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Frequency-Domain Decomposition and Deep 
Learning Based Solar PV Power Ultra-Short-Term 

Forecasting Model 

Abstract—Ultra-short-term photovoltaic (PV) power 
forecasting can support the real-time dispatching of power 
grid. However, PV power has great fluctuations due to various 
meteorological factors, which increases energy prices and cause 
difficulties in managing the grid. This paper proposes an ultra-
short-term PV power forecasting model based on optimal 
frequency-domain decomposition(FDD) and deep learning. 
First, the optimal frequency demarcation points for decomposition 
components are obtained through frequency domain analysis. Then 
the PV power is decomposed into the low-frequency and high-
frequency components, which supports the rationality of 
decomposition results and solves the problem that the current 
decomposition model only uses the direct decomposition method 
and the decomposition components are not physical. Then 
convolutional neural network(CNN) is used to forecast the 
low-frequency and high-frequency components, and final 
forecasting result is obtained by addition reconstruction. 
Based on actual PV data in heavy rain days, the MAPE of the 
proposed forecasting model is decreased by 52.97%, 64.07% 
and 31.21%, compared with discrete wavelet transform, 
variational mode decomposition and direct prediction models. 
In addition, compared with Recurrent neural network and 
Long-short-term memory model, the MAPE of CNN 
forecasting model is decreased by 23.64% and 46.22%, and 
the training efficiency of CNN forecasting model is improved 
by 85.63% and 87.68%. The results fully show that the proposed 
model in this paper can improve both the forecasting accuracy and 
time efficiency significantly. 

Keywords—PV power forecasting, ultra-short term, frequency 
domain, decomposition, deep learning 

Ⅰ. INTRODUCTION 

1.1 Background and motivation 
Facing the shortage of fossil energy and the deterioration 

of climate such as greenhouse effect, ozone hole and melting 
of polar glaciers, sustainable development of energy and 
environment has attracted worldwide attention. Due to the 
advantages of sustainability, clean and pollution-free, high 
flexibility, etc., PV power generation technology and related 
industries have experienced tremendous growth in the past 
few years [1-3]. PV power affected by various meteorological 
factors is highly uncertain. These fluctuations will cause 
energy prices, grid management difficulties, etc. which will 
affect stable operation of the power grid[4-5]. PV power 
generation system is typically connected to the power grid to 
compensate for losses in conventional power generation 
systems. In a grid, some power generation systems that output 
constant power are called conventional power plants. Others 
convert their power in response to changes of PV generation 
and demand, which balances total power consumption with 
total power generation. These power plants that convert output 
power are called load-tracking power plants. When the output 
power of PV generation system is markedly increased or 
decreased, the load-tracking power plants must respond 
promptly. PV power forecast for the 15 min in advance 
enables the load-tracking power plant to react to sudden output 
changes timely. In order to stabilize the operation of the power 
grid, ultra-short-term PV power prediction is particularly 
significant [6-8]. 

1.2 literature review 
Due to various meteorological factors, the photovoltaic 

power has great fluctuations [9-11]. It is difficult to achieve 
satisfactory results with traditional prediction methods. In 
recent years, the method of first decomposing and then 
predicting photovoltaic power data has become a research 
hotspot. Among them, frequency-domain decomposition 
method excavates and extract PV power characteristics from 
the perspective of the frequency domain, which has become a 
current research hotspot. Literature [12] uses the variational 
mode decomposition (VMD) to decompose different 
frequency components from the historical PV power time 
series. Literature [13] decomposed the time series of solar 
photovoltaic power generation by wavelet decomposition. 
Literature [14] proposed a new prediction model based on 
Hilbert Huang Transform (HHT) and integrating improved 
empirical mode decomposition (IEMD) with feature selection 
and prediction engine. IEMD is used to decompose data. In 
the above literature, the data are only decomposed using 
existing models, but few literatures can support the rationality 
of the decomposition results through an effective method. 
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Table Ⅰ lists various methods of solar photovoltaic power 
generation forecasting, which can be summarized into the 
following categories: physical methods, statistical methods, 
and intelligent algorithms[15]. Among the physical 
methods[16], the three basic methods are Numerical weather 
forecast model, total sky image and satellite image model 
based on cloud movement, which can help estimate 
photovoltaic power. However, physical methods require 
detailed historical data to train prediction models, relying on 
detailed power plant geographic information and accurate 
meteorological data. The physical formula has certain errors, 
and its model has poor anti-interference ability and weak 
robustness. Common statistical methods[17] include time 
series method, regression analysis method, grey theory, fuzzy 
theory and spatiotemporal correlation method. Compared to 
physical methods, statistical methods are simpler, which do 
not need to consider photovoltaic system parameters and 
complex photoelectric conversion models. However, 
statistical methods often need to collect and process a large 
amount of historical data, which increases the difficulty of 
data acquisition and processing. Common intelligent 
methods[18-20] include artificial neural network, support 
vector machine, Markov chain and particle swarm algorithm. 
The intelligent method does not need to obtain a specific 
expression between input and output, and obtains a prediction 
model of photovoltaic power generation output through 
training on historical data, which is simple to operate and easy 
to implement, but has the defects of over-learning and easy to 
fall into local optimal solutions. Compared with the above-
mentioned traditional intelligent algorithms, deep learning 
(DL)[21-23] algorithms are more promising. There are 
various branches in the deep learning system, including 
recurrent neural network (RNN), long and short-term memory 
network (LSTM) and convolutional neural network (CNN). 
Among them, CNN is not only successfully applied to image 
processing, but also used to solve one-dimensional data 
classification and regression problems. CNN reduces the 
parameters to be estimated due to the weight sharing 
technology, thereby shortening the training time for prediction. 

