parameters of the model, and εt stands for a white noise interference whose mean value is zero, 
but whose variance is positive. 

3.2.2 RBF neural network (RBFNN) 
The RBFNN [38] is a feed-forward and fully connected network with three layers: input, hidden and output layer. The basic 

principle of the RBF neural network is to transform the low-dimensional input data into a high-dimensional space by the hidden 
layer composed of some RBF-based nodes. As a result, some linearly non-separable problems in low-dimensional spaces could be 
solved in this way. 

The output layer adjusts the linear weights with a linear optimization strategy and the learning speed is relatively fast. However, 
the hidden layer is responsible for adjusting the parameters of the activation function with a nonlinear strategy whose speed is 
slow. The Gaussian function is usually used as the RBF function and the activation function R(x) is described as: 
   2

2
1

2p i p iR x c exp x c


     
 

 (8) 

where ||xp-ci|| is the Euclidean norm, ci and σ represent the centre and variance of the Gaussian function, respectively and 
xp={x1

p,x2
p,…,xm

p} is the p-th input vector. 
Fig. 3 shows the structure of the RBF neural network where the final output can be expressed by: 

 2

2
1

1 1, 2,...,
2

h

j ij p i
i

y w exp x c j n


     
 

  (9) 

where p=1, 2, …, P, P being the sample number, wij represents the connected weight between the hidden layer and the output 
layer, i=1, 2, …, h is the node number of hidden layer, and yj stands for the output of the j-th node corresponding to the input data. 

… …

Input layer     Hidden layer     Output layer

w11

whn

x1

x2

xm

y1

y2

yn

…

 
Fig. 3. Structure of RBF neural network 

3.2.3 Support vector regression (SVR) 
SVM [39] is a machine learning method based on statistical learning theory adopting the structural risk minimization criterion. 

According to different functions, SVM can be divided into SVC (for classification) and SVR (for regression).  

Fig. 4 shows the schematic diagrams for SVR. The difference is that we can get α*=[α1
*, α2

*,…,αm
*] and α=[α1, α2,…,αm] from 

the dual-form model. The regressive function can be expressed as: 
      * *

1
,

m

i i i
i

f K b 


  x x x
 

(10) 
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Fig. 4. Schematic diagrams for SVR 

3.2.4 Elman neural network (ENN) 
ENN [40] is a kind of feedback neural network that adds a context-sensitive layer after the hidden layer compared with the 

traditional three-layer structure. The context-sensitive layer acts as a delay operator to achieve memory function, making the 
system adaptable to time-variant characteristics. The nonlinear state space expressions of ENN are: 
     3k g ky x  (11) 
        1 2 1ck f k k   x x u  (12) 
    1c k k x x  (13) 
where k represents the sample number, u(k) and y(k) are the k-th input and output vectors, and x(k) and xc(k) stand for the output 
vector of the hidden layer and the feedback state vector, respectively, ω1, ω2 and ω3 are the connected weights between the 
context-sensitive and hidden layers, the input and hidden layers, and the hidden and output layers, respectively, and g(*) and f(*) 
are the neural transfer functions of the output and hidden layers. 

3.2.5 Extreme learning machine (ELM) 
ELM [41] is a kind of fully connected single-hidden layer feed-forward neural network whose structure is similar to RBF. The 

output vector T can be described as: 
 

1
( )

l

ik i j i
i

g b


 T w x  (14) 

where l is the node number of the hidden layer, βik represents the connected weight between the i-th node in the hidden layer and 
the k-th node in the output layer, g(*) is the activation function for a neuron in the hidden layer, wi stands for the i-th weight row 
vector between the input and hidden layers, xj is the j-th input column vector, and bi is the threshold of the i-th neuron in the 
hidden layer. 

3.3 Support vector classificaiton(SVC) 

ω·x+b=0
ξ i*

ξ i
x

y

 
Fig. 5. Schematic diagrams for SVC 
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A variety of classification methods have been proposed in the past few decades. In this paper, SVC is chosen due to its 
excellent performance in many applications [42]. The target of SVC is to find an optimal hyperplane splitting samples into two 
categories. 

