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Abstract—Most current customer baseline load (CBL) 

estimation methods for incentive-based demand response (DR) 
rely heavily on historical data and are unable to adapt to the cases 
when the load patterns (LPs) in the DR event day are not similar 
enough to those in non-DR days. After the error generation 
mechanism of current methods is revealed, a synchronous pattern 
matching (SPM) principle based residential CBL estimation 
approach without historical data requirement is proposed. All 
customers are split into DR and CONTROL group, including DR 
participants and non-DR customers, respectively. First, all 
CONTROL group customers are clustered into several 
non-overlapping clusters according to LPs similarity in the DR 
event day. Second, each DR participant is matched to the most 
similar cluster in the CONTROL group according to the similarity 
between its load curve segments (LCS) in DR event day, excluding 
DR part and cluster centroids. Third, the CBL of each DR 
participant is estimated with an optimized weight combination 
method using the load data within the DR event period of all the 
customers in the very matching cluster in the CONTROL group. 
A comparison with five well-known CBL estimation methods 
using a dataset of 736 residential customers indicates that the 
proposed approach has better overall performance than other 
current CBL estimation methods. 
 

Index Terms—Incentive-based demand response; Customer 
baseline load; Synchronous pattern matching; Optimized weight 
combination 
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I. INTRODUCTION 
n recent years, the reliability and flexibility of power system 
operation face serious challenges due to the growing 

uncertainties from the supply side because of the fast increasing 
penetration of renewable energy sources [1,2]. In addition to 
the measures focusing on the supply side itself such as power 
forecasting technologies of wind [3] and solar [4], the measures 
leveraging the resources from the demand side, especially 
demand response (DR), are widely applied as effective 
alternative means to maintain the reliability and improve the 
flexibility of power system operation more economically and 
environment-friendly [5]. 

To better utilize the massive demand side resources, many 
attempts have been conducted all over the world to design 
effective DR programs for industrial, commercial and 
residential customers [6-8]. Generally, DR programs can be 
classified into two categories: price-based and incentive-based 
[9]. For price-based DR programs, participants change their 
electricity consumption behaviors from their normal patterns in 
response to the dynamic changes of electricity price over time. 
The electricity prices increase when the system operates near 
its peak load, which would encourage end users to reduce their 
electricity usage demand or shift it to a non-peak time period. 
For incentive-based DR programs, multiple DR aggregators 
compete to sell DR products to the system operator in the 
electricity market by providing financial compensation to end 
users in order to modify their electricity consumption patterns.  

Although DR can provide attractive solutions in the market 
to help operator running the power system in a more efficient 
way, there are many challenges facing in its practice [10]. One 
of the challenges in the implementation of incentive-based DR 
is the financial settlement of DR participation compensations. 
DR aggregators usually give financial compensations to the 
participants according to their load reduction amount (LRA) 
during the DR event. The customer baseline load (CBL) is 
introduced to calculate the LRA, which refers to the amount of 
electricity that would have been consumed by the participants 
in the absence of the DR event [11]. The difference between 
CBL and actual load is regarded as the LRA. 

The accurate estimation of CBL is critical to the 
incentive-based DR programs because it involves the interests 
of both DR aggregators and the participants. If the CBL is 
underestimated, the participants will probably feel their efforts 
for load reduction being not fully rewarded and therefore end 
up reducing their desires to participate or the response deepness. 
If the CBL is overestimated, DR aggregators will have to pay 
more compensation that would reduce their own benefits. 
Therefore, DR aggregators need to figure out the accurate 
method to avoid the under- or over-estimations of CBL. 

Fei Wang, Senior Member, IEEE, Kangping Li, Student Member, IEEE, Chun Liu, Zengqiang Mi,  
Miadreza Shafie-khah, Senior Member, IEEE and João P. S. Catalão, Senior Member, IEEE 

Synchronous Pattern Matching Principle Based 
Residential Demand Response Baseline Estimation: 

Mechanism Analysis and Approach Description 

I 



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2824842, IEEE
Transactions on Smart Grid

2 
 

It can be found that most current CBL estimation methods all 
rely on historical data [11-15] according to the literature review 
in section II, which causes these methods to be unable to adapt 
to the cases when the load patterns (LPs) in DR event day are 
not similar enough to those in non-DR event days. This 
dissimilarity probably is caused by different weather conditions 
in DR and non-DR event days [16]. Moreover, most current 
methods are originally designed for industrial or commercial 
customers, the methods tailored for residential customers are 
relatively rarely investigated. However, residential customers 
exhibit more volatile LPs in contrast to industrial and 
commercial customers due to their random electricity 
consumption behaviors, which makes current CBL estimation 
methods unreliable. Therefore, this paper aims to develop a 
more accurate CBL estimation approach particularly for 
residential customers.  

