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 Sky Image Prediction Model Based on 
Convolutional Auto-encoder for Minutely Solar PV 

Power Forecasting

Abstract—The precise minute time scale forecasting of an 
individual PV power station output relies on accurate prediction 
of cloud distribution, which can lead to dramatic fluctuation of 
PV power generation. Precise cloud distribution information is 
mainly achieved by ground-based total sky imager, then the 
future cloud distribution can also be achieved by sky image 
prediction. In previous studies, traditional digital image 
processing technology (DIPT) has been widely used in 
predicting sky images. However, DIPT has two deficiencies: 
relatively limited input spatiotemporal information and linear 
extrapolation of images. The first deficiency makes the input 
spatiotemporal information not rich enough, while the second 
creates the prediction error from the beginning. To avoid these 
two deficiencies, convolutional auto-encoder (CAE) based sky 
image prediction models are proposed due to the spatiotemporal 
feature extraction ability of 2D CAEs and 3D CAEs. For 2D 
CAEs and 3D CAEs, 4 architectures are given respectively. To 
verify the effectiveness of the proposed models, two typical 
DIPT methods, including particle image velocimetry (PIV) and 
Fourier phase correlation theory (FPCT) are introduced to 
build the benchmark models. Besides, 5 different scenarios are 
also set and the results show that the proposed models 
outperform the benchmark models in all scenarios. 

Keywords—Solar PV power forecasting; Minute time scale; 
Sky image; Convolutional auto-encoder; Spatiotemporal feature 

I. INTRODUCTION 

A. Literature Review 
With the increase of solar PV integrated capacity [1] and 

wind power integrated capacity [2], the difficulty of stable 
operation of the power system is also increasing. The reason 
behind this is that renewable energy is aggressively promoted 
by governments due to its clean, low-cost, and inexhaustible 
characteristics [3]. However, both solar PV power and wind 
power have inherent and prominent uncertainty caused by 
weather conditions and meteorological factors, which makes 
a big difference between their fluctuation random process and 
the usual load curve of consumers [4]. Thus, when it comes to 
large-scale solar PV power integrated into power grids, to 
reduce the operation difficulty generated by the difference, the 
key lies in weakening the uncertainty of solar PV power, one 
kind of effective methods is solar PV power forecasting [5]. 
Besides, accurate solar PV power forecasting under some 
cases is important to electricity price forecasting, even though 
the latter is more difficult than the former [6]. 

The output of a single PV power plant is mainly influenced 
by the surface irradiance [7], while the surface irradiance is 
dominantly impacted by the clouds with complex distribution 
over the plant [8]. When the clouds change drastically on the 
minute time scale, the surface irradiance will show significant 
nonlinear fluctuation [9]. The larger the capacity of a single 
station, the more serious the adverse effect of this fluctuation 
on power grids. Accurate minute time scale solar PV power 
forecasting is propitious to the stability of power system 
operation, the consumption of solar PV power, and electricity 
market operation [10]. Such methods use ground-based sky 
images commonly [11] and can be carried out in two steps: the 
first step is cloud distribution prediction, which means sky 
image prediction; the second step is to establish a mapping 
relationship from cloud distribution to surface irradiance, then 
to the output. This paper only focuses on the first step. 

At present, the traditional sky image prediction research 
adopts digital image processing technology (DIPT). The 
research content is to use two adjacent images with high image 
resolution to calculate the cloud displacement vector, and then 
use the cloud displacement vector to linearly extrapolate the 
current image to get a prediction image [12]. The above three 
images get the same time resolution. The research can be 
divided into two categories: the first is based on image gray 
information and the second is based on the image Fourier 
frequency domain. The first category includes the scale-
invariant feature transform [13], optical flow [14], and particle 
image velocimetry (PIV) [15], among which PIV is widely 
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used. However, the stability and accuracy of these methods 
are poor to some extent [16]. The second category of methods 
can describe the difference between images by using 
mathematical expressions in less computing resources and 
shorter computing time [17], and the Fourier phase correlation 
theory (FPCT) is widely used. However, the DIPT based 
methods need an idealized hypothesis: the cloud distribution 
and shape in two adjacent images are nearly the same on the 
minute time scale [18], which leads to two problems affecting 
the prediction performance: one is the relatively limited length 
of the input image sequence, which means the input 
spatiotemporal information maybe not rich enough; the other 
is the idealized linear assumption, which means the prediction 
error could be introduced into the models from the beginning. 