Fig. 5 shows the linear separability of SVC with hyperplane ω·x+b=0, where x is the input vector of training samples, ω 
(vector) and b (scalar) are both parameters that define the hyperplane. By introducing slack variables ξi and ξi

*, the problem to 
find ω and b can be described as an optimization model. The model can be transformed to its dual form using Lagangian function. 
Assuming that α*=[α1

*, α2
*,…,αm

*] is the solution of the dual-form model, then the optimal separable function for linear 
separability of SVC can be defined as: 
 

   * *

1

m

i i i
i

f sgn y b


 
  

 
x xx  (15) 

where yi represents the output of the training samples, m is the dimension of the input vector, and b* stands for the optimal value 
obtained by α*. 

Correspondingly, for nonlinear separability of SVC, the dot product operation is replaced with K(xi,xj) and the optimal 
separable function can be described as: 
 

   * *

1
,

m

i i i
i

f sgn y K b


 
  

 
x x x  (16) 

3.4 Optimization algorithm for WVM 

An optimization procedure is conducted in WVM to determine the weight of each individual DAEPF model, which is 
illustrated in Fig. 6. 

Set the parameter top, n=0

n=n+1 and operate the m DAEPF models

Initialize the weight matrix w

Calculate the objective function and save the result

n>top

Output the best weights assignment by objective function values

Obtain m DPPs by DPR model for each sample

Form the voting matrix v and actual pattern vector S

N
Y

Calculate the final weight score for each pattern

Obtain the final DPP result for the next day by weights comparison  
Fig. 6. Optimization procedures for WVM 

The objective is to find the best weight allocation according to all training samples. And the optimization model is as follows: 
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Matrix w and vi can be expressed by: 
 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

m

m

n n n m

w w w
w w w

w w w

 
 
 
 
 
  

L
L

M M O M
L

w

 

(23) 

 
1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

i i i
n

i i i
ni

i i i
m m m n

v v v
v v v

v v v

 
 
   
 
  

L
L

M M O M
L

v  (24) 

where D is the number of training samples, diag(wvi) returns a row vector which is formed by the diagonal value of matrix wvi. 
max-row(*) returns the column number of *’s maximum. Matrix w given by (23) is the weight matrix and vi given by (24) is the 
DPP result of m normal DAEPF models for sample i. wj,k stands for the weight assigned to pattern j for DAEPF model k. vi

u,t 
represents the voting state of DAEPF model u for pattern t of sample i. If the DAEPF model u votes for pattern t, vi

u,t =1; 
otherwise, vi

u,t =0. Si is the actual pattern ranging from 1~n for sample i; m, n are the number of individual DAEPF models and 
patterns, respectively. Tm, Tn are two sets which are composed of the positive integers that are less than or equal to m and n. In 
this paper, the initial weights are set according to the DPP accuracy: 

, ,
,

1 ,

1 D
X Y i

X Y
i X i

C
W

D T

                                                                                (25) 

where WX,Y represents the weight assigned to pattern X for the DAEPF model Y, D is the operation number, CX,Y,i stands for the 
correct number of samples of the DAEPF model Y for pattern X in the i-th operation for DPP, and TX,i is the total correct number 
of samples of all the DAEPF models for pattern X in the i-th operation for DPP. 

Assuming that the operation number of this model is top, the target for the model is to find the best weight allocation among top 
operations. All the weights can be updated if new historical data is introduced into the model. When m DPP results for the next 
day are exported from the DPR model, every price pattern’s voting score is calculated, acting as the evaluation criteria for the 
final DPP result. In other words, the price pattern whose voting score is the maximum will be the final DPP result. This is exactly 
the function of max-row(*). 

For example, assuming that we have extracted two price patterns, A and B, in step 1, and forecasting methods P, Q, R are 
selected to establish three DAEPF models in step 2.1. Based on all the training samples, a reasonable weight allocation is obtained 
through solving the optimization model above. The solution is represented by matrix w as equation (26) shows. 
 

