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Optimal Singular Value Decomposition Based Big Data 
Compression Approach in Smart Grids 

 

Abstract—The smart grid is a fully automatic delivery grid for 
electricity power with a two-way reliable flow of electricity and 
information among different equipment on the grid. Smart 
meters and sensors monitoring the system provide a huge amount 
of data in various part of smart grid. To logically manage this 
trouble, a new lossy data compression approach for big data 
compression is proposed. The optimal singular value 
decomposition (OSVD) is applied to a matrix that achieves the 
optimal number of singular values to the sending process, and the 
other ones will be neglected. This goal is done due to the quality 
of retrieved data and the compression ratio. In the presented 
scheme, to implementation of the optimization framework, 
various intelligent optimization methods are used to determine 
the number of optimal values in the elimination stage. The 
efficiency and capabilities of the proposed method are examined 
using a wide range of data types, from electricity market data to 
image processing benchmarks. The comparisons show that the 
compression level obtained by the proposed method can dominate 
the points given by the existing SVD rank reduction methods. 
Also, as the other finding of the paper, the performance of the 
rank reduction methods depends on the application and data 
types. It means that a rank reduction method can reveal a good 
performance in one application and performs unacceptably for 
another purpose. So, the optimized rank reduction can pave the 
way toward a robust and reliable performance. 
 

Keywords—Big data, Data compression, Smart Grid, 
Optimization, Singular value decomposition. 

NOMENCLATURE 

 Original data 
 Reconstructed data 

Cr Compression ratio 
Dr Elements of remained data 
Dd Elements of deleted data 
Do Elements of original data 
GAm 
m 
n 

Genetic Algorithm with mutation 
Rows of the original matrix 

columns of the original matrix 

Nt 
the threshold of euclidean norm for 

comparison of original and retrieved data 
 Euclidean norm of matrix Z 

p The number of deleted singular values 

Sd Number of deleted singular values 

 Weight coefficient for Nt 

I. INTRODUCTION  

A. Data in Smart Grids 
The smart grid is an intelligent electricity grid that optimizes 
the generation, distribution, and consumption of electricity 
through the introduction of Information and Communication 
Technologies on the electricity grid that includes smart meters 
and various sensors in different parts. The measurement and 
monitoring instruments to gathering the information in the 
transmission system and medium-voltage level distribution 
system are managed by supervisory control and data 
acquisition (SCADA) and wide-area monitoring system 
(WAMS). Similarly, in the level of consumers, advanced 
metering infrastructure (AMI) and automatic meter reading 
(AMR) systems are employed for data gathering in the smart 
grid.  Phasor measurement units (PMUs) are among the other 
units used in the smart grid to measure the required information 
and send it through a communications platform.  
Fig. 1 shows the general structure of the WAMS system in the 
smart grid. Information for each PMU is transmitted through 
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public switched telephone networks, fiber optic cables, low 
altitude satellites, power line carriers (PLCs), or microwave 
links. As a result, a huge amount of multi-source varied data is 
stored in the smart grids. These data, if exploited properly, can 
reveal much information about the customers and generating 
units and improve the power quality and smart grid efficiency. 
A challenge in this way is the huge volume of the transmitted 
information and the limited bandwidth for the data transfer. In 
this situation, data compression techniques can bring great 
benefit to the smart grid. In compression methods, the initial 
goal is to reduce the data size. But, it can happen as long as the 
compressed data contain the main features of the original 
information [1]. Data compression is broadly classified into two 
categories of lossless and lossy [2], and various researchers are 
actively engaged to propose efficient methods of data 
compression. The following subsections review the important 
techniques that are being used commonly in data compression. 
B. Literature Review 
Different lossy compression schemes have been developed for 
smart grid applications based on wavelet decomposition (WD) 
[3-6], discrete cosine transform (DCT) [7], fuzzy-based 
methods [8], compressed sensing theory [9], and SVD-based 
approaches [10-15]. There also is ongoing research on spatial 
domain methods like neural network-based methods [16-17] 
and Deep Stacked Auto-Encoders [18]. Also, different 
methods of lossless compression for data compression 
applications have been emerged [19-20].  
Khan et al. [3] have introduced a novel method for 
simultaneous signal compression and de-noising in smart grids. 
According to [3], the wavelet packet decomposition (WPD) is 
more accurate than wavelet decomposition. In this method, the 
WD tree has been converted to a fully binary tree using a cost 
function, and the best tree has been selected from several WPD 
bases. Besides, reconstruction of a noisy signal can easily be 
done by setting a threshold. This work provides an acceptable 
compression ratio and a good de-noising tool for signals. Ning 
et al. [4] have suggested another compression technique using 
wavelet transform (WT) and multi-resolution analysis (MRA). 
In the decomposition process, the Daubechies filter is 
considered as the mother signal. Experimental results illustrate 
that the WT-MRI can only deal with the white noise of the 
signals and cannot compress the data adequately. So it must be 
combined with other algorithms. Also, Khan et al. [5] 
presented an approach based on embedded zero tree wavelet 
transform (EZWT) that depresses the noisy elements of the 
grid signals. Since EZWT does not require tables and 