B. Novelty 
In addition to DIPT, sky image prediction can also draw 

lessons from the video prediction models based on deep 
learning. The common between sky image prediction and 
video prediction is that they have the same modeling idea, that 
is, using historical image sequences to predict future image 
sequences. The difference between them lies in 
spatiotemporal resolutions of image sequences, due to their 
different data sources. The temporal resolution of image 
sequences used in video prediction is very high, such as 
usually 24 frames per second. Dynamic information in videos 
often focuses on people or objects in real life, so the spatial 
resolution of the image is very high, and the people or objects 
in a video sequence usually do not undergo violent movement 
and change. The temporal resolution of image sequences used 
for sky image prediction is usually up to the second level at 
most, and the observed target is cloud. However, because the 
spatial scale of sky images is significantly larger than that of 
video prediction, cloud distributions in two adjacent sky 
images with longer time interval than video prediction is 
usually close. For that reason, sky image sequences can also 
achieve the smooth and continuous vision effect like video 
frame sequences, so sky image prediction can learn from 
video prediction methods.  

Video prediction models are usually complex and deep 
convolutional auto-encoders (CAEs) in which convolutions 
include 2D convolution and 3D convolution. Specifically, 
over 20 computational layers are used in prediction CAEs at 
most in reference [19]. In reference [20], 5 computational 
layers are used in prediction CAEs at most. In reference [21], 
over 10 computational layers are used in prediction CAEs. 
Convolutional neural network is a deep learning model widely 
used in the field of computer science [22]. An auto-encoder is 
an unsupervised deep learning model. For video prediction 
models, their input and output are image sequences and can be 
flexibly set lengths according to the need, which means that 
models can easily input more than two images. Thus, more 
abundant spatiotemporal information can be input and then 
prediction performance of models can be improved. Moreover, 
such models can fit the complex nonlinear relationship 
between input and output automatically [23], which means 
spatiotemporal features can be effectively learned without 
idealization, thus avoiding the introduction of correlative 
errors.  

C. Contributions 
First, the first kind of models, CAE based sky image 

prediction models, are first established. Furthermore, 
convolutions have 2D and 3D forms, and CAE models have 4 
structures. As controls, then the second kind of models, DIPT 

based sky image prediction models, are established using PIV 
and FPCT. Finally, 5 different prediction time resolutions are 
considered on the practical dataset, and the performance of 
CAEs and DIPT are compared under each scenario. The 
results under 5 scenarios indicate the performance of CAEs is 
superior to that of DIPT models. To sum up, the main 
contributions in this paper include: 

1. CAE based sky image prediction models are proposed to 
overcome the deficiencies of DIPT based sky image 
prediction models, including limited input image sequence 
length and linear image extrapolation. 

2. To obtain accurate CAE based sky image prediction 
models, 2D convolution and 3D convolution are used 
regarding computation layers, and 4 different architectures 
are set regarding model structures. 

3. The comparison between CAE based sky image prediction 
models and two widely used DIPT based methods (PIV 
and FPCT) is simulated under 5 different prediction 
scenarios. The superiority of the proposed models can be 
verified by the results. 

D. Paper Organization 
The rest of this paper is organized as follows. Section II 

introduces data processing. Section III shows the 
methodology of the above two kinds of models. Section IV 
presents assessment metrics, simulation description, results 
and discussion. Finally, Section V highlights the concluding 
remarks. 