,, ,

, , ,

A QA P A R

B P B Q B R

ww w
w w w
 

  
  

w  (26) 

Assuming that Table 1 is the DPP results of every model for each price pattern, then the vi for sample i is expressed as equation 
(27): 

Table 1. DPP results statistics for a certain sample 
Algorithm P Q R 
Pattern A    
Pattern B    

 
 0 1

1 0
1 0

i

 
   
  

v  (27) 
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So, the final voting score for patterns A and B is: 
    

, , ,

, , ,

, , ,

,

,

i
A B

A Q A R A P

B Q B R B P

A Q A R B P

S S diag

W W W
diag

W W W

W W W
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  

  
   

wv

 (28) 

The final DPP result for the next day of the above sample will be given by max-row(*): 
 

A B

A B

S S A
S S B

 
  

 (29) 

3.5. Method for credibility check 

If we obtain a DPP result (for example, A) of the next day, the problem is how to determine whether the actual pattern is A or 
not. To ensure a completely accurate DPP result, a method based on distance calculation is presented to deal with this problem. 
For the sample whose DPP result is A, the DAEPF results obtained in step 2.1 are selected and, then, the Euclidean distance 
between the DAEPF results and the clustering center of pattern A are calculated. The mean value of the Euclidean distances for 
the same sample, defined as effective distances (ED) is calculated as: 
 

 
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1

m

i A i
i

m

i
i

T r
ED













 (30) 

where λi represents the computed state of the DAEPF model i, if the DPP of the DAEPF model i is A, λi=1, otherwise, λi=0. TA(ri) 
is the Euclidean distance calculation between the forecasting result, ri, and the clustering center of pattern A. ri is the DAEPF 
result of model i. Numbers 1~m represent m forecasting methods, respectively. For example, a sample whose final DPP result is 
A, the initial DPPs from DPR in step 2.2 are shown in Table 2. 

Table 2. DPP results by DPR model for a certain sample 
Models 1 2 3 … m 

Pattern A      
Pattern B      

Assuming the total number among m forecasting models for pattern A is p, the ED for this sample is: 
 

      1 1 3 3
1

A A m A mED T r T r T r
p

     L  (31) 

The minimum ED of all the incorrect predictions is chosen as the bound for the correct and incorrect results, defined as the 
effective radius (ER). Furthermore, a margin value range from 0 to 1 can be set to obtain credible results. As a result, the ER can 
be expressed as: 
  = wrongER min ED   (32) 

where μ is the margin value between 0~1, and min(EDincorrect) represents the minimum ED of the incorrect samples. 
Classification modeling is conducted only when the ED is less than the ER, since only these samples show high credibility of 

DPP. 

4 Metrics for accuracy assessment 

Three metrics are used to evaluate the performance of the proposed approach: mean absolute percentage error (MAPE) and the 
root mean square error (RMSE) and standard deviation of errors (SDE). MAPE and RMSE are used to evaluate the forecasting 
accuracy and SDE is used to assess the robustness of different DAEPF models. 

4.1. Root mean square error (RMSE) 

The computational formula of RMSE is expressed as: 
 

    2*

1

1=
N

t

RMSE y t y t
N 

  (33) 

where N is the number of testing samples, y(t) and y(t)* are the actual and predicted electricity price values at time t, respectively. 
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4.2. Mean absolute percentage error (MAPE) 

The formula of MAPE can be expressed as: 
    

 

*

1

1 100%
N

t

y t y t
MAPE

N y t


   (34) 

4.3. Standard deviation of errors (SDE) 

The proposed SDE can be calculated by: 
 2

1

1 N

i
i

SDE E E
N





   
 

  (35) 

where N is the number of testing samples, 
_

E is the average value of errors, and Ei represents the i-th error. In this paper, we use 
RMSE as the error index. 

5 Case study 

5.1. Data 

In this paper, a case study is conducted using the real electricity price data from PJM (Pennsylvania, New Jersey, Maryland in 
the US) market [43]. The time range of the historical data consists of 365 days from March 1st, 2016 to February 28th, 2017 with 
24 observation values every day. That’s to say, the daily electricity price series is a 24-dimension column vector. As a result, all 
the historical data composes a 24×365 matrix. All the simulations are carried out in MATLAB and run on an Intel Core i3-2310M 
CPU @ 2.10 GHz computer with a 4 GB RAM. The average run time for all the steps of this approach is about 1100s. 

5.2. Results 

5.2.1 Results of electricity price clustering 
The number of clusters K is chosen as 2 in this paper. Table 3 shows the clustering results of 365 days of historical data of 

electricity prices by K-means.  