The contributions can be summarized as follows:  
(1) The error generation mechanism of current CBL 

estimation methods involving historical data is revealed and 
summarized as “non-synchronous matching”. For averaging 
and regression methods, it refers to the non-synchronous 
matching from the perspective of time frame between the input 
(historical data) and output (CBL). For CONTROL group 
method, it refers to the non-synchronous matching from the 
perspective of mapping relations of DR participant and its 
corresponding similar cluster in CONTROL group between DR 
and non-DR event days. This mechanism explains the essential 
reason causing the main drawback of current methods 
involving historical data that large errors will occur while the 
LPs in DR event days are not similar enough to those in 
non-DR event days. 

(2) A synchronous pattern matching (SPM) principle based 
residential CBL estimation approach is proposed to address the 
non-synchronous matching issues. The idea is that only the 
concurrent data in DR event day instead of the historical data 
before DR event day should be used (to match DR participant 
to the corresponding similar cluster in CONTROL group and 
estimate CBL), which means the input data of SPM all belong 
to the DR event day within which the CBL to be estimated is 
supposed to exist. Therefore the non-synchronous matching 
issues in terms of time frame and mapping relations for current 
methods both can be resolved by the proposed SPM approach. 

(3) The specific steps of SPM are presented subsequently. 
First, clustering is utilized to match the DR participant whose 
CBL to be estimated to the cluster (in CONTROL group) 
showing the most similar LPs in the same DR event day. 
Second, an optimized weight combination method is developed 
to form CBL in order to make full use of the information 
contained in the load data of the customers belonging to the 
cluster (in CONTROL group) matched in the first step sharing 
the most similar LPs to DR participant. An additional benefit of 
SPM is no historical data but only the concurrent load data in 
DR event day is required, which is especially useful for the new 
customers who just sign up DR programs but have not yet 
accumulated enough available historical load data. 

The paper is organized as follows. Section II reveals and 
summarizes the error generation mechanism of most current 
CBL estimation methods after the literature review. The 
proposed approach is illustrated in Section III. In Section IV, 
the comparison between the proposed approach and five 
well-known methods under different scenarios are presented. In 
Section V, the impact of three factors on the performance of the 
proposed approach is analyzed and discussed. Section VI 
highlights the conclusions and future works. 

II. LITERATURE REVIEW 
CBL estimation methods proposed in the literature can be 

classified into three categories: Averaging, Regression and 
CONTROL group methods. In this section, these estimation 
methods are reviewed and discussed as follows. 
A. Averaging methods 

Averaging methods use the average load of X days in the 
past Y non-DR event days prior to the DR event days to 
estimate the CBL. According to the difference of data selection 
criteria, these methods can be further divided into several 
different sub-categories including HighXofY [11], LowXofY 
[12] and MidXofY [13]. Generally, averaging methods are easy 
to understand and implement, but these methods typically 
generate large estimation errors because the information of the 
DR event day (e.g. weather condition, the day of week) is not 
taken into consideration in these methods. In other words, these 
methods cannot adapt to the change of conditions for the DR 
event day. 
B. Regression methods 

The regression methods try to fit a linear/non-linear function 
to describe the relationship between the load and explanatory 
variables including historical load and weather data (such as 
temperature, humidity and wind speed) and then the CBL can 
be estimated by this function [11-13]. However, DR event days 
most likely correspond to those extreme weather days (i.e., the 
temperature is very high or low), thus it is difficult to find past 
non-DR event days in which the consumption patterns are 
similar to those in DR event days. Another issue is that the 
regression methods require a large amount of historical data to 
estimate suitable coefficients, which probably is unavailable 
prior to the first DR event day. 
C. CONTROL group methods 

The CONTROL group method shown in Fig. 1 is to estimate 
the CBL by using the load data of the non-DR customers who 
exhibit the most similar LPs to the DR participants. Yi Zhang et 
al. [14] propose a cluster-based CBL estimation method. First, 
typical load pattern (TLP) of each customer is generated by 
averaging the historical load curves (LCs) of all available 
non-DR event days. Second, all customers are grouped into 
several clusters according to the similarity of their TLPs 
through K-means algorithm. Third, the CBL is estimated by 
averaging the actual load within the DR event period of all 
non-DR customers in the same cluster. The results show that 
this method is more accurate than traditional methods. 
Nevertheless, we note that the clusters derived by clustering are 
not adjusted over time in that work, thus this method is most 
possibly unable to adapt to the ever-changing consumption 
patterns of customers. 

In order to find the most similar CONTROL group for each 
customer in DR group, Leslie et al. [15] develop a new 
CONTROL group selection method based on the individual 
LCs. The authors try to select a suitable CONTROL group by 
minimizing the distance between the LCs of CONTROL group 
and DR group in historical non-DR event days. The results 
show that this method can significantly improve the accuracy 
of CBL estimation. However, due to the volatile LPs of 
residential customers, there is no guarantee that the LCs in DR 
event days would certainly similar enough to those in non-DR 
event days. Namely, the optimal match between the DR 
participant and its corresponding the most similar cluster in 
CONTROL group found in non-DR event days does not ensure 
that it can be achieved in future DR event days. 
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Fig. 1. The flow chart of CONTROL group method. 