II. DATASET PROCESSING 
The sky images used in this paper are from the PV power 

station in Alamosa, Colorado, which are available on the 
National Oceanic and Atmospheric Administration (NOAA) 
website [24]. Their UTC time span is from May 22 2015 to 
May 31 2015. For each image, the time resolution is 0.5 min 
and the size is 352×288. After data cleansing, the processing 
of an image is shown as Fig. 1, with the image resolution 
marked below each image.  

 
Fig. 1. Sky image processing. 
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A sky image has a corresponding cloud analyzed image, 
both images generated simultaneously, as shown in Fig. 1(d) 
and (a), respectively. A cloud analyzed image can identify the 
sky, clouds, the sun and the shadow band and so on, by which 
the non-sky information of a sky image can be filtered out 
effectively and the region of interest can be obtained. 
Specifically, first, the rectangular picture having the white 
area is obtained as Fig. 1(b) and the clipping coordinates are 
retained. Second, Fig. 1(c) is obtained by binarizing the pixel 
values of the Fig. 1(b). Thirdly, Fig. 1(e) is obtained by using 
the clipping coordinate to cut the Fig. 1(d). Fourthly, Fig. 1(f) 
is obtained by pixel-wise calculation between Fig. 1(c) and 
Fig. 1(e). Fifthly, Fig. 1(f) is transformed into the grayscale 
one as Fig. 1(g). Sixthly, Fig. 1(h) is obtained by 
downsampling Fig. 1(g). It should be noted that limited to the 
hardware condition, and in order to reduce the training 
difficulty of CAE based sky image prediction models, the sky 
images used are grayscale images with resolution of 32×32.  

Finally, 16456 image sequences are obtained in the dataset. 
Each image sequence contains 20 consecutive images, the first 
10 are used to construct input and the last 10 are used to 
construct output. The dataset is divided according to the time 
order, the training set accounts for 80%, the validation set 
accounts for 10%, and the test set accounts for 10%. For CAE 
based sky image prediction models, the training set is used for 
model training, the validation set is used for model selection, 
and the test set is used for model test. DIPT based sky image 
prediction models only uses the test set.  

III. METHODOLOGY 

A. Convolutional Auto-encoder (CAE) Based Sky Image 
Prediction Models  
The proposed CAEs consist of convolutional layers and 

transposed convolutional layers. The two types of layers are 
the same in the calculation theory, the main difference 
between them is generally that a convolutional layer generates 
a down-sampled feature map while a transposed convolutional 
layer generates an up-sampled one [25]. Their equations are 
described as follows: 

   (1) 

where  denotes the i-th weight kernel in the j-th layer,  
represents the input corresponding to ,  is the bias of 
the j-th layer,  is the output feature map of the j-th layer 
and  is an activation function.  

Convolution operations including 2D convolution and 3D 
convolution is depicted as Fig. 2 [26]. A 2D convolution 
kernel has two directions to move, so 2D convolution applied 
on multiple frames stacked together generates a feature map. 
A 3D convolution kernel has three directions to move, so 3D 
convolution applied on multiple frames generates an output 
volume [26]. Under the same conditions, 3D convolution is 
finer than 2D convolution in terms of spatiotemporal feature 
extraction, but which means longer computation time. 

For the structure of an auto-encoder, there are two kinds 
of descriptions: one contains an input layer, hidden layers and 
an output layer, the other contains an encoder, a bottleneck 
layer and a decoder. For the CAEs proposed in this paper, 
hidden layers consists of convolutional layers or transposed 

convolutional layers, and an output layer is a convolutional 
layer. The output of each layer is successively processed by 
batch normalization (BN) [27] and an activation function 
named as LeakyReLU [28]. A CAE with three hidden layers 
is shown in Fig. 2, whose structure conforms to the remaining 
CAEs in this paper. In Fig. 3, the encoder contains an input 
layer and a convolutional layer, the bottleneck layer is a 
convolutional layer, and the decoder contains a transposed 
convolutional layer and an output layer. 