codebooks for signal recovery, it is a simple and efficient 
method. EZWT allows to carry out both compression and de-
noising of the PMU and power system data. A similar approach 
in [6] with the wavelet decomposition has been deployed for 
signal compression. In this method, after performing wavelet 
packet, dynamic bit allocation is carried out by calculating the 
neural shape estimator (NSE) to estimate the spectral shape 
that is necessary to eliminate data redundancy and 
implementing the entropy coding. The results showed that 
NSE is more successful than the other estimators that provide 
an acceptable ratio for compression of waveforms. Gadde et al. 
[7] have presented a cascade technique in PMU data 
compression using intrinsic correlation that discovers spatial 
and temporal redundancies. In this work, the principal 
component analysis is defined. Then, a discrete cosine 
transform associated with each component is modeled. The 
required compression parameters have been adjusted using 
efficient statistical techniques. The results show that this 
approach can be employed for a phasor data concentrators 
(PDC) fed from any number of PMUs. A research in [8] 
suggested fuzzy-based approaches to save the required 
memory and bandwidth, which reduces the computational 
burden for smart grid data analysis. Some works using 
compressed sensing theory for smart grid applications have 
been developed, such as reference [9] that provided the 
compression technique for electricity datasets. At the decoder 
side, an iterative threshold algorithm has been employed to 
reconstruct the compressed bitstream. A good performance for 
both compression/decompression of the considered data was 
concluded from the results. Linear algebra-based techniques 
such as singular value decomposition (SVD) are widely used 
as another tool for data compression. The main purpose of 
SVD-based methods is to approximate the original data with a 
rank reduced matrix. Many efforts [10-14] have been made on 
the development of data compression using SVD 
decomposition. de Souza et al. [10] proposed an algorithm that 
performs the SVD data compression on a power system dataset. 
The level of the compression is determined by the bottleneck 
of the communication links of the grid. Then, an accurate 
enough compression level that satisfies the bottleneck 
constraint is found by a trial and error procedure. A similar 
method based on the combination of SVD and wavelet 
difference reduction (WDR) is proposed in [11]. In this study, 
at first, the approximation of the original image is achieved 
through an iterative rounds of test and error, and then WDR 
has been applied to reduced data. Indeed, WDR has been added 
to the SVD decomposition to enhance the compression ratio. 
Thresholding techniques based on the energy information are 
among the SVD rank reduction methods. Padhy et al. [12] 
selected a thresholding technique based on multiscale root 
fractional energy contribution (MRFEC) of the singular values 
to reduce the dimensionality of orthogonal and singular value 
matrices for ECG compression. In this manner, at first, DWT 
is applied to the original matrix. Then energy variations in 
different sub-bands are calculated. The singular values of each 
sub-band that are greater than the threshold are retained. Dixit 
et al. [13] have worked on SVD-DCT based compression of 
images. In this paper, the authors test the quality of the image 