And CNN can perform feature extraction on the data, which 
has good robustness. And there are few studies on the 
application of CNN to the ultra-short-term prediction of 
photovoltaic power, so this paper is dedicated to the 
reasonable application of the CNN algorithm to improve the 
accuracy of the ultra-short-term prediction of photovoltaic 
power. 

1.3 Contribution 
To overcome the shortcomings that there is currently no 

effective method to support the rationality of the frequency 
domain decomposition results, this paper proposes an ultra-
short-term prediction model of PV power based on optimal 
frequency-domain decomposition and deep learning. First, the 
amplitude and phase of each frequency sine wave is obtained 
by fast Fourier decomposition. As the frequency demarcation 
point is different, the correlation between the decomposition 
component and the original data is analyzed. By analyzing the 
prediction results of the decomposition components at 
different frequency demarcation points, the optimal frequency 
demarcation points for decomposing low-frequency 
components and high-frequency components are obtained. 
Then convolutional neural network is used to predict low-
frequency component and high-frequency component, and 
final prediction result is obtained by addition reconstruction. 

The main contributions of this paper include: 
(1) By minimizing the square of the difference that the 

correlation between low-frequency components and raw data 
is subtracted from the correlation between high-frequency 
components and raw data, the optimal frequency demarcation 
points for decomposition components are obtained, and the 
PV power is decomposed into the low frequency components 
and high-frequency components. The low-frequency 
component represents the regular part of PV power generation, 
which shows PV power’s trend characteristics, while the high-
frequency component represents the randomness of 
photovoltaic power generation, which shows PV power’s 
fluctuation characteristics affected by other factors such as 
weather. This method supports the rationality of the 

TABLE. Ⅰ. DEVELOPMENT OF PHOTOVOLTAIC POWER PREDICTION TECHNOLOGY 

Author Years Predictive 
model Description 

Wang, et al.[16] 2018 Physical 
model 

A cloud motion displacement vector calculation method based on the invariance of image phase shift 
by the Fourier phase correlation theory is proposed to predict solar power generation on a small time 
scale. 

Zhong, et al. [17] 2017 Grey theory A multivariate grey theory model based on particle swarm optimization algorithm is proposed to forecast 
short-term photovoltaic power generation. 

Liu, et al. [18] 2015 BP neural 
Networks 

Use BP with ANN model to predict the future photovoltaic power generation. The prediction accuracy 
exceeds the conventional artificial neural networks. 

Lu and Chang[19] 2018 RBFNN A hybrid RBFNN model with data regularity scheme was developed for photovoltaic output prediction.  

Sun, et al. [20] 2015 SVM 
A short-term stepwise temperature prediction model for photovoltaic modules based on support vector 
machines is proposed. Under the same conditions, the stepwise prediction model has better accuracy 
than the direct prediction model. 

Qing and Niu[21] 2018 LSTM The LSTM model was developed to predict solar irradiance in advance based on weather data. 

Wang, et al[22] 2020 LSTM-RNN An independent day-ahead photovoltaic power generation prediction model based on long-term short-
term memory recurrent neural network was established. 

Huang, et al[23] 2020 CNN A method for forecasting day-ahead probability PV power based on improved quantile CNN is 
proposed. 
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decomposition results and solves the problem that the current 
decomposition model only uses the direct decomposition 
method, and the decomposition components are not physical. 

(2) CNN is not only successfully applied to image 
processing, but also used to solve one-dimensional data 
classification and regression problems. CNN reduces the 
parameters to be estimated due to the weight sharing 
technology, thereby shortening the training time for prediction. 
CNN can perform feature extraction with good robustness. 
Therefore, this article is dedicated to the reasonable 
application of CNN to improve the accuracy and efficiency of 
ultra-short-term prediction of PV power. 

(3) The method proposed in this paper is verified by the 
data of PV power station in Ningxia and Jilin in China on 
sunny days, cloudy days, light rainy days and heavy rainy days. 
The results show that the proposed model improves the 
prediction accuracy. 

The rest of this article is organized as follows. Section 2 
introduces the theory of FFT and deep learning. Section 3 
introduces how to choose the optimal frequency demarcation 
point of frequency-domain decomposition. In section 4, the 
details of the experimental simulation are introduced and the 
relevant analysis results are discussed. The conclusions are 
drawn in Section 5. 

Ⅱ. METHODOLOGY 

2.1 Fast Fourier Transform 
Discrete Fourier Transform (DFT) can discretize the 

frequency domain of a finite-length sequence, but its 
computational complexity is too large to process the problem 
in real time, thus leading to the Fast Fourier Transform (FFT) 
[24-26]. FFT uses the periodicity and symmetry to improve 
the DFT algorithm, which greatly reduces the amount of 
computation. The sine wave decomposed by FFT is the most 
single frequency signal. Any complex signal can be seen as 
the composite of many sine waves with various frequencies 
and amplitudes. It can be considered that sine wave is the basis 
of all waveforms. Therefore, this paper uses FFT to 
decompose PV power in the frequency domain. Fig. 1 shows 
the relationship between the time domain signal and the sine 
wave signals of different frequencies. The black curve 
represents the time domain signal of a PV power curve, and 
the color curves represent the sine wave signals of different 
frequencies that make up this PV power curve. 