Table 3. Results of K-means clustering 
Type Pattern A Pattern B Total 

Number of days/d 311 54 365 
Percentage/% 85.21 14.79 100 

In Table 3 we can see that patterns A and B contain 311 and 54 samples respectively. That’s to say, the historical data includes 
more samples belonging to daily fluctuation pattern A. Then, six features are extracted to represent the high-dimensional electricity 
price series (For convenience, they are represented by Max, Min, Average, Variance, Max-Min and Average volatility in the figure). 
The input of DPR model is a 6-dimension feature vector. In order to verify whether the features could cover the typical 
characteristics of these patterns, so as to distinguish diverse patterns, the normalized features data of samples for pattern A and B 
are shown in Fig. 7. The numbers in the figure represent the normalized values of different features from -1 to 1. 

 
Fig. 7. Radar plot diagram of six features for patterns A and B 

From fig.7 we can see that the extracted six features are able to distinguish patterns A and B effectively. 



14 
 

5.2.2 Results of daily price pattern prediction 

1) Results of multiple DAEPF modeling 
ARIMA, RBFNN, SVR, ENN and ELM are then used to establish 5 DAEPF models independently. Since the input of each 

DAEPF model is the price data of previous three days, thus 362 sample couples can be obtained from the 365 historical data of 
electricity prices. In order to cover the electricity prices in different period of one year, training samples are selected randomly 
form 362 sample couples. And the reminder sample couples act as testing set. All the DAEPF models are established based on the 
same training set. The ratio of number of training samples to testing samples is approximately 5:1. The detailed partition is shown 
in Fig. 8. It can be seen that the training set contains 255 samples of pattern A and 45 samples of pattern B, while the testing set 
includes 53 samples of pattern A and 9 samples of pattern B. 

 
Fig. 8. The partition of training and testing samples 

2) Results of daily pattern recognition 
The DPR model is established using SVC after obtaining the “rough” price forecasting results. The extracted six features are 

used as the input of the DPR model. The pattern labels are used as the output. Table 4 shows the recognition results of DPR model. 
Table 4. The results of SVC-based DPR model 

Type Pattern A Pattern B Total 
Number of training samples 255 45 300 

Correct number of training samples 252 38 290 
Training accuracy/% 98.82 84.44 96.67 

Number of testing samples 53 9 62 
Correct number of testing samples 49 7 56 

Testing accuracy/% 92.47 77.78 90.32 

It is shown in Table 4 that the recognition accuracy for pattern A is better than pattern B. Table 5 shows the DPP results of the 
five DAEPF models in terms of the 62 testing samples (53 samples of pattern A and 9 samples of pattern B) for the first operation. 

Table 5. DPP results for different DAEPF models in the first operation 
Models ARIMA RBFNN SVR ENN ELM 

No. of correct Aa 42 52 53 53 52 
No. of correct B 6 4 1 4 3 

Total 48 56 54 57 55 

a: number of pattern A that is correctly predicted 

3) Results of WVM 
The proposed WVM method is then conducted and top is set to be 100. As a result, different weights are assigned to the 5 

DAEPF models for each pattern based on the optimization of DPP’s accuracy in the top operations. The final weights of the five 
DAEPF models for patterns A and B are listed in Table 6. 

Table 6. Weights of five DAEPF models for patterns A and B 
Models ARIMA RBFNN SVR ENN ELM 

Pattern A 0.1721 0.1903 0.2168 0.2082 0.2126 
Pattern B 0.3918 0.2060 0.0686 0.1750 0.1586 

Table 6 indicates that different forecasting methods present similar accuracy for predicting pattern A because the weight assigned 
to each model is similar. By contrast, for pattern B, the weight of each DAEPF model is different from each other. Specifically, 
ARIMA is assigned with the maximum weight of 0.3918 while SVR is assigned with the minimum weight of 0.0686.  

255

45

53
9

Train A

Train B

Test A

Test B
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5.2.3 Results of credibility check 
The final DPP results for the 62 testing samples are listed in Table 7. 

Table 7. The final DPP results of 62 testing samples 
Type Pattern A Pattern B Total 

Total number 53 9 62 
Correct number 53 3 56 

Accuracy/% 100 33.33 90.32 

It can be seen from Table 7 that the DPP of pattern A presents a good performance but for pattern B it is not ideal. In this case, 
the DPP of pattern B cannot be accepted because its forecasting accuracy is only 33.33%. Hence, classification modeling can be 
used only when the DPP result is pattern A.  