 
Figure 1.  WAMS structure in a smart grid 
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with different ranks between 70 to 150 and make a tradeoff 
between the quality and the compression. Yu et al. [14] 
presented a lossy Compression image based on SVD. Their 
approach to select the rank of the image is similar to [13], but 
in the range between 10 to 200. Mukhopadhyay et al. [15] have 
worked on Biosignals compression algorithm using a 
combination of downsampling, SVD, and ASCII compression 
method. 
In the spatial domain, artificial intelligence-based methods like 
neural networks [16] and intelligent measurement techniques 
[17] have also been used in recent years. Barrosa et al. [16] has 
proposed a compression method based on genetic algorithm 
(GA) and neural network (NN) for electrical power signals. 
The GA is used to select the best samples of the signal, and 
then NN is deployed to compress of remained samples and 
reconstruction the signal. The rate of compression is 2.5% to 
10% for an installed recorder in a 230-kV electrical power 
system. In [17], an approach has been suggested for the 
compression of electricity load data. Based on the intelligent 
measurement. As another application of compression in the 
electrical load dataset, reference [18] provided a technique 
based on Deep Stacked Auto-Encoders. 
In addition to the compression application, SVD based 
approximation is used in other areas such as noise reduction 
[21-23], image reconstruction [24], Shot boundary detection in 
the video [25], and simultaneous compression and de-noising 
[26]. In several SVD-based rank reduction research like [10], 
[11], [13-15], the number of singular values that contain the 
main information of the matrix is determined in a trial and error 
procedure. It means that the operator starts with an initial guess 
for the number of singular values to retain. If it is good enough, 
this guess is chosen. Otherwise, it should be changed to get a 
better solution. It is worth noting that the knee point in the 
singular value diagram can be considered as a good starting 
point. In addition to these approaches, there are some 
methodologies such as the Guttman-Kaiser criterion [26, 27], 
Cattell’s Scree test [26], and entropy-based methods [28] to 
determine rank of the truncated SVD. In the first method of the 
Guttman-Kaiser criterion, all singular values smaller than one 
are ignored. The second method of the Guttman-Kaiser 
criterion keeps enough number of singular values such that the 
squared summation of them covers 90 percent of the squared 
sum of all of the singular values. Both of these methods are 
based on arbitrary thresholds. The Scree test is a subjective 
decision on the rank based on the shape of the scree plot. 
Indeed, the operator can determine an appropriate matrix rank 
based on the knee point in the singular value diagram. But, in 
some data types, the SV curve may be non-convex (more than 
a knee region) and it can be more challenging to decide 
between various knee points. In Entropy based methods, 
relative contribution of singular values determines the rank of 
the matrix.  
In noise reduction, some of the singular values with greater 
energy have been kept and the other ones are considered as 
noisy singular values [21]. For example, Liu et al. [22] 
presented an SVD based de-noising system that removes noisy 
elements from the data by rank reduction of the original matrix 
in the frequency domain based on the screen test method. 

Image reconstruction by inpainting is a popular area of 
research. The damaged region of the image is constructed by 
the rank reduced approximation of the main image. Here again, 
decision making about the proper rank of the image becomes a 
matter of controversy. The authors in [24] determine the matrix 
rank according to the structural similarity index (SSIM). 
Indeed, they try to find a good enough matrix rank that keeps 
the SSIM higher than a prespecified value. The rank reduction 
based on the second method of Guttman-Kaiser is employed 
by Fedwa et al. [25] for the feature extraction in video shot 
boundary detection. Schanze et al. [26] divided the original 
data into two parts of useful and noisy elements to do 
compression and de-noising, simultaneously. Determining the 
proper cut-off number of k that is the threshold to data division 
was the main challenge there. The Scree was employed to deal 
with this problem. 
 

II. COMPRESSION IN SMART GRIDS 
      The generation, transmission, and distribution of power in 
smart power systems are deeply impressed by data analysis. 
Therefore, a considerable increase in data exchange and the 
required memory is likely to occur, and the required data 
storage and bandwidth of the communication links in the smart 
grids have a growing trend. Besides, to obtain accurate and 
real-time information of the smart grid, the frequency of 
sampling should be increased. Accordingly, the importance of 
data compression in the smart grid will be more highlighted. 
The proposed compression method is presented in the 
following. This method can be employed effectively in 
different points of the grid where the volume of the sent and 
received data is high. 
A.  The SVD Decomposition 
       The SVD is a computational tool for approximating a 
matrix by three other matrices. Indeed, it decomposes the 
matrix A into U, V, and Σ. Let's assume m and n be arbitrary, 
and A is a matrix. A singular value decomposition of A is a 
factorization, as can be seen in (1). 

 (1) 

where U  is a  real or complex unitary matrix, Σ is a 
 rectangular diagonal matrix with non-negative real 

numbers on the diagonal, and V is a real or complex 
unitary matrix. The diagonal entries  of  Σ are known as the 
singular values of A. briefly [29]: 

o U: is m × m unitary (the left singular vectors of A) 
o V: is n × n unitary (the right singular vectors of A) 
o Σ: is m × n diagonal (the singular values of A)  

TA U V= S

m m´
m n´

n n´
is

 
Figure 2. The SVD form of a matrix 
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where, 

 
In Fig. 2, the SVD decomposition on a matrix has been 
illustrated. As already mentioned, Σ is a diagonal matrix whose 
elements on its original diameter are singular values that are 
placed in descending order. Each singular value is involved in 
the retrieving process of the original matrix. In other words, 
equation (1) can be rewritten in the form of equation (2) [29]. 