 
Fig. 1. Relationship between time domain signals and sine wave signals of 
different frequencies 

According to Eq. (1), discretized sequence is decomposed 
into signals of multiple frequencies. and the sine wave and the 
cosine wave of the same frequency are superimposed by 
different coefficients to generate cosine waves of various 
phases of the same frequency. The modulus  of complex 
number in the frequency domain obtained by FFT represents 
the energy of the cosine wave corresponding frequency, and 
the angle of the complex number represents the phase  of 
the cosine wave, thereby obtaining the amplitude spectrum 
and the phase spectrum. The actual amplitude  of the k-th 
point of the cosine is defined by Eq. (2). The physical 
frequency  of the k-th point is calculated as Eq. (1). 

        (1) 

                (2) 

              (3) 

In the formula,  is a positive integer. is constant 
component,  is the cosine component amplitude and 
is the sinusoidal component amplitude. Where  is the 

constant component,  is the amplitude,  is 

the frequency,  is the phase,  is a positive integer, 
and  is the sampling interval. 

2.2 Pearson correlation coefficient 
Pearson's correlation coefficient (R) represents the curve 

fit of two sequences. Specifically, the critical criterion for R 
is a very strong correlation between 0.8 and 1.0, a strong 
correlation between 0.6 and 0.8, a medium correlation 
between 0.4 and 0.6, a weak correlation between 0.2 and 0.4, 
and very weak correlation or no correlation between 0 and 
0.2[27].  is defined as shown in Eq. (4): 

    (4) 

2.3 Convolutional neural network 

 
Fig. 2. The structure of convolutional neural network 

Convolutional Neural Network (CNN) is a common deep 
learning model with powerful feature extraction capabilities. 
CNN generally consists of five types of cell layers, namely the 
input layer, the convolutional layer, the pooling layer, the fully 
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connected layer, and the output layer [28]. The structure of 
CNN is shown in Fig. 2. 

2.3.1 Convolution layer 

The role of the convolutional layer is to extract features 
from the input information. The convolutional layer is 
typically composed of multiple convolution kernels, each of 
which is used to compute a feature map. Each cell of the 
feature map is connected to the region of the adjacent cell in 
the previous layer. Convolution of the input by the 
convolution kernel and nonlinear processing of convolution 
results by activation function can acquire the new feature map. 
The formula for the convolutional layer is shown by Eq. (5) 

                          (5) 

Where  and  are the weights and bias of the k-th 
convolution kernel in the l-th convolutional layer, respectively. 

 is the input information of  region in the l-th 
convolution layer. The weight  in the l-th convolution 
layer is shared by each region of the input information, which 
is weights sharing.  is the activation function applied to 
the convolution layer, which can effectively improve the 
fitting ability of the model. 

2.3.2 Pooling layer 

The role of the pooling layer is to reduce the size of the 
feature map generated by the convolution layer, and to 
effectively extract the feature information in the feature map. 
The formula for poor layer is shown by Eq. (6) 

                             (6) 

Where , and  are the information at 

location .  

2.3.3 Fully connected layer 

The function of the fully connected layer is to summarize 
the distributed feature representations learned by the previous 
layer into the same space for subsequent applications. All the 
neurons in the previous layer are connected to each neuron in 
the current layer. 

2.3.4 Description of one-dimensional CNN 

 
Fig. 3. Illustration of 1D convolution and 1D pooling 

One-dimensional(1D) CNN is a branch of CNN[29]. The 
convolution kernel window of CNN1D slides in a single 
direction (i.e. time step). Because photovoltaic power is time 
series data, this paper chooses CNN1D to build prediction 
model. In the 1D convolution layer, the size of kernel is 3 and 
the corresponding stride is 1. In the 1D pooling layer, the size 
of kernel is 2 and the corresponding stride is 1. The specific 
flow chart is shown in Fig. 3.  

2.4 Combined Model Framework 

 
Fig. 4. Ultra-short-term prediction model of PV power based on optimal 

frequency-domain decomposition and deep learning 

The framework of ultra-short-term prediction model of PV 
power based on optimal frequency-domain decomposition 
and deep learning proposed in this paper is shown in Fig. 4. 
First, the amplitude and phase of each frequency sine wave is 
obtained by fast Fourier decomposition. As the frequency 
demarcation point is different, the correlation between the 
decomposition component and the original data is analyzed. 
By minimizing the square of the difference that the correlation 
between low-frequency components and raw data is 
subtracted from the correlation between high-frequency 
components and raw data, the optimal frequency demarcation 
points for decomposition components are obtained. Then 
convolutional neural network is used to predict low-frequency 
component and high-frequency component, and final 
prediction result is obtained by addition reconstruction. 

Ⅲ. SPECTRUM ANALYSIS 

3.1 Frequency domain decomposition 
This paper selects the PV data of Ningxia PV Power 

Station in China from 0:00 on January 1 in 2017 to 23:45 on 
November 30 in 2017 to train the model, and perform 
frequency domain decomposition through FFT to obtain the 
amplitude spectrum and phase spectrum of PV power, which 
are shown in Fig. 5 and Fig. 6. 
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Fig. 5. Amplitude spectrum of PV power 

 
Fig. 6. Phase spectrum of PV power 

3.2 Selection of optimal frequency demarcation point 
Through FFT spectrum analysis, PV power can be 

decomposed into low-frequency components and high-
frequency components. The low-frequency component 
represents the regular part of PV power, which indicates its 
trend characteristics, while the high frequency component 
represents the randomness of PV power, which indicates its 
fluctuation characteristics affected by other factors such as 
weather. How to accurately decompose low-frequency 
components and high-frequency frequencies has always been 
a difficult problem. In order to solve this problem, this article 
chooses the optimal frequency demarcation point from the 
perspective of the correlation between decomposed data and 
raw data. Fig. 7 shows the correlation between decomposed 
components and raw data. When frequency-domain 
decomposition is performed on PV power data, the more 
frequencies selected, the stronger the correlation between low-
frequency components and raw data, and the weaker the 
correlation between high-frequency components and raw data. 