D. The error generation mechanism of most current methods 
Both averaging and regression methods need historical data 

to estimate CBL. These two methods can work when the LPs 
in DR event days are similar to those in non-DR event days. 
However, usually the DR event days are somehow different, 
which probably results in large errors for these two methods. 
The error generation mechanism of averaging and regression 
CBL estimation methods is demonstrated in Fig. 2. 

As shown in Fig. 2, it is possible that the LPs of DR 
participants in DR event day are not similar enough to those in 
historical non-DR days due to weather or behavioral variations. 
Then the CBL estimation results of averaging and regression 
methods would greatly differ from the real CBL, so these two 
methods cannot provide accurate CBL estimation in the above 
cases. This is caused by the non-synchronous matching from 
the perspective of time frame between the input (historical 
data) and output (CBL) of the methods. CONTROL group 
method can provide more accurate estimation results because 
it uses concurrent load data of the non-DR customers in 
CONTROL group during DR event period to estimate CBL. 
The key to this method is to match the DR participant with an 
appropriate cluster in CONTROL group that exhibits the most 
similar LPs to the DR participant. Currently, the match 
performed between DR participant and the cluster in 
CONTROL group only relies on historical data, which could 
lead to some disadvantages. First, it needs to extract a TLP for 

each customer to reflect the typical consumption pattern. 
Sufficient historical data is always required to generate a 
reasonable TLP. However, these data prior to the first DR 
event day is probably not available. Second, also more 
importantly, even though the reasonable TLPs are generated, 
there is no guarantee that the participants’ LPs in DR event 
days must be similar to their own TLPs, since DR event days 
usually correspond to some untypical days (e.g. days with 
unusual temperatures). In other words, although the current 
CONTROL group method uses the load data of the customers 
in CONTROL group within DR event days to estimate CBL, 
the mapping relations between each DR participant and its 
corresponding similar cluster in CONTROL group are still 
conducted by using historical data. The mapping relations 
found in historical data will not be applicable in DR event 
days in the above cases. The DR participant will be matched to 
an inappropriate cluster in CONTROL group that exhibits 
dissimilar LP and thereby large CBL estimation errors will 
consequentially occur. Therefore, the current CONTROL 
group method is essentially a non-synchronous matching 
method just like averaging and regression from the perspective 
of conducting mapping relations relying on historical data.  

In summary, the main drawback of most current methods 
involving historical data that large errors will occur while the 
LPs in DR event days are not similar enough to those in 
non-DR event days, is caused by the non-synchronous 
matching issues in terms of time frame and mapping relations. 
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Fig. 2. The error generation mechanism of averaging and regression CBL estimation methods. 

 
III. METHODOLOGY 

A. Basic idea of SPM principle based approach 
A SPM principle based CBL estimation approach 

performing the match between DR participants and the 
corresponding cluster in CONTROL group synchronously in 
each DR event day is proposed to address the above issues.  

There are two steps included in CONTROL group method: 
the first step is the mapping between each DR participant and 
its corresponding the most similar cluster in CONTROL group, 
the second step is the estimation using concurrent load data.  

Using concurrent load data of the customer in CONTROL 
group within DR event day to estimate CBL is an essential 
change to lead non-synchronous to half-synchronous 
estimation from the perspective of time frame for input data 
resources, which can eliminate the misleading influences 
coming from the historical data for those averaging and 
regression methods.  

However, the estimation still probably won’t be accurate if 
inappropriate mapping relations are obtained in the first step 
while the LPs in DR event day are not similar enough to those 
in non-DR event days because they are conducted by using 
historical data.  

Two basic ideas to address the above issues are proposed. 
1. SPM is proposed that only the concurrent load data in the 

DR event day, instead of the historical data before the DR  
event day, should be used to estimate CBL, which means that 
the input data used in SPM all belong to the same day of the 
CBL.  

2. An optimized weight combination method is developed to 
form CBL in order to make full use of the information 
contained in the load data of those customers extracted by 
SPM in CONTROL group sharing the most similar LPs to DR 
participant in DR event day.  

B. Framework of the proposed SPM approach 
Assume  is the set of DR event days 

and is the set of timeslots for a DR event 
day.  

For a given DR event day , the residential customer 
set can be divided into two subgroups according to whether it 
participates the DR program or not: 

1) DR group, , which consists of N 
DR participants; 

2) CONTROL group, , which is 
composed of M non-DR customers (also known as CONTROL 
customers). 

The flow chart of the SPM principle based approach is 
shown in Fig. 3. 

C. LP clustering 
LP clustering refers to grouping customers into several 

clusters such that the customers in the same cluster will share 
similar electricity consumption pattern while customers in 
different clusters exhibit distinct LPs. K-means, one of the 
most widely used clustering algorithms, is used to perform LP 
clustering due to its advantages such as fast computation speed, 
effective clustering results and simplicity in the input 
parameter [16]. K-means separates  CONTROL customers 
into K clusters based on their LCs in DR event day through an 
iterative process. K is the number of clusters, which is given 
by user before clustering. The centroid of each cluster can be 
obtained by calculating the average of all the data points in the 
cluster. 