 (2) 

Where ui and vi are the left and right singular vectors of the 
matrix A, respectively, and is the ith singular value. As can 
be seen, the smaller singular values play a smaller role in the 
building of the original data. Thus, the low-rank matrix 
approximation can be obtained by the elimination of the 
smaller values and the original information can be retrieved as 
can be seen in (3a). According to (3b), Σ is decomposed to a 
submatrix including the important singular values ( ) and 
three non-important submatrices which are replaced by zero 
matrices with the same dimension. 

 

 (3a) 

 (3b) 

As can be seen in (4),  is a low ranked approximation m×n 
matrix, the matrix  is m× (n-p),  is n× (n-p), and  is (n-
p) × (n-p).  

 (4) 

Since , and can provide an acceptable approximation 
of the original data (A) and can be sent instead of A, their 
dimension specifies the compression ratio. 
Therefore, the compression ratio is defined as (5). 

 (5) 

The compression is done when the ratio is more than 1. 
Equations (6)-(8) provide a lower bound on the number of 
neglected singular values.  

 (6) 

 (7) 

 (8) 

Along with the compression ratio, the redundancy of data can 
also be calculated by equation (9). 

 (9) 

In this process, according to (4) we have: 

 (10) 

To find the redundant data, both sides of (10) is divided by 
the original data, so:  

 

(11) 

Therefore, the percentage of redundant data is calculated by 
(11). 
Another important issue refers to the calculation of the 
retrieved data precision in the decoding process. The euclidean 
norm criteria in (12) has been used to check the accuracy and 
proximity between original and retrieved data. Of course, it can 
be replaced by other measures like mean square error. 

  (12) 

B. Optimization Framework 
Determining the number of singular values to retain can 
significantly affect the performance of the SVD-based data 
compressions. The more singular values would lead to more 
accuracy, and of course, less compression ratio. As mentioned 
in the literature review, there are various SVD rank reduction 
methods. Here, the proposed method presents the optimal SVD 
rank reduction that maximizes the compression ratio, subject 
to the accuracy constraint. Before explaining the optimal 
singular value decomposition in section III, the general form 
of an optimization problem that can be seen in (13) is reviewed. 

 (13) 

Where F is the objective function, X is the set of decision 
variables, H is the equality constraints, and G represents the 
in-equality constraints [30, 31]. Taking the feasible region of 
the problem into account, the minimization problem aims to 
find the optimal point which satisfies (14). 

                                              (14) 
Based on Eq. (14), the point given by the proposed method 
dominates the other points in the feasible region. Evolutionary 
algorithms have been used to solve the formulated optimization 
problem [32, 33]. 

III. PROPOSED METHOD 
      As mentioned, data exchange between various regions of 
the smart grid is happening increasingly.  The PMU data, bids, 
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and offers of the participants in a P2P market, weather data 
including solar, wind, humidity and temperature data, etc. that 
are very important for optimal, resilient, and reliable operation 
are among the most omnipresent examples of data production 
and exchange. Generally, the data exchange process is divided 
into encoding and decoding phases. In fact, in the encoding 
stage, data gets prepared for transmission by some processes. 
After this operation, the data is transmitted through the 
communication channel and will be recovered to the initial 
form in the decoding phase. This process is shown in Fig. 3. 
In the proposed method, the original data matrix is 
decomposed into U, V and  by the SVD decomposition. 
Then, the optimal rank reduction is specified and three rank-
reduced matrices will be ready to be sent. The decision variable 
(x) in this problem is the number of singular values that will be 
eliminated. In fact, the number of eliminated singular values 
influences the compression ratio and data quality. Since the 
main goal of the problem is data compression, the inverse of 
the compression ratio in (15) can be considered as the objective 
function in a minimization problem. 

  (15) 

By minimizing (15), the compression ratio will be maximized.  
Alternatively, the objective function can be replaced by minus 
x, as can be seen in (16). Indeed, more compression ratio can 
be gained by maximizing the number of neglected singular 
values.  

 (16) 

As an important consideration, the compression is valuable if 
the information can be retrieved with an acceptable accuracy. 
Therefore, constraint (17) reinforces the proximity of two 
matrices with euclidean norm criteria. In other words, 
introducing (17) indicates the euclidean norm  of the difference 
between the original and recovered matrix is less than the Nt 
value.  
 