In CAE based sky image prediction models, an input 
image sequence information is processed when passing 
through an encoder and a bottleneck layer successively. Then 
the processed information is used by a decoder to predict a 
future frame. This process can be described as follows: 

    (2) 

   (3) 

where  is a sky image sequence;  represents a 
convolutional encoder;  represents the features 
generated by a bottleneck layer;  represents a 

convolutional decoder;  is a predicted image. 

According to Equation (2)-(3), if t0 is the time point to 
implement image prediction and n is the length of an input 
image sequence, the type of models can be described as 
follows: 

  (4) 

where  is the time resolution of the predicted sky image; 
 represents the predicted sky image generated by a 

CAE;  represents a CAE based sky image prediction 
model;  is the sky image at ;  is the time resolution of 
input images, namely 0.5 min; n=10.  

The flowchart of a CAE based sky image prediction model 
is demonstrated as Fig. 4. And for CAEs, their input images, 
from  to , are the same as Fig. 1(h). 

 

Fig. 2. Convolution operation. 
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Fig. 3. The architecture of a convolutional auto-encoder. 

B. Digital Image Processing Technology (DIPT) Based Sky 
Image Prediction Models 
PIV first divides both input images into small block 

regions, and then computes the cloud displacement vector by 
matching these blocks [15]. For FPCT, it uses Fast Fourier 
Transform to realize the interconversion between image space 
domain and frequency domain [17]. Fourier Transform of two 
input images is calculated and then used to calculate the cross-
power spectrum. Finally, the cloud displacement vector is 
obtained by the inverse Fourier Transform of the cross power 
spectrum.  

 
Fig. 4. The flowchart of a CAE based sky image prediction model. 

PIV and FPCT are used to construct two determined 
models which generate a predictive image by linear 
extrapolation of the image at t0. The type of models can be 
described as follows: 

   (5) 

where  is the predicted sky image generated by a 

DIPT based method;  is a DIPT based sky image 
prediction model; besides, , . 

The flowchart of a DIPT based sky image prediction 
model is demonstrated as Fig. 5. For DIPT models, there are 
a few things to note. The first is that  and  are high 
quality images like Fig. 1(g), and both of them are used to 
predict a near future frame. The second is that a predicted 
frame  is a clipped image due to linear image 
extrapolation, and the same operation is done to its ground 
truth image . Therefore their sizes are little less than 

. The image clipping process can be referred to [18]. The 
third point is that  and  are be 
downsampled to the size of 32×32 for similarity assessment. 

IV. SIMULATION  

A. Assessment Metrics 
Structural similarity (SSIM) and mean square error (MSE) 

are introduced to evaluate the performances of sky image 
prediction models. For two images, SSIM whose value range 
is [0, 1] [29] is used to measure the similarity of structural 
information; while MSE is used to measure the similarity of 
gray values. The larger SSIM of two images means that their 
structures are more similar; the smaller MSE means that their 
pixels values are more similar. 

If x and y are two images with same resolution of , 
their SSIM is the product of luminance comparison , 
the contrast comparison  and the structure comparison 

, the three comparisons are expressed as Equation (6)-
(8): 

   (6) 

 
Fig. 5. The flowchart of a DIPT based sky image prediction model.  

   (7) 

  (8) 

where  and  respectively represent the mean value of 
all the pixels in x and y, , and  respectively represent 
the standard deviation,  is covariance between x and y. , 

 and  are three constants to avoid denominator very 
close to zero, and they can be respectively described as 
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follows: ,  and . In 
general, ,  and . Finally, SSIM 
is described below: 

   (9) 

For x and y, MSE is described as follows:  

   (10) 

where  and  represent the pixel values of 
coordinate  in x and y respectively. 