To illustrate the effect of the correlation between the 
decomposition component and raw data on the prediction 
results, this paper uses the CNN model to predict low-
frequency components and high-frequency components from 
0:00 on January 1 in 2017 to 23:45 on November 30 in 2017. 
Table Ⅱ compares prediction results of low-frequency and 
high-frequency components at different frequencies. The 
frequency demarcation point selected in Table Ⅱ is the 
frequency node with relatively large amplitudes in amplitude 
spectrum of Fig. 5. As the correlation between the low-
frequency component and raw data increases, the curve fitting 

effect becomes better. As the correlation between the high-
frequency component and raw data decreases, the curve fitting 
effect becomes worse. The relationship between the selected 
frequencies and the correlation of decomposition component 
and raw data shows that as the frequency number increases, 
the better prediction result of the low-frequency component 
and the worse prediction result of the high-frequency 
component, so the two are contradictory. Low-frequency 
components represent the regular part of PV power which can 
be accurately predicted, while high-frequency components are 
relatively random, which are difficult to predict. If the 
proportion of low-frequency components in raw data can be 
increased, accurate prediction of low-frequency components 
to balance prediction errors of high-frequency components 
will effectively improve the overall prediction accuracy. 
Therefore, the idea of optimal frequency demarcation point 
selection proposed in this article is that low-frequency 
component consider to select the highest frequency 
demarcation point as possible, and accounts for a large 
proportion, and then the second-level is that high-frequency 
component, which hope the frequency selection is not too high. 
Otherwise, prediction is too difficult to get a certain level of 
balance.  

 
Fig. 7. Correlation between decomposition components and raw data 

before weighting 

From Fig. 7, it can be seen that when the frequency reaches 
a certain value, as the frequency band increases, the 
correlation between low-frequency components and raw data 
does not increase significantly. It can be considered that there 
is no significant increase in the correlation between low-
frequency components and raw data, while the correlation 
between high-frequency component and raw data continues to 
decline. This optimal frequency demarcation point that 
balances both low-frequency components and high-frequency 
components not only ensures sufficient extraction of low-
frequency components, but also does not cause the difficulty 
of predicting high-frequency components to an unacceptable 
level due to excessive extraction of low-frequency 
components. In this paper, the optimal frequency is solved by 
minimizing the square of the difference that the correlation 
between low-frequency components and raw data is 
subtracted from the correlation between high-frequency 
components and raw data, which can be regarded as an 
optimization problem. The specific formula is given in Eq. (7).  

                    (7) 
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Among them, is an objective function. When the 
objective function reaches the minimum value, the correlation 
between low-frequency components and raw data and the 
correlation between high-frequency components and raw data 
reach an optimal balance. is the correlation between 
low-frequency components and raw data, is the 
correlation between high frequency components and raw data, 
and  is the total number of sampling frequencies. 

 
Fig. 8. The graph of the squared difference before weighting 

Fig. 8 is a graph of the obtained square of the difference 
that the correlation between low-frequency components and 
raw data is subtracted from the correlation between high-
frequency components and raw data. It can be seen from the 
Fig. 8 that when the frequency demarcation point  is 365, 
the correlation between low-frequency components and raw 
data and the correlation between high-frequency components 
and raw data reach a balance. However, due to the strong 
regularity and high prediction accuracy of low-frequency 
components, this article first hopes that the proportion of low-
frequency components is high. When the frequency value 
continues to increase, the correlation between the low-
frequency components and raw data can be improved. 
However, when the correlation between the low-frequency 
components and raw data is basically unchanged, the 
prediction accuracy of low-frequency components basically 
reaches the maximum value. At this time, the accuracy of final 
prediction result mainly depends on high-frequency 
components. Therefore, in order to give priority to low-
frequency components, the frequency value is continuously 
increased. This article adds weight values to the objective 
function in Eq. (7). By multiplying the correlation between 
low-frequency components and raw data by a low weight 
value and multiplying the correlation between high-frequency 
components and raw data by a high weight value. In this way, 
the design idea of giving priority to low-frequency 
components is achieved. The new objective function is shown 
by Eq. (8). This paper chooses = 0.173, = 0.827, and 
obtains the frequency demarcation point = 1825.  

              (8) 

Where  is the weight of the correlation between the low 
frequency component and the original data, and  is the 
weight of the correlation between the high frequency 
component and the original data. 