              (17) 

In this step, an important issue refers to determining the upper 
bound of the constraint (Nt). Nt can be determined based on the 
matrix A as can be seen in (18). In this way, we will have a 
better insight into this threshold. In this regard, the upper 
bound of (17) is restricted to a fraction of the euclidean norm 
of the original matrix. 

 (18) 

To convert a constrained minimization problem to an 
unconstrained one, the objective function can be penalized for 
any violation of the constraint. Accordingly, the fitness 
function is calculated as (19). 

 (19) 
Where K is the penalty coefficient. 
As mentioned, the number of singular values ignored is the 
decision variable. So, x can change between the lower bound 

based on (20) and the upper bound that is the total number of 
the singular values.  

 (20) 

In some cases, the communication network bottlenecks play 
the main role in determining the compression ratio [10]. So, 
the lower bound expression can be modified based on the 
communication network requirements, as is seen in (21) and 
(22). 

     (21) 

 (22)  

Where cr0 is the required compression ratio that is determined 
based on the communication network status. 

To sum up, minimizing the objective function (16), subject 
to the constraints (17) and (22), returns the optimal number of 
singular values to retain. It’s worth noting that the proposed 
optimization framework contains one decision variable (x) 
regardless of the dimension of the original data. Besides, the 
proposed optimization is applied to the output of the SVD 
decomposition. It means that before the algorithm starts, the 
SVD decomposition should be applied to the original data. 
Then, the proposed method optimizes the compression ratio 
using simple operations like the multiplication of the U, V, and 
Σ. As a result, it can be solved by the existing heuristic 
optimization algorithms efficiently. 
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Figure 3. A data communication channel and transmission process 
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IV. NUMERICAL RESULTS AND DISCUSSIONS 
Various datasets are employed to demonstrate the 
effectiveness of the proposed method. At first, a data matrix is 
employed to investigate the performance of the existing 
heuristic algorithms in solving the defined optimization 
problem (Case 1). In this case, a dataset from Day-Ahead 
Energy Market of New England’s wholesale electricity 
marketplace on January 1, 2018, for 315 participants has been 
tested. It should be noted that each agent must send the 5-
segment (price-power curve) for 24-hour. Hence, the matrix 
has 315 rows (equal to the number of market participants) and 
240 columns (5 segments of power and 5 segments of the price 
for 24 hours). This dataset is available in [34]. After this case, 
the proposed methodology is compared with the first and 
second methods of Guttman-Kaiser rank reduction [26, 27] as 
well as the proposed method by de Souza et al. [10] to analyze 
the accuracy and optimality of the algorithm. Also, the knee 
point on the singular value diagram is considered as another 
potential point in the comparisons. To this end, a variety of 
data types such as energy consumption 1  and renewable 
production2 of 80 houses in the UK [35, 36] for nine months 
with half an hour time-step (Case 2) and the electrical data over 
a single 24-hour period from 443 unique houses on February 4, 
2011 [37] (Case 3) are selected. Moreover, some of the known 
image processing benchmarks like Lena and Cameraman 
images [38] (Case 4) are added to the comparison cases to 
cover more data types and have more concrete results.  
The presented scheme has been implemented using MATLAB 
2018a on the market data. All implementations have been done 
on a PC Intel core i7 processor 1.8 GHz, with 8GB RAM. 
A. Case 1:  
Differential evolution (DE) [39], simulated annealing (SA) 
[40], teaching learning based optimization (TLBO) [41], 
particle swarm optimization (PSO) [42], as well as the genetic 
algorithm with and without the mutation (GA-M and GA) [43] 
are employed to investigate the ability of the existing 
evolutionary algorithms in solving the proposed optimization 
framework. Table I shows the average of the obtained 
objective function over twenty runs. As can be seen, except for 
the genetic algorithm, all other algorithms could converge to 
the optimal solution (or very close to the optimal solution) with 
zero standard deviation that implies the robustness of the 
algorithms. The number of iterations in each run and the 
corresponding run-time are shown in this table, as well. 
According to this table, PSO is the fastest algorithm that can 
find the optimal solution among all algorithms used in this case 
study. Along with PSO, TLBO converges to the optimal 
solution with a robust performance. DE is an element-wise 
algorithm and usually needs higher iterations to converge the 
optimal solution. So, it most probably reaches the exact 
optimal solution with high enough iterations. But it converges 
to a quite close point to the global optima with 14 iterations. It 
also is seen that the optimization framework even can be 
solved with a local search algorithm like SA. Genetic 