For the DR event day d, the aim of K-means is to minimize 
the sum of squared error between CONTROL customers’ LCs 
and cluster centroids over all K clusters, which is expressed in 
formula (1). 
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Fig. 3. The flow chart of the proposed SPM principle based approach. 

                    (1) 

where is the actual LC of CONTROL 

customer  in DR event day d.  is the 
cluster centroid . 

Two indexes for clustering performance evaluation applied 
in many works [17,18], Davies-Bouldin index (DBI) and Ratio 
of within Cluster Sum of Squares to Between Cluster 
Variation (WCBCR), are chosen to determine the suitable 
value of  for the clustering in this paper. 

Even the smaller values of these two indexes generally 
indicate the better performance of clustering, but the directive 
property of DBI and WCBCR are not always accordant over 
the same variation tendency of the clustering number, which 
means different indexes represent different aspects of 
clustering performance. Hence, the optimal number of clusters 
is determined under the balance between the performance 
requirement and the corresponding complexity of clustering. 

The clustering will be performed every time for each DR 
event day to accommodate the ever-changing consumption 
patterns of customers. Note that the raw LCs without any 
normalized processing are used as the input of the clustering 
because the shape and magnitude of the LC are equally 
important for CBL estimation. That is to say, only the 
customers with both similar shape and magnitude of the LC 
could be clustered together into the same cluster. 

D. SPM based on similarity metric 
For each DR event day, once the K clusters in CONTROL 

group are obtained, each DR participant should be matched to 
one of the K clusters through SPM. Here, “SPM” refers to the 
principle that the data used for matching between DR 
participant and CONTROL group all belong to the very DR 
event days. Namely, the matching is performed without any 
requirements of the historical data out of the DR event day. 

The time period of the DR event can be represented by a 
tuple , , where  is the start time and 

 is the end time. For each DR day , the actual 
load data of DR participant n before and after DR event can be 
utilized to perform the SPM based CBL estimation, which is 
defined as load curve segments (LCSs), denoted by

and , 
respectively. 

Similarly, the load data of the cluster centroid  before and 
after DR event are defined as cluster centroid segments 
(CCSs), denoted by  and

, respectively. 

The similarity between two vectors is denoted by  
and calculated by formula (2). 
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Fig. 4. Illustration of SPM between DR participant and each cluster centroid in CONTROL group. 

where  is the distance between vectors  and . 
The distance can be a common distance metric, such as 
Euclidean distance. The larger the similarity is, the more 
similar these two vectors are. The SPM is performed 
according to the similarity between LCSs and CCSs, which is 
shown in Fig. 4 and illustrated as follows.  

For each DR participant , calculate the similarity between 
 and each , denoted by

. Meanwhile, calculate the similarity 
between  and each , denoted by

. The similarity between DR customer 
and each cluster centroid  can be expressed as 
the sum of  and . 
Then the DR participant will be matched to the most similar 
cluster that shows the maximum similarity with the DR 
participant. 

E. CBL estimation using optimized weight combination 
After matching all DR participants with the corresponding 

clusters, the next step is to estimate the CBL for each DR 
participant. For DR participant , assume she is assigned to 
the cluster , find all of the CONTROL customers belonging 
to the same cluster, indexed by , where 

 is the number of the CONTROL customers in cluster k. 
These CONTROL customers share the similar LPs to the DR 
participant n in the DR event day, thus the load data of each 
CONTROL customer  during DR event can be seen as an 
independent single estimation for CBL of DR participant n. 

Inspired by the basic idea of combination forecasting [19] 
that properly combining multiple results of several different 
individual forecast models can effectively improve the 
forecasting accuracy, a combination estimation model is 
established to estimate the CBL of DR participant by 
combining the load data information of all CONTROL 
customers in the same cluster, given by formula (3). 

                (3) 

where  is the estimated CBL and  represents a 
function mapping the load data of CONTROL customers to 
the CBL of DR participant.  

A linear combination is used for the mapping function in 
this paper, expressed by formula (4). 

                     (4) 

where  is the weight to the ith individual estimation model 
(corresponds to the ith CONTROL customer in cluster k). 

How to find a set of non-negative weights 
to make the estimated CBL as close as 

possible to the actual CBL is the key to this problem. 
Since the actual baseline load is unknown in practice, thus 

we can only use the load data outside the DR event duration to 
determine the weights. Let us denote the time period without 
DR event in each DR event day by

and . The 
error of the ith individual estimation model at timeslot t is 
denoted by , .  

All of the errors for individual estimation model i during the 
time period  can form a vector, denoted by the estimation 
error vector , where  is the number of 
timeslots during the time period . The error of the combined 
estimation model at the time slot t can be calculated by 
formula (5). 

               (5) 

where  is the actual CBL, which is equal to the actual load 

in the time period without DR event.  
The linear combination can be formulated as an 

optimization model to find a set of optimal weights to 
minimize the sum of squared errors, which is described in 
formula (6) as follows. 
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            (6) 

To present the above model in a matrix form, a square 
matrix named error information matrix with the size of 

 is introduced and denoted as . The 
element in the matrix  is given by formula (7). 