 
Fig. 9. Correlation between decomposition components and raw data after 

weighting 

 
Fig. 10. The graph of the squared difference after weighting 

 
Fig. 11. Optimal frequency decomposition result 

Fig. 9 shows correlation between decomposition 
components and raw data after weighting. Fig. 10 shows the 
square of the difference that the correlation between low-
frequency components and raw data is subtracted from the 
correlation between high-frequency components and raw data 
after weighting. It can be seen that after , as the frequency 
band increases, the correlation between low-frequency 
components and raw data does not increase significantly, 
while the correlation between high-frequency components 
still maintains a downward trend in Fig. 9. Therefore,  is 
the optimal frequency demarcation point . Fig. 11 shows 
the decomposition results at frequency demarcation point . 
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TABLE. Ⅱ. COMPARISON OF R OF LOW FREQUENCY COMPONENTS AT 
DIFFERENT FREQUENCIES 

Component 
R 

365 730 1092 1458 1825 2185 
Low 

frequency 0.9243 0.9654 0.9792 0.9994 0.9997 0.9998 

High 
frequency 0.6722 0.6584 0.4783 0.2947 -0.1446 -0.1876 
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Ⅳ. CASE STUDY 

4.1 Simulation data and simulation platform 
The data used for the simulation in this section are 

historical weather data and historical power with 15 min time 
resolution from 0:00 on January 1 in 2017 to 23:45 on 
December 31 in 2017 in Ningxia PV Power Station and Jilin 
PV Power Station in China. This article uses the data from 
0:00 on January 1 in 2017 to 23:45 on November 30 in 2017 
as training set, and the data from 0:00 on December 1 in 2017 
to 23:45 on December 31 in 2017 as testing set. The time scale 
of input data is 24 hours, and the time scale of output data is 1 
hour. 

We use Python 3.6.1 with Tensorflow and scikit-learn to 
perform all the simulations. 

4.2 Data processing 
During model training, to eliminate the difference in 

magnitude between each dimension data, the samples of input 
data will be normalized. The range of values of all samples is 
converted to [0, 1], which avoids large differences in sample 
magnitude leads to large network prediction errors. Its formula 
is shown in (9): 

                            (9) 

4.3 Performance criterion 
In order to evaluate the performance of the prediction 

model, we employ two effective error indexes that are Mean 
Absolute Percentage Error (MAPE) and Root Mean Squared 
Error (RMSE). Under the same set of training data, the smaller 
MAPE and RMSE, together with the higher R, and the better 
the prediction model effect. The mathematical formulas for 
the two error indexes are shown in (10) and (11): 

                           (10) 

                         (11) 

4.4 Calculation of forecast uncertainty 
Uncertainty is a major problem in all photovoltaic power 

prediction models. Various uncertain factors affecting grid 
operation can be divided into three factors: (1) due to input, 
that is measurement error related to weather variables; (2) due 
to the inherent randomness of the basic physical process; (3) 
Inherent to the model structure, namely the selected 
parameters and the training data set used for the purpose of 
model building. This article refers to the literatures [30-31], 
and adopts the method of quantifying solar photovoltaic 
power generation forecast in the form of PI. 

The PI with a predefined confidence level % is the 
interval between the upper and lower limits of predicted power 
generation at time ,  of day  

, so that the actual “unknown” 

value , of the -th test pattern at time t of day 

, falls within the interval, and its probability is equal to 
%: 

  (12) 

Refering to literatures [30-31], this article uses two 
performance indicators to evaluate the forecast uncertainty, 
namely PI coverage probability (PICP) and PI width (PIW). 
The goal of a PI with a confidence level of  % is to cover 
at least % with as small a width as possible. This section 
uses the data from 0:00 on January 1 in 2017 to 23:45 on 
November 30 in 2017 as training set, and the data from 0:00 
on December 1 in 2017 to 23:45 on December 31in 2017 as 
testing set in Ningxia PV Power Station and Jilin PV Power 
Station in China. The time scale of input data is 24 hours, and 
the time scale of output data is 1 hour. Table Ⅲ reports the PIs 
performances obtained by the proposed approach in terms of 
PICP and PIW. From the results in Table Ⅲ, it can be seen 
that the coverage of PI is higher than the target coverage level 
of 0.8, and the width of PI is also is also smaller. To a certain 
extent, it can be seen that the FFD prediction model proposed 
in this paper can reduce forecast uncertainty. 

TABLE Ⅲ PIS PERFORMANCES OBTAINED BY FDD PREDICTION MODEL 

ON THE TEST DATASET, FOR =80% TARGET CONFIDENCE LEVEL. 

Prediction Intervals for 
=80% 

Performance 
PICP PIW(MW) 

Direct 0.61196 0.4256 
DWT 0.6092 0.1889 
VMD 0.7324 0.1051 
FDD 0.8164 0.1106 

 

4.5 Performance analysis of frequency-domain 
decomposition forecasting model on different weather 
types. 

This paper establishes frequency-Domain decomposition 
forecasting model of PV power on sunny day, cloudy day, 
light rainy day and heavy rainy day. In this part, two different 
data sets, Ningxia Power Station and Jilin Power Station, are 
used to compare the performance of frequency-Domain 
decomposition forecasting model of different weather types. 
In this section, frequency-domain decomposition forecasting 
model with predicting 1 hour time scale is compared with 
other VMD , DWT and Direct models, and the prediction 
model is unified using the CNN model. 

4.5.1 Comparison analysis of sunny days 
Fig. 12(a) shows actual and forecasted PV power on sunny 

day using dataset of Ningxia Power Station. Fig. 13(a) shows 
Error distribution curves of direct prediction model and 
frequency decomposition prediction model on sunny day 
using dataset of Ningxia Power Station. Fig. 14(a) shows 
Linear regression graph of direct prediction model and 
frequency decomposition prediction model on sunny day 
using dataset of Ningxia Power Station. Fig. 15(a) shows The 
generation of forecast error graph of different sunny days’ 
decomposition prediction models using the dataset of Ningxia 
Power Station.  
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Fig. 12. Actual and forecasted PV power on four different weather types 

using dataset of Ningxia Power Station. 