 
1 For further information, please refer to http://www.soda-pro.com/webservices/ 
radiation/helioclim-3-archives-for-free and  https://gmao.gsfc.nasa.gov/ 
reanalysis/MERRA-2/. 

algorithm is the only one that does not provide as satisfying 
results as the others. But, its performance surges with 
introducing the mutation operator to this algorithm and 
converges to the global solution like PSO and TLBO.  
Table II shows the compression ratio and the percentage of 
redundant data for the obtained solution by each algorithm. Of 
course, the algorithms with the same objective value propose 
the same compression ratio. According to the percentage of 
redundant data in this table, solving the proposed optimization 
framework leads to a considerable compression of data. But, 
the goal of this case study is to check the solvability of the 
proposed optimization problem. The quality of the 
compression scheme is evaluated in the next cases through 
comparisons with the other rank reduction methods. 
B. Case 2:  
Since equation (17) constrains the recovering error of the data 
compression, three related cases to α that determines the Nt are 
addressed, as are shown in fig. 4 (a) to (c). In the first case, it 
is assumed that the maximum tolerable error must be lower 
than 0.5 percent of the euclidean norm of the original data 
(α=0.5%). The performance of various methods is illustrated 
in fig. 4 (a). The obtained point by the second method of the 
Guttman-Kaiser corresponds to the error of 11.66 percent of 
the euclidean norm of the original data that is considerably 
higher than the tolerable error. This percentage is equal to 0.48 
in the proposed method. It means that the proposed method 
compresses the data as much as possible concerning the 
maximum allowed error. It is worth noting that the first method 
of the Guttman-Kaiser and the method by de Souza et al. [10] 
satisfy the accuracy constraint with a lower compression ratio. 

2 For further information, please refer to https://data.london.gov.uk/ 
dataset/smartmeter-energy-use-data-in-london-households. 

TABLE I: 
 THE OBTAINED OBJECTIVE VALUES BY EVOLUTIONARY 

ALGORITHMS 
 DE 

[39] 
SA 
[40] 

TLBO 
 [41] 

PSO 
 [42] 

GA-M 

[43] 
GA 
 [43]  

Mean -209 -209 -210 -210 -210 ≈-206 

Standard 
deviation 

0 0 0 0 0 4.51 

Iteration 14 150 5 6 6 100 

Run time 
(second) 

1.58 2.76 1.17 0.77 1.82 4.37 

 
TABLE II: 

 CALCULATION OF COMPRESSION RATIO AND PERCENTAGE OF 
REDUNDANT DATA IN CASE 1 

Algorithm Cr R% 

DE [39] 4.3861 77.20 
SA [40] 4.3861 77.20 

TLBO [41] 4.5323 77.93 
PSO [42] 4.5323 77.93 
GAm [43] 4.5323 77.93 
GA [43] 3.999 74.99 
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If we move on to the second one with α=5%, the proposed 
method increases the compression ratio, as can be seen in fig. 
4 (b). This point is equivalent to α=4.99%. It means that if one 
more singular value is eliminated, the error goes above the 
prespecified value. However, the solutions given by the other 
methods remain unchanged. In the third case, if we are very 
strict with the accuracy of the recovered data and, for instance, 
set α=0.01%, the proposed method suggests the same point that 
is obtained by the first method of the Guttman-Kaiser. Of 
course, it might be different in other case studies. This feature 
enhances the flexibility of the proposed method. 
The performance of the SVD-based data compression can be 
affected by the data type. For example, two matrices of the 
same size may require a different number of SVs to meet the 
same error threshold, depending on the dependency of the rows 
or columns of the matrices. Therefore, to cover various data 
types and have a concrete conclusion, more comparisons on 
three other case studies are presented in the following. The first 
one covers the different features of each home in a micro-grid 
for a 24 hours period. The size of the database is 1440 × 443 
and is available in [37]. The next two are selected from the 
image processing benchmarks, as they might have different 
characteristics or different applications from the power system 
data.  
C. Case 3:  
 When the rows of the matrix are dependent, or there is a 
correlation between them, decision making gets more 
complicated. In these cases, most of the SVs have small values, 
and suddenly after a knee point, their value increases sharply. 
In this situation, it is a challenging problem to determine the 
number of singular values to retain, based on the methods that 
do not react to the accuracy constraint. Because there is a huge 