                        (7) 

Define a vector whose element values are all equal to 1, 
denoted by . The above optimization problem 
can be written as formula (8). 

                            (8) 

This problem can be solved by Lagrange multiplier method, 
and the optimal weights can be calculated by formula (9). 

                                   (9) 

F. Error performance metrics 
1) Single evaluation indexes 

The actual baseline is always unknown when there is a DR 
event, thus CBL estimation methods are usually tested and 
evaluated in those days without DR events. Hence, the actual 
load during DR event duration is regarded as the actual 
baseline in these test days. Three single indexes including 
accuracy, bias and variability are chosen to evaluate the 
performance of a CBL estimation method in this paper [12]. 
Accuracy can be measured using the average of the baseline’s 
mean absolute error (MAE), which is given by formula (10).  

                       (10) 

where  is the number of timeslots for a DR event.  
Accuracy represents the absolute value of the difference 

between the baseline and the actual load. Lower MAE values 
indicate more accurate estimation results. Bias is measured 
using the mean of the average error between the estimated 
baseline and the actual load, which given by formula (11). 

                    (11) 

A positive bias indicates over-estimation while a negative 
bias indicates under-estimation. When bias is close to zero and 
MAE is larger than zero, it indicates that the CBL method 
sometimes over-estimates and sometimes under-estimates the 

baseline, but overall, the over- and under-estimations balance 
each other out.  

As a matter of fact, bias is more relevant than accuracy on 
determining the compensation given to DR participants. So, 
generally the closer the bias is to zero, the better the CBL 
estimation method is. 

Variability is used to evaluate the robustness of a method 
under various conditions (e.g. different DR event days, 
different customers) [13]. The index chosen for measuring 
variability is the relative error ratio (RER), which is defined as 
the standard deviation of the baseline’s prediction errors 
expressed as a fraction of average load during the event period 
of time. The variability of DR participant  can be calculated 
by formula (12). 

      (12) 

where , . 
 represents the calculation of standard deviation and 
 is the calculation of average value. The smaller the

, the more stable a baseline’s error is for participant . 

Furthermore, the average value of RER denoted by  
can be used to measure the stability of the CBL estimation 
method. 
2) Overall evaluation index 

The above three indexes evaluate the performance of a CBL 
estimation method from different points of view. In order to 
evaluate the overall error performance of a CBL estimation 
method, a new performance metric named overall 
performance index (OPI) is proposed, which is defined as the 
weighted sum of the absolute normalized value of accuracy, 
bias and variability. Assume there is a set of CBL estimation 
methods to be compared indexed by , the 
OPI of the oth method can be calculated by formula (13). 

   (13) 

where  are the values of the 
corresponding indexes for the oth method. ,  

and  are the maximum values of the corresponding 
indexes among the O CBL estimation methods to be compared. 

 are the weight coefficients and are set to be equal in 
this paper, i.e. , since these three indexes are 
equally important in assessing the performance. A lower OPI 
value indicates a better overall performance. 

IV. CASE STUDY 
A. Dataset 

The data used in this research is obtained from the 
Commission for Energy Regulation (CER) in Ireland [20]. 
CER carried out the Smart Metering Electricity Customer 
Behavior Trials (CBTs) during 2009 and 2010 for the purpose 
of assessing the impact of smart meters on consumer’s 
electricity consumption to inform the cost-benefit analysis for 
a national rollout. Over 4,000 Irish residential customers 
participated this trial. In order to consider the seasonal effect 
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on load, we chose a full year load data with 1-hour interval 
from Jan.1st to Dec.31st of 2010, and only the load data of 
customers from “control group” (note here the “control group” 
is different from the aforementioned one) are used. These 
customers’ consumption behaviors are not affected by the 
TOU tariff.  

The data set is trimmed by removing the customers with 
missing load data, and finally 763 customers with a full year 
load data are obtained for the further analysis. 

B. Experimental Settings 
1) Selection of event-like days 

Because there is no DR event in the dataset, we ran the CBL 
methods including the proposed approach on several 
event-like days in order to test and evaluate their performance. 
Considering DR events are usually conducted on those 
extreme weather days (i.e., the temperature is very high or 
low), therefore, we selected 5 hottest days in summer (from 
Jun. to Aug.) and 5 coldest days in winter (from Dec. 01 to 
Dec.31 combine with Jan. 01 to Feb. 28) as the DR event-like 
days to test the CBL estimation methods. The temperature data 
is obtained from a professional weather website named 
Wunder Ground [21]. The DR event period is chosen as 4 
hours from 4:00 pm to 8:00 pm for these DR event-like days. 

2) CBL estimation methods used for comparison 
The proposed approach is compared with other five 

well-known CBL estimation methods: three averaging 
methods, the regression method and the CONTROL group 
method named “TLP-cluster” proposed in Ref [14]. Table I 
presents the overview of these six methods. 
3) Scenarios setting 

Multiple different scenarios are set to test the performance 
so as to better illustrate the differences between the other 
methods and the proposed approach, in which the lengths of 
available historical data vary from three months to three days. 
MAE, bias and variability are calculated for every method 
under each scenario. 