 

 
Fig. 13. Error distribution curves of different decomposition prediction 
models on four different weather types using dataset of Ningxia Power 

Station. 

 

 
Fig. 14. Linear regression graph of different decomposition prediction 
models on four different weather types using dataset of Ningxia Power 

Station. 

 
Fig. 15. The generation of forecast error graph of different 

decomposition prediction models on four different weather types using 
the dataset of Ningxia Power Station. 

Table Ⅳ and Table Ⅴ show the performance comparison 
of the sunny weather prediction models for different data sets. 
Taking Ningxia Power Station as an example, in sunny days, 
compared with DWT, VMD and direct prediction models, the 
MAPE accuracy of the FDD model proposed in this paper is 
increased by 42.05%, 32.94% and 44.59% respectively, and 
the RMSE accuracy is increased by 38.91%, 25.72% and 
36.20% respectively, and the R is increased by 2.24%, 1.41% 
and 2.21% respectively. The performance comparison result 
of Jilin Power Station shown in Table Ⅴ is similar to Ningxia 
Power Station. This is mainly because on a sunny day, since 
the sky has almost no shadow and the physical state of the 
atmosphere is relatively stable, the photovoltaic power curve 
on a sunny day is smooth with small fluctuations. Therefore, 
the frequency domain decomposition prediction model 
proposed in this paper will not bring about a very significant 
improvement in prediction performance. 

TABLE. Ⅳ. THE PERFORMANCE COMPARISON OF DIFFERENT SUNNY 
DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

NINGXIA POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.0823 1.7118 0.9648 / 

DWT 0.0787 1.7876 0.9629 0.01395 

VMD 0.0680 1.4703 0.9724 1.1139 

FDD 0.0456 1.092 0.9862 1.1543 

TABLE. Ⅴ. THE PERFORMANCE COMPARISON OF DIFFERENT SUNNY 
DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF JILIN 

POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.1108 1.6144 0.9309 / 

DWT 0.1225 1.7453 0.9217 0.0249 

VMD 0.1010 1.2483 94.9751 0.6226 

FDD 0.0697 0.7684 0.9837 0.5348 

4.5.2 Comparison analysis of cloudy days 
Fig. 12(b) shows actual and forecasted PV power on 

cloudy day using dataset of Ningxia Power Station. Fig. 13(b) 
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shows Error distribution curves of direct prediction model and 
frequency decomposition prediction model on cloudy day 
using dataset of Ningxia Power Station. Fig. 14(b) shows 
Linear regression graph of direct prediction model and 
frequency decomposition prediction model on cloudy day 
using dataset of Ningxia Power Station. Fig. 15(b) shows The 
generation of forecast error graph of different cloudy days’ 
decomposition prediction models using the dataset of Ningxia 
Power Station. Table Ⅵ and Table Ⅶ show the performance 
comparison of the cloudy weather prediction models for 
different data sets. Taking Ningxia Power Station as an 
example, in cloudy days, compared with DWT, VMD and 
direct prediction models, the MAPE accuracy of the FDD 
model proposed in this paper is increased by 57.42%, 29.64% 
and 53.86% respectively, and the RMSE accuracy is increased 
by 52.16%, 28.22% and 50.10% respectively, the R is 
increased by 14.77%, 4.16% and 12.94% respectively. The 
performance comparison result of Jilin Power Station shown 
in Table Ⅶ is similar to Ningxia Power Station. These 
changes have slightly reduced the accuracy of photovoltaic 
power generation forecasts. The frequency domain 
decomposition prediction model proposed in this paper can 
improve the prediction performance of the model under 
cloudy conditions. 

TABLE. Ⅵ. THE PERFORMANCE COMPARISON OF DIFFERENT CLOUDY 
DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

NINGXIA POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.2577 2.6796 0.8569 / 

DWT 0.2793 2.7951 0.8432 0.0060 

VMD 0.1690 1.8628 0.9291 1.0276 

FDD 0.1189 1.3371 0.9678 0.7834 

TABLE. Ⅶ. THE PERFORMANCE COMPARISON OF DIFFERENT CLOUDY 
DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF JILIN 

POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.1229 1.6716 0.9276 / 

DWT 0.1093 1.2888 0.9657 0.0293 

VMD 0.1183 1.4793 0.9442 2.1763 

FDD 0.0636 0.8428 0.9856 1.6252 

4.5.3 Comparison analysis of light rainy days 
Fig. 12(c) shows actual and forecasted PV power on light 

rainy day using dataset of Ningxia Power Station. Fig. 13(c) 
shows Error distribution curves of direct prediction model and 
frequency decomposition prediction model on light rainy day 
using dataset of Ningxia Power Station. Fig. 14(c) shows 
Linear regression graph of direct prediction model and 
frequency decomposition prediction model on light rainy day 
using dataset of Ningxia Power Station. Fig. 15(c) shows The 
generation of forecast error graph of different light rainy days’ 
decomposition prediction models using the dataset of Ningxia 
Power Station. Table Ⅷ and Table Ⅸ show the performance 
comparison of the light rainy weather prediction models for 
different data sets. Taking Ningxia Power Station as an 
example, in light rainy days, compared with DWT, VMD and 
direct prediction models, the MAPE accuracy of the FDD 

model proposed in this paper is increased by70.11%, 36.79% 
and 67.77% respectively, and the RMSE accuracy is increased 
by 59.05%, 33.22% and 57.79% respectively, the R is 
increased by 77.84%, 40.25% and 45.64% respectively. The 
performance comparison result of Jilin Power Station shown 
in Table Ⅸ is similar to Ningxia Power Station. Due to 
changes in the physical state of the atmosphere during light 
rainy days, the photovoltaic power curves of light rainy days 
may include spikes and nonlinear fluctuation components. 
The accuracy of photovoltaic power generation forecasts is 
reduced. The frequency domain decomposition prediction 
model proposed in this paper can improve the prediction 
performance of the model under light rainy days. 