chance for compression due to the significant number of small 
singular values. On the other hand, the recovering error caused 
by ignoring the SVs might be out of the acceptable range after 
a point far from the knee point in the singular values diagram. 
Figure. 5 (a) and (b) illustrate the importance of the proposed 
method in this situation.  In some rank reduction applications, 
it is suggested to retain the singular values that are bigger than 
the knee point that is shown by yellow triangular in fig. 5 (a) 
and (b). It should be noted that the reconstruction error of the 
data at this point is 4 percent. This error can lead to a 
significant change in the recovered data. On the other side of 
the SV graphs of fig. (a) and (b), there are the points proposed 
by the first method of the Guttman-Kaiser and de Souza et al. 
They provide good accuracy. But, they do not compress the 
data when still there is a good error margin. The other issue 
about the first method of Guttman-Kaiser is that the point by 
this method violates the lower bound of the ignored SVs as 
introduced in (22). According to this equation, at least 105 
singular values must be ignored to have a compression ratio 
higher than one (CR0=1, m=1440, n= 443). Therefore, this 
method might be a good choice for other applications of SVD 
rank reduction like data de-noising. Similar to the previous 
case study, the proposed method maximizes the compression 
ratio within the feasible region of the problem. Figure. 5 (a) 
and (b) represent the optimal points of the proposed method 
with α=0.0001 and α=0.001, respectively. Since the matrix is 
too big to show, Table III provides a comparison of four 
elements of the data (small to large) in compression levels 
obtained by various methods. The proposed answers by the 
first method of Guttman-Kaiser, de Souza et al. [10] and the 
proposed method are accurate and satisfy the accuracy 
constraint. However, the compression ratio of the proposed 
method is higher than the other ones. As long as the accuracy 
constraint is satisfied, the higher compression ratio is preferred. 
Accordingly, the proposed method dominates the other 

 
Figure 4. Comparison of the rank reduction methods with upper bound 
of the error equal to (a) 0.005, (b) 0.05 and  (c) 0.0001 of the euclidean 

norm of the original data 

 

 
Figure 5. Impact of the singular values in recovering error with (a) 

α=0.0001, (b) α=0.001 
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methods in this case study, as well. It should be noted that the 
accuracy constraint can be set according to the applications. So, 
in the case with higher accuracy requirements, the upper bound 
in (17) can be set to a new threshold. Also, Table III shows that 
the knee point doesn't provide an accurate compression level 
in this case. However, it may reveal a good performance in 
image compression applications. It is investigated in the next 
case on two images shown in fig. 6 (a) and (b).  
D. Case 4:  

The performance of various algorithms, as well as the 
proposed method on each image, can be seen in the subplot 
below it. The quality of the obtained points with various 
methods can be analyzed similarly to the previous cases. Here, 
we are going to compare the performance of the proposed 
method in comparison to the knee point that is a popular 
approach in image compression. Indeed, we consider the knee 
as a point where the size of singular values increases rapidly. 
Figures. 7 (a) and (b) are the compressed images based on the 
proposed method. Also, the compressed images based on knee 
point detection are shown in fig. 7 (c) and (d). As can be seen, 

both methods keep the main information of the images, as they 
are clearly visible. However, the quality of the compressed 
images by the proposed method is higher. After comparing the 
performance of the optimal rank reduction with other methods 
in section IV, more discussion and conclusion of the paper is 
presented in the next section.  
 

V. CONCLUSION 
This paper proposed an optimization formulation for the 

rank reduction in SVD-based data compression. The SVD-
based data compression is basically a tradeoff between the data 
accuracy and the compression level and like any tradeoff 
problem, decision making plays a crucial role. In this situation, 
the quality of the decision can affect the efficiency and the 
problem. Various methods decide for the number of the 
singular values in rank reduction problems and some of them 
reveal good performance in data compression. Here, some 
points must be considered. Along with the data compression, 
there are a lot of applications for matrix rank reduction like 
image reconstruction [24], Shot boundary detection in videos 
[25], and signal de-noising [26]. Indeed, these methods are 
general rank reduction methods and might show acceptable 
performance in some applications like noise reduction. But, the 
objective function of the proposed method is specially 
designed for data compression. That’s why the proposed 
method provides better performance in the case studies. 
However, in the proposed method, the objective function can 
be defined according to the specific application. For instance, 
the compression ratio (or the equivalent function in (16)) is 
considered for the objective function of the data compression 
problem as it is discussed in this paper. An important feature 
of the proposed method is that the objective function can easily 
be changed to find the optimal rank of the matrix for other 
applications. So, the same implemented code for the data 
compression can be used for other applications. In this case, 
the main structure of the code remains unchanged. Replacing 
the objective function is the main change that is required. 
Along with this advantage of the optimized rank reduction, it 
facilitates the decision making in problems with more than one 
objective function by changing it to a multiobjective 