B. Simulation Description 
All CAE models were built by Spyder and Keras, and they 

were run on a computer equipped with the Linux operating 
system, i7 CPU, 16 GB RAM, and a NVIDIA GeForce GTX 
1080Ti GPU. All DIPT models were built by Spyder, 
OpenCV and OpenPIV, and they were run on a computer 

equipped with the Window10 operating system, i5 CPU, and 
12 GB RAM. 

In this paper, the four different structures are set for 2D 
CAEs and 3D CAEs, respectively, as shown in Fig. 6. The 
number of hidden layers (NHL) of each structure is 3, 5, 7 and 
9 respectively. There are pairs of numbers in Fig. 6. For 
example, in the first hidden layer of a 3-layer 2D CAE, 16 is 
its output feature map side length, and 64 is the number of its 
output feature maps. 

For a sky image prediction model, the mean value on the 
test set will be used as its performance evaluation. Since Adam 
optimizer performing a random gradient descent is used 
during the training process [30], each evaluation of a CAE is 
slightly different. To mitigate this randomness, each CAE is 
evaluated 10 times in each situation, the median of 10 
evaluation values is taken as the performance evaluation value. 
Furthermore, each PIV based or FPCT based sky image 
prediction model is evaluated only once in each situation due 
to its determination. Two types of models in this paper predict 
an image. As can be seen from Table I, 5 prediction scales are 
set in this paper, each corresponding to one time resolution of 
the predicted images. 

 
Fig. 6. Four architectures of convolutional auto-encoders. 

C. Results and Discussion 

 
Fig. 7. The ratios of optimal evaluations between two types of models. 

The results of SSIM and MSE from the two types of 
models are shown in Table 2 and Table 3, respectively, where 
bold numbers represent the optimal values in each situation. 
The ratios of optimal evaluations between CAE models and 
DIPT models in 5 scenarios are compared, as shown in Fig. 7. 

The comparison results of SSIM and MSE from the two types 
of models are shown in Fig. 8 and Fig. 9, respectively. From 
these two tables and three figures, we can find some results. 

The first is that the prediction performance of the two 
types of models deteriorates with the decrease of output time 
resolution by and large. The reason is that as the output time 
resolution decreases, the spatiotemporal correlation between 
input and output also decreases, which makes the prediction 
difficult and finally leads to the obvious deterioration. 

Secondly, as shown in Fig. 7, for SSIM ratios, each value 
is greater than 1, which indicates that with the decrease of 
output time resolution, the ability of CAE models to predict 
image structure information is always better than that of DIPT 
models. For instance, the SSIM of CAE models is 1.2% higher 
than that of DIPT models when  min, while the 
SSIM value of CAE models is 4.5% higher than that of DIPT 
models when  min. For MSE ratios, except for  
min, the values are significantly less than 1, which indicates 
that the ability of CAE models to predict the gray information 
of image pixels is basically stronger than that of DIPT models. 

2
1 1( )C K L= 2

2 2( )C K L= 3 2 2C C=

1 0.01K = 2 0.03K = 255L =

( , ) ( , ) ( , ) ( , )SSIM x y l x y c x y s x y= × ×

2

1 1

1( , ) [ ( , ) ( , )]
M N

i j
MSE x y x i j y i j

MN = =

= -åå

( , )x i j ( , )y i j
( , )i j

16, 64

16, 96

32, 64

32, 64

16, 96

16, 128

32, 96

32, 64

16, 64

16, 96

8, 128

8, 160

16, 128

16, 96

16, 64

32, 64

16, 96

16, 128

8, 160

8, 192

16, 160

16, 128

16, 96

16, 64

Convolutional layer Transposed convolutional layer

Input layer Bottleneck layer Output layer

Output time resolution (min)

1.012 1.032 1.048 1.048 1.045 

0.712 

1.147 

0.650 
0.725 

0.617 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 1 2 3 4

SSIM ratio
MSE ratio

0.5outt =

4outt = 1outt =

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on April 09,2021 at 11:33:25 UTC from IEEE Xplore.  Restrictions apply. 