TABLE I. OVERVIEW OF SIX CBL METHODS FOR COMPARISON. 

CBL estimation method Categories Description 
High5of10 Average Adopted by NYISO [13] 
Mid4of6 Average Recommend by PJM [13] 

Low5of10 Average Proposed in Ref [12] 
Regression Regression Adopted by ERCOT [13] 
TLP-cluster CONTROL 

group 
Proposed in Ref [14] 

SPM CONTROL 
group 

Proposed in this paper 

C. Results and analysis 
1) Clustering results 

K-means was implemented separately for each DR event 
day through MATLAB R2012b. Euclidean distance was 
selected as the similarity metric for clustering and matching. 
Over 100 rounds with the number of clusters ranging from 2 to 
10 were performed for each DR event day d in order to find an 
optimal number of clusters. A new set of initial centroids was 
chosen randomly in each round. DBI and WCBCR were 
calculated for each round as well. The average values of these 
two clustering validity indexes for the first DR event day are 
shown in Fig. 5 (a). It was noted the average DBI value was 
lowest for two clusters. However, two clusters are too rough to 
distinguish all LPs. So more than two clusters were sought. In 
detail, two extremum points can be observed at 5 and 9 for 
DBI. Hence, the optimal number of clusters can be chosen as 5 
or 9. Regarding the WCBCR, it presented decreasing tendency 
as the number of clusters increased and showed a convergence 
trend when the number of clusters was larger than 5. In 
summary, considering the balance between clustering quality 
and complexity, we finally chose 5 as the number of clusters. 
The same process was used for the other event days as well. 
The five derived cluster centroids are shown in Fig.5 (b). It 
could be observed that the derived five clusters differ from 
each other in terms of the load shape and amplitude. Cluster2 
was comprised of customers with low electricity consumption 
and flat LPs. Cluster5 corresponded to customers with high 
electricity usage levels. 
2) CBL estimation results 

To make the comparison results more reliable, the 
procedure was run 100 rounds. In each round, 100 customers 
were randomly selected as DR participants and the remaining 
663 customers are selected as CONTROL customers. 

Table II presents the comparison results (mean performance) 
for six CBL methods under different scenarios. T-test was used 
to determine if the performance of the proposed approach was 
statistically significantly better than other CBL estimation 
methods. The results of T-test are shown in Table III. In 
general, the proposed approach showed statistically 
significantly better overall performance than the other five 
CBL estimation methods. CONTROL group based methods 
such as TLP-cluster and SPM showed better overall 
performance than averaging and regression methods. 
Additionally, Mid4of6 outperformed the other two averaging 
and regression methods. 

 

           
                                                                       (a)                                                                                                             (b) 

Fig. 5. Clustering results for the first event day. (a).Two clustering evaluation indexes for k-means. (b).The derived five cluster centroids. 
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TABLE II. COMPARISON RESULTS OF MAE, BIAS, RER AND OPI FOR SIX CBL ESTIMATION METHODS UNDER DIFFERENT SCENARIOS. 

methods 
Three-month historical data Three-week historical data Three-day historical data 

MAE Bias RERavg OPI MAE Bias RERavg OPI MAE Bias RERavg OPI 

High5of10 0.4973 0.1135 0.8065  2.2768  0.4973 0.1140 0.8029  2.2866 —a — — — 

Mid4of6 0.4499 -0.0651 0.7053  1.8614  0.4500 -0.0646 0.7031 1.8632 — — — — 

Low5of10 0.4415b -0.2187 0.5953 2.3996  0.4415 -0.2182 0.5941 2.4183  — — — — 

Regression 0.6469 0.2234 0.5856  2.7261 0.6508 0.1891 0.6002  2.6142  0.6666 0.1617 0.6103  3.0000  

TLP-cluster 0.5137 -0.0102 0.5808  1.5599  0.5204 -0.0113 0.5967  1.5946  0.5293 -0.0119 0.6102  1.8675  

SPM 0.4874 -0.0091 0.5644 1.4940 0.4882 -0.0065 0.5662 1.4851 0.4884 -0.0082 0.5665 1.7116 

a: Fail to provide CBL estimation results due to lack of sufficient historical data;  
b: The best result for each column is shown in bold. 
 

TABLE III. RESULTS OF T-TEST. 

Methods 

Three-month historical data Three-week historical data Three-day historical data 

p-value p-value p-value 

MAE Bias RERavg OPI MAE Bias RERavg OPI MAE Bias RERavg OPI 

SPM-High5of10 ** ** ** ** ** ** ** ** — — — — 

SPM-Mid4of6 ** ** ** ** ** ** ** ** — — — — 

SPM-Low5of10 ** ** ** ** ** ** ** ** — — — — 

SPM-Regression ** ** ** ** ** ** ** ** ** ** ** ** 

SPM-TLP-cluster ** * ** ** ** * ** ** ** * ** ** 

*: p-value>0.05  
**: p-value<0.05 
 

Specifically, the proposed method presented the best 
performance over the six CBL methods in terms of bias and 
variability and also demonstrated competitive results on 
accuracy.  