From Table 7 we can see that there are 59 samples that are predicted as A among the 62 testing samples, including 53 correct 
DPP results and 6 incorrect DPP results. The EDs of these 59 samples are calculated and shown in Fig. 9. EDs are displayed in a 
circle whose radius is the maximum of them and the angle for every point is generated randomly from 0 to 2π. 

 
Fig. 9. Scatter diagram of 59 EDs 

The ED of these 59 samples are then calculated. μ is set to be 1 in this paper. It should be pointed that electricity prices from 
different electricity markets perform various characteristics. Consequently, parameter μ can be flexible based on real simulation 
results of historical data. Only the sample whose ER is larger than its EDs can be used for classification modeling. Finally, 39 
samples pass this credibility check.  

5.2.4 Comparison 

 
Fig. 10. DAEPF results before and after classification modeling for a certain day 
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For these 39 examples, we still use five different forecasting methods to establish the classification model and unified model 
(without classification), respectively to verify the superiority of classification modeling. Taking one of the 39 samples as an 
example, the DAEPF results produced by five forecasting method before and after classification modeling are shown in Fig. 10. It 
is shown in Fig.10 that the classification modeling presents more accurate forecasting results than unified modeling for all the 
forecasting methods. In other words, the classification modeling shows higher accuracy than unified modeling whatever forecasting 
method is used.  

We combine the five forecasting models to obtain the final prices forecasting results by averaging the results of five different 
models. The three evaluation indexes, RMSE, MAPE and SDE, are calculated to evaluate the forecasting accuracy before and after 
classification, as shown in Table 8. 

Table 8. Comparison of evaluation indexes before and after classification modeling 

Algorithms 
RMSE MAPE SDE 

Before After Improvement % Before After Improvement % Before After Improvement % 
ARIMA 18.92 10.43 44.87 36.69 26.10 28.86 572.45 94.42 83.51 
RBFNN 16.83 7.68 54.37 29.84 20.79 30.33 937.54 38.99 95.84 

SVR 11.18 6.00 46.33 18.85 13.95 25.99 227.80 36.06 84.17 
ENN 16.63 6.19 62.78 27.66 16.93 38.79 932.47 35.87 96.15 
ELM 11.97 6.24 47.87 25.42 16.79 33.95 250.77 36.76 85.34 

Final Prices 5.90 12.14 30.79 
 
From Table 8 we can see that all the evaluation indexes are improved after using the DPP based classification modeling 

approach, indicating the effectiveness of the proposed methodology. Among the five forecasting methods, ENN forecasting 
methods presents the maximum improvements in accuracy after adopting the proposed approach. Comparison of RMSE between 
the results of these five single classification models and the final DAEPF result for 39 samples is shown in Fig. 11. We can see 
that the final DAEPF result show better performance than each single model in most cases. 

  
Fig. 11. RMSE comparison among the five DAEPF results with classification and the final DAEPF result 

5. Conclusions 

In this paper, a DPP based classification modeling approach is proposed to improve the forecasting accuracy of DAEPF. The 
proposed approach consists of four main steps: electricity price pattern clustering, daily price pattern prediction, classification 
modeling and credibility check. A case study using the real electricity price data from the PJM market shows that the proposed 
approach has a better forecasting accuracy than the unified modeling approach for a certain daily pattern of electricity prices, 
which verifies the effectiveness and feasibility of the proposed approach. The future works of this paper are listed as follows: 
(1) The electricity prices from different markets may exhibit different characteristics which will affect the forecasting results. In 
future work, data from other electricity markets will be used to further verify the effectiveness of the proposed approach. 
(2) The DAEPF is regarded as a time series forecasting problem in this paper. Actually, there are many impact factors affecting 
the electricity price. Correlation analysis methods can be used to quantify the specific impact of these factors and feature selection 
can then be applied to further improve the forecasting accuracy [44, 45].  
(3) This paper proposes a very complex method containing multiple steps to predict the pattern for the next day. The final 
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accuracy of pattern prediction is limited by the accuracy of each step. We will try to use some state prediction method such as 
Markov chain to directly predict the pattern of the next day. 
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