TABLE III: 
COMPARISON OF RANK REDUCTION METHODS ON 

ARBITRARY ELEMENTS OF ORIGINAL DATA 
Elements 

(X,Y) (1,1) (1,8) (1,15) (1,29) 

Original data 3.06 0 58.97 3.87 

Knee point 9.37 5.78e-17 49.69 6.37 

Guttman-
Kaiser (1th) 3.06 1.3e-13 58.97 3.87 

Guttman-
Kaiser (2th) 3.82 1.4e-29 24.47 2.95 

de Souza et 
al. [10] 3.06 1.6e-13 58.97 3.87 

Proposed 
method 3.07 9.5e-14 58.97 3.89 

 

 
Figure 6. image processing benchmarks (a) Lena image, (b) 

Cameraman image, and the SV diagram and performance of the 
algorithms on (c) Lena image, (d) Cameraman image.  

 

 
Figure 7. compressed images, (a) Lena, (b) Cameraman with the 
proposed method, (c) Lena, (d) Cameraman with the knee point 
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optimization problem. This can be complicated in other 
methods. Besides, the results of the case studies show that the 
optimal points dominate the points given by the other methods. 
It is because the optimization problem searches for the optimal 
point in the feasible region. While, the other methods for 
example De Souza et al [10] find a good enough point, not the 
optimal one. As another example, the first method of Guttman-
Kaiser doesn’t compress the data and might show a good 
performance in the other applications of the rank reduction.  

The computational complexity of the algorithm is another 
important issue that needs to be investigated. Generally, the 
computational complexity of the heuristic algorithms depends 
on the population, the number of the decision variables, and 
the number of iterations. Also, the population size is 
determined based on the number of decision variables. If we 
consider the proposed method, it contains one decision 
variable, regardless of the matrix size. Therefore, the 
computational complexity of the heuristic methods for solving 
the optimal rank reduction problem is proportional to the 
number of iterations. On the other hand, the computation 
complexity of the SVD decomposition implemented in Matlab 
is in order of O(max(m,n)2). So, the complexity of the SVD 
determines the complexity of the whole problem. It is because 
the algorithm is applied to the output of the SVD 
decomposition and the decomposition needs to be run before 
the optimization algorithm starts. Also, the other SVD-based 
methods at least have the complexity of the SVD 
decomposition. So, in terms of the computational complexity, 
the proposed method is in the same situation as the other SVD 
rank reduction algorithms are in.  

The difference in the application of the data compression 
makes a huge difference in approaches to doing it [44]. For 
instance, the reconstruction error must be kept very small in 
power system applications. Because the error can change the 
schedule of the grid and impose a higher cost to it. The 
situation can be a bit different in image compression. The 
accuracy constraint can be less strict in some image processing 
applications, as long as the compressed image contains the 
main features of the original image. That is why the knee point 
can play a role in numerous applications of image processing. 
As it was seen in the results, the knee point contains very 
important features of the images and it is good enough in some 
applications. But, the same point in the market data did impose 
a high error to the compressed data, as is shown in Table III. 
In a conclusion, an optimization method that finds the 
optimum point regarding the accuracy constraint is required in 
data compression, especially for the applications that are 
sensitive to the error like energy market or smart grid data. 

To sum up, the presented method can individually solve the 
issues appearing by the big volume of data such as required 
bandwidth and data storage by reducing the number of data 
elements. The proposed framework achieves the higher 
compression ratio as well as the satisfaction of accuracy 
constraint simultaneously and the redundant section is cut 
down. It is simple and efficient and could be utilized by market 
operators [45], load aggregators [46-50], electricity retailers 
[51-54], CHP and microgrid operation [55, 56].  

Answering the question “What is the value of the optimal 
data compression on the grid applications like state estimation?” 
can be an interesting area for future research. Along with this 
question, providing the optimization frameworks for the other 

data compression methods like Discrete Cosine 
Transformation (DCT) or Discrete Wavelet transformation 
(DWT) is another area that the authors are going to investigate 
in the future. 
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