Mid4of6 and TLP-cluster showed overall average 
performance on all single evaluation indexes but did not show 
overall best results on any index. Low5of10 showed the best 
performance in terms of accuracy but the worst results for 
bias. Specifically, it was not surprising that Low5of10 had 
more negative bias than other methods, while High5of10 
showed much more positive bias than the other methods. Due 
to the lack of refined weather data (such as humidity, wind 
speed and other weather information), the regression method 
presented the overall worst estimation results in terms of 
accuracy and relative poor bias and variability. 

In terms of the applicability of the scenarios with different 
length of historical data, the proposed approach can well 
accommodate to multiple scenarios even with limited 
historical data. This was because no historical data was needed 
for the proposed approach. Both the regression and 
TLP-cluster methods were sensitive to the amount of the 
available historical data. All single evaluation indexes of these 
two methods became worse with the decrease of available 
historical data. Regression needs a long historical data for the 
model training and insufficient samples will make the model 
under-fitting. Sufficient historical data is also required for 
TLP-cluster method to generate a reasonable TLP for 
clustering. 

Regarding averaging methods, the CBL estimation results 
were not affected by the length of historical data, nevertheless 
they all failed to provide valid estimation results when there 
was no sufficient historical data (i.e. less than 10 days). 

Taking the participant#1 as an example, the daily LCs of 
DR participant#1 in the last ten weekdays prior to December 
17th, 2010 (i.e. one of the DR event days) are shown in Fig. 6. 

It can be seen that the LP on December 17th, 2010 was 
apparently different from those LPs in the last ten weekdays in 
terms of both magnitude and shape. The above six methods 
were used to estimate the CBL and the results are shown in 
Fig. 7. It can be observed that the estimated baseline obtained 
by the proposed approach was very close to the actual baseline. 
By contrast, the other five non-synchronous CBL estimation 
methods presented large positive bias and MAE. 

 

 

Fig. 6. The daily LCs of DR participant#1 in the last ten weekdays prior to 
December 17th, 2010. 
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Fig. 7. Comparison of the CBL estimation results obtained by six methods for 
DR participant#1 on December 17th, 2010. 

V. DISCUSSIONS 
The key to the proposed approach is whether the DR 

participant with incomplete load data (because the CBL is to 
be estimated) can be properly matched to the correct 
CONTROL cluster (i.e. the cluster show similar LP to DR 
participant). In this section, the impact of three factors on the 
matching results are investigated and discussed. 

A. The impact of DR event duration 
Various DR event durations from 1 hour (19:00-20:00) up 

to 8 hours (12:00-20:00) were set to explore its impact on the 
performance of the proposed approach. After 100 rounds tests 
for the 8 different DR event durations, the MAE and Bias of 
the proposed approach were calculated in each round. The 
distribution of the estimation results of the 100 rounds is 
illustrated in Fig. 8.  

Interestingly, we found that the value of MAE first 
increased with the increase of the DR duration, but then 
presented a decreasing tendency when the duration was over 3 
hours. The reasons can be considered as follows.  

On the one hand, the DR event duration affects the length of 
loss load data and thereby affects the accuracy of LP matching. 
On the other hand, the difficulty of CBL estimation varies in 
different time periods. These two factors have combined effect 
on the final estimation results. We tried to isolate these two 
factors to figure out the specific function mechanism of each 
of them. 

For the first aspect, we used the whole LC of each DR 
participant to perform the LP matching and the obtained 
matching results were treated as the perfect matching results 
considered as the ground truth. Then the accuracy of LP 
matching can be obtained by comparing the LP matching 
result derived by LCS to the ground truth. The results are 
shown in Fig. 9 (a). It is not surprising that the accuracy of 
matching decreased with the increase of DR event duration, 
because the available information used to perform LP 
matching reduces with the increase of DR duration. 

For the second aspect, in order to explore the estimation 
difficulty for different time periods, we still use the whole LC 
of each DR participant to perform the LP matching and utilize 
the perfect matching results to estimate the CBL. 

The MAE values for the estimation results were calculated 
for different DR durations and illustrated in Fig. 9 (b).  

The MAE values showed the similar tendency to the results 
in Fig. 8 (a), which indicated that the time period from 4:00 
pm to 8:00 pm was most difficult to estimate. It was probably 
because that the customers have diversified electricity demand 
in this period. 

 
              (a) 

 
(b) 

Fig. 8. Distribution of the CBL estimation results for different DR event 
durations. (a). MAE and (b). Bias. 

 
(a) 

 
       (b) 

Fig. 9 (a). Accuracy of LP matching for different DR event durations.  
(b). Distribution of MAE of the estimation results derived by perfect matching 
for different DR durations. 
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B. The impact of CONTROL group size 
Various size ratios (SRs) of CONTROL group to DR group 

from 0.5 to 5 were set to investigate its impact on the 
performance of the proposed approach. The number of DR 
participants was fixed as 100 and the number of CONTROL 
customers changed from 50 to 500. The proposed approach 
was run 100 rounds for each SR and different CONTROL 
customers were randomly selected from the whole CONTROL 
group for each round. The distribution of the CBL estimation 
results is illustrated in Fig. 10.  