TABLE. Ⅷ. THE PERFORMANCE COMPARISON OF DIFFERENT LIGHT 
RAINY DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

NINGXIA POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.5517 2.7858 0.6480 / 

DWT 0.5949 2.8711 0.5307 0.0096 

VMD 0.2813 1.7607 0.6729 0.6729 

FDD 0.1778 1.1757 0.9438 0.5701 

TABLE. Ⅸ. THE PERFORMANCE COMPARISON OF DIFFERENT LIGHT 
RAINY DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

JILIN POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.3743 2.4740 0.6560 / 

DWT 0.4500 2.6674 0.5879 0.1249 

VMD 0.2629 1.6366 0.8597 0.8904 

FDD 0.2159 1.2539 0.9322 0.4686 

4.5.4 Comparison analysis of heavy rainy days 
Fig. 12(d) shows actual and forecasted PV power on heavy 

rainy day using dataset of Ningxia Power Station. Fig. 13(d) 
shows Error distribution curves of direct prediction model and 
frequency decomposition prediction model on heavy rainy 
day using dataset of Ningxia Power Station. Fig. 14(d) shows 
Linear regression graph of direct prediction model and 
frequency decomposition prediction model on heavy rainy 
day using dataset of Ningxia Power Station. Fig. 15(d) shows 
The generation of forecast error graph of different heavy rainy 
days’ decomposition prediction models using the dataset of 
Ningxia Power Station. Table Ⅹ and Table Ⅺ show the 
performance comparison of the heavy rainy weather 
prediction models for different data sets. Taking Ningxia 
Power Station as an example, in heavy rainy days, compared 
with DWT, VMD and direct prediction models, the MAPE 
accuracy of the FDD model proposed in this paper is increased 
by 64.07%, 31.21% and 52.97%, respectively, and the RMSE 
accuracy is 63.30%, 23.19% and 57.56% respectively, the R 
increased by 49.02%, 6.43% and 37.69% respectively. The 
performance comparison result of Jilin Power Station shown 
in Table Ⅺ is similar to Ningxia Power Station. In heavy rainy 
days, the irradiance attenuation is serious, and the 
photovoltaic power curve of heavy rainy days includes more 
spikes and nonlinear fluctuation components, which makes 
the accuracy of photovoltaic power generation prediction poor. 
The frequency domain decomposition prediction model 
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proposed in this paper can improve the prediction 
performance of the model under heavy rainy days. 

TABLE. Ⅹ. THE PERFORMANCE COMPARISON OF DIFFERENT HEAVY 
RAINY DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

NINGXIA POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.1682 0.9798 0.6850 / 

DWT 0.2202 1.1330 0.6329 0.0157 

VMD 0.1150 0.5414 0.8862 0.5702 

FDD 0.0791 0.4158 0.9432 1.0157 

 

TABLE. Ⅺ. THE PERFORMANCE COMPARISON OF DIFFERENT HEAVY 
RAINY DAYS’ DECOMPOSITION PREDICTION MODELS USING THE DATASET OF 

JILIN POWER STATION 

Model 
Performance 

MAPE RMSE R Time(s) 

Direct 0.5307 1.6808 0.3401 / 

DWT 0.8167 1.8750 0.1171 0.01 

VMD 0.2793 1.0161 0.7757 0.6718 

FDD 0.2388 0.8142 0.8849 0.2655 

4.6 Comparison and analysis of the performance of different 
PV forecasting models 
This paper uses the unified frequency domain 

decomposition model to compare the CNN prediction model 
with other prediction models. Fig. 16 and Fig. 17 show the 
MAPE, RMSE, R and time of different prediction models for 
sunny, cloudy, light rainy and heavy rainy days using the data 
of Ningxia and Jilin power stations. Compared with other 
prediction models such as BP Neural Network, RNN and 
LSTM, the prediction accuracy of the CNN prediction model 
is higher, and due to weight sharing, the model training time 
is greatly shortened. Taking Ningxia power station data on 
heavy rainy day as an example, after decomposing uniformly 
using the FDD model proposed in this paper, compared with 
BP neural network, RNN and LSTM models, the MAPE 
accuracy of CNN prediction model is improved by 14.02%, 
23.64% and 46.22%. And compared with RNN and LSTM 
models, the train time efficiency of CNN prediction model is 
improved by 85.63% and 87.68%. Although the training time 
of BP neural network is a little less than CNN, CNN has better 
prediction accuracy. Generally speaking, compared with other 
prediction models such as BP Neural Network, RNN and 
LSTM, the prediction accuracy of the CNN prediction model 
is higher, and due to weight sharing, the model training time 
is greatly shortened. The results fully show that the CNN 
model proposed in this paper improves the prediction 
accuracy and time efficiency. 

4.7 Simulation Discussion 
It can be seen from the above results that in the four 

weather types, the proposed frequency domain decomposition 
method improves the prediction accuracy. Although the high-
frequency components are more volatile after the lack of low-
frequency components, this may cause the prediction accuracy 
of the high-frequency components to decrease. However, the 
method of selecting the best frequency division point 

proposed in this paper not only increases the proportion of 
low-frequency components in the original data, but also 
balances the difficulty of predicting high-frequency 
components to a certain extent. Therefore, after adding and 
reconstructing low-frequency and high-frequency 
components, the accuracy of the final result is usually 
improved. 