Tukey test, a single-step multiple comparison procedure, 
was used to determine if these results corresponding to 
different SR options were statistically significantly different 
from each other. The results of Tukey test are shown in Tables 
IV and V.  

Both accuracy and bias became better with the increase of 
SR. However, in terms of MAE, there was no significant 
difference between these estimation results when the SR was 
larger than 2. In terms of Bias, a ratio of 3.5 or higher 
provided statistically similar performance. This was because 
the diversity of LPs for CONTROL group increased when the 
SR became larger. There was a higher possibility that each DR 
participant can be matched to a suitable CONTROL cluster. 

C. The impact of rebound effect 
Once the DR event ends, the demand of DR participants 

will typically exceed the baseline load for a period of time 
known as rebound, which may affect the clustering and 
thereby have an impact on the performance of the proposed 
approach.  

Only the data after a period of time following the end point 
of DR event (end+delta) was used in addition to the data 
before DR event to avoid the influence caused by the rebound 
on the proposed approach as lower as possible. The delta time 
after DR event was set from 0 to 4 hours with the interval of 
one hour (0, 1h, 2h, 3h, 4h) to test the robustness of the 
proposed approach in terms of the rebound effect.  

 
(a) 

 
             (b) 

Fig. 10. Distribution of the CBL estimation results for different SRs between 
CONTROL group and DR group. (a). MAE and (b). Bias. 

             
(a)                                                        (b) 

Fig. 11. Distribution of the CBL estimation results for different values of delta. 
(a). MAE and (b). Bias. 

The DR event time was still set to be 4:00 pm-8:00 pm. For 
example, only the data before DR event was used in the 
clustering and estimation process when the delta time is 4 
hours. The distribution of the CBL estimation results for 
different values of delta is shown in Fig. 11. Tukey test was 
also used to determine if the obtained estimation results were 
statistically significantly different from each other. The 
p-values were 0.322 and 0.922, which indicated that there was 
no significant difference between these estimation results in 
terms of both MAE and Bias. In other words, the rebound 
effect had a negligible impact on the estimation results. 

VI. CONCLUSIONS  
In order to improve the accuracy of CBL estimation for 

incentive-based DR programs, a SPM principle based 
residential CBL estimation approach is proposed. The SPM 
idea is feasible since CBL estimation isn’t necessary a 
real-time computation problem.  

Compared to those current non-synchronous estimation 
methods, the proposed approach presented statistically 
significantly better overall performance. Moreover, it also can 
well adapt to the scenario, with very limited historical data. 
Namely, the proposed approach not only overcomes the 
shortcoming of current methods in terms of the over reliance 
on historical data, but also obtains higher accuracy for those 
DR event days in which the LPs are not similar enough to 
those in non-DR event days. The applicability and overall 
performance of CBL estimation have been improved by the 
proposed approach. This work is valuable for DR aggregators 
to estimate the CBL for residential customers, especially 
useful for new customers who just signed up the DR program 
but have not yet accumulated enough available historical load 
data. 

The future works of this research are listed as follows: 
(1) Test the proposed approach on more datasets to further 

verify its effectiveness.  
(2) More and more customers have installed distributed 

photovoltaic (PV) systems, which could significantly affect 
the net load profiles and thereby have an impact on the SPM 
based approach. We will study the impacts of the presence of 
different penetration rates of distributed PV systems on the 
proposed approach and figure out the robustness of our 
approach under these cases. 

(3) One single customer may participate in multiple DR 
programs under different scenarios in the future [22-24]. How 
the proposed approach will be impacted by the presence of 
multiple DR programs will also be investigated.  
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TABLE IV RESULTS OF TUKEY TEST ON ALL SR OPTIONS IN TERMS OF MAE 

p-value SR 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

 

 

SR 

0.5 0 0 0 0 0 0 0 0 0 0 
1.0  0 0.016 0 0 0 0 0 0 0 
1.5   0 0.077 0 0 0 0 0 0 
2.0    0 0.061 0.005 0.002 0 0 0 
2.5     0 1.000 1.000 0.952 0.140 0.106 
3.0      0 1.000 1.000 0.493 0.420 
3.5       0 1.000 0.603 0.530 
4.0        0 1.000 1.000 
4.5         0 1.000 
5.0          0 

TABLE V RESULTS OF TUKEY TEST ON ALL SR OPTIONS IN TERMS OF BIAS 
p-value SR 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

 

 

SR 

0.5 0 0 0 0 0 0 0 0 0 0 
1.0  0 0.509 0.002 0 0 0 0 0 0 
1.5   0 0.856 0.071 0.001 0 0 0 0 
2.0    0 1.000 0.716 0.007 0 0 0 
2.5     0 1.000 0.115 0.058 0.002 0 
3.0      0 0.990 0.958 0.327 0.001 
3.5       0 1.000 1.000 0.254 
4.0        0 1.000 0.217 
4.5         0 0.777 
5.0          0 
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