In addition, the results also show that the training time 
for CNN prediction is reduced. This is because the weight 
sharing technology enables CNN to reduce the parameters to 
be estimated, thereby shortening the training time. And CNN 
can perform feature extraction on data, which has good 
robustness. Therefore, the CNN model can improve the 
accuracy and efficiency of the ultra-short-term prediction of 
photovoltaic power generation. 

 
Fig. 16. The performance of different prediction models on four 

different weather types using the dataset of Ningxia Power Station. 

 
Fig. 17. The performance of different prediction models on four 
different weather types using the dataset of Jilin Power Station. 

Ⅴ. CONCLUSION 
To overcome the shortcomings that there is currently no 

effective method to support the rationality of the frequency 
domain decomposition results, this paper proposes an ultra-
short-term prediction model of PV power based on optimal 
frequency-domain decomposition and deep learning. First, the 
amplitude and phase of each frequency sine wave is obtained 
by fast Fourier decomposition. As the frequency demarcation 
point is different, the correlation between the decomposition 
component and the original data is analyzed. By minimizing 
the square of the difference that the correlation between low-
frequency components and raw data is subtracted from the 
correlation between high-frequency components and raw data, 
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the optimal frequency demarcation points for decomposition 
components are obtained. Then convolutional neural network 
is used to predict low-frequency component and high-
frequency component, and final prediction result is obtained 
by addition reconstruction. 

For the decomposition model proposed in this article, by 
minimizing the square of the difference that the correlation 
between low-frequency components and raw data is 
subtracted from the correlation between high-frequency 
components and raw data, the optimal frequency demarcation 
points for decomposition components are obtained, and the 
PV power is decomposed into the low frequency Components 
and high-frequency components. The low-frequency 
component represents the regular part of photovoltaic power 
generation, which shows its trend characteristics, while the 
high-frequency component represents the randomness of 
photovoltaic power generation, which shows its fluctuation 
characteristics affected by other factors such as weather. This 
method supports the rationality of the decomposition results 
and solves the problem that the current decomposition model 
only uses the direct decomposition method, and the 
decomposition components have no physical meaning. Taking 
Ningxia power station data as an example, compared with 
discrete wavelet transform, variational mode decomposition 
and direct prediction models, the MAPE accuracy of the 
proposed frequency domain decomposition prediction model 
is improved by 42.05%, 32.94% and 44.59% respectively on 
sunny day, is improved by 57.42%, 29.64% and 53.86% on 
cloudy day, is improved by 70.11%, 36.79% and 67.77% on 
light rainy day, and is improved by 64.07%, 31.21% and 52.97% 
on heavy rainy day. The RMSE accuracy of the proposed 
frequency domain decomposition prediction model is 
improved by 38.91%, 25.72% and 36.20% respectively on 
sunny day, is improved by 52.16%, 28.22% and 50.10% on 
cloudy day, is improved by 59.05%, 33.22% and 57.79% on 
light rainy day, and is improved by 63.30%, 23.19% and 57.56% 
on heavy rainy day. The R accuracy of the proposed frequency 
domain decomposition prediction model is improved by 
2.24%, 1.41% and 2.21% respectively on sunny day, is 
improved by 14.77%, 4.16% and 12.94% on cloudy day, is 
improved by 77.84%, 40.25% and 45.64% on light rainy day, 
and is improved by 49.02%, 6.43% and 37.69% on heavy 
rainy day. The results fully show that the FDD method in this 
paper improves the consistency of experimentally observed 
data and forecast data. 

For the prediction model proposed, CNN is not only 
successfully applied to image processing, but also used to 
solve one-dimensional data classification and regression 
problems. CNN reduces the parameters to be estimated due to 
the weight sharing technology, thereby shortening the training 
time for prediction. And CNN can perform feature extraction 
on the data, which has good robustness. Therefore, this article 
is dedicated to the reasonable application of CNN model to 
improve the accuracy and efficiency of ultra-short-term 
prediction of photovoltaic power. Taking Ningxia power 
station data on heavy rainy day as an example, after 
decomposing uniformly using the FDD model proposed in this 
paper, compared with BP neural network, RNN and LSTM 
models, the MAPE accuracy of CNN prediction model is 
improved by 14.02%, 23.64% and 46.22%. And compared 
with RNN and LSTM models, the train time efficiency of 
CNN prediction model is improved by 85.63% and 87.68%. 

Although the training time of BP neural network is a little less 
than CNN, CNN has better prediction accuracy. Generally 
speaking, compared with other prediction models such as BP 
Neural Network, RNN and LSTM, the prediction accuracy of 
the CNN prediction model is higher, and due to weight sharing, 
the model training time is greatly shortened. The results fully 
show that the CNN model proposed in this paper improves the 
prediction accuracy and time efficiency. 

The above results show that the frequency domain 
decomposition prediction model has high superiority in the 
accuracy and time efficiency of ultra-short-term prediction of 
photovoltaic power, especially in extreme weather conditions 
[32]. The ultra-short-term prediction of photovoltaic power 
based on deep learning proposed in this paper has very high 
application prospects in the area of demand response 
aggregator [33], sucha as aggregated capacity forecasting [34], 
automatic demand response strategy [35], day-ahead optimal 
bidding and scheduling [36]. 
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