0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3072025, IEEE
Transactions on Industry Applications

For instance, when  min, the MSE of CAE models is 
71.2% of that of DIPT models, while that of CAE model is 
61.7% when  min. According to the analysis of the 
second results, we can find that when increasing the input 
image sequence length and introducing the relatively powerful 
nonlinear relationship fitting capacity by CAEs, the sky image 
prediction can be improved significantly in given cases. In 
other words, CAE models are basically superior to DIPT 
models regarding 5 scenarios. 

The third is that 2D CAEs and 3D CAEs are close 
regarding best performance values, for example, when  
min in Table II and  min in Table III. However, in 
different structures under different situations, the best 
performances of 2D CAEs are basically better than that of 3D 
CAEs. This result indicates that although 3D convolution has 
finer spatiotemporal feature extraction than 2D convolution, 
complex operations may not lead to better performance.  

The fourth is that due to fluctuating performances, it is 
necessary to train CAE models for many times and compare 
the performances of different structures to find better models, 
and this is exactly the inherent disadvantage of such stochastic 
learning models. Besides, DIPT models get very close results, 
and their curves basically overlap in Fig. 8 and Fig. 9. 

As depicted in Table II and Table III, the best models are 
2D CAEs containing 5 and 3 hidden layers respectively when 

 min and  min, but the optimal model cannot 
be judged directly from the values of SSIM and MSE in the 
remaining three situations. However, the relatively good 
models in the remaining three situations can be obtained. The 
above analysis is expected to provide reference for future 
research. 

TABLE I.  INPUT AND OUTPUT SETTINGS OF THE TWO TYPES OF 
MODELS 

Scenario 
Number 

CAE based models (n=10) DIPT based models (n=2) 

    

1 0.5 0.5 0.5 0.5 

2 0.5 1 1 1 

3 0.5 2 2 2 

4 0.5 3 3 3 

5 0.5 4 4 4 

TABLE II.  SSIM VALUES OF TWO TYPES OF MODELS 

 
Best 2D CAEs Best 3D CAEs PIV FPCT 

Values NHL Values NHL Values Values 

0.5 0.9953 5 0.9953 5 0.9830 0.9831 

1 0.9889 5 0.9890 5 0.9584 0.9586 

2 0.9692 5 0.9678 5 0.9244 0.9245 

3 0.9475 5 0.9444 5 0.9039 0.9038 

4 0.9291 3 0.9259 5 0.8895 0.8895 

TABLE III.  MSE VALUES OF TWO TYPES OF MODELS 

 
Best 2D CAEs Best 3D CAEs PIV FPCT 

Values NHL Values NHL Values Values 

0.5 5.12 5 5.22 5 7.19 7.18 

1 14.14 3 15.24 3 12.32 12.30 

2 11.84 3 12.12 3 18.23 18.24 

3 15.90 3 15.88 3 21.91 21.83 

4 15.07 3 15.17 3 24.41 24.39 
 

 
Fig. 8. SSIM comparison of the two types of models. 
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Fig. 9. MSE comparison of the two types of models. 

V. CONCLUSION 
As the dynamic cloud distribution can cause significant 

generation fluctuation in a very short time, it is very important 
to achieve accurate sky image prediction for the minute time 
scale output forecasting of PV power station. Recently, most 
related works use DIPT to achieve cloud distribution 
prediction. However, DIPT uses relatively limited 
spatiotemporal information and linear image extrapolation, 
which may lead to inaccurate prediction result of cloud. To 
avoid these shortages of DIPT based sky image prediction 
methods, 2D CAE based and 3D CAE based sky image 
prediction models are proposed. In this paper, 4 structures are 
designed for CAE based models, and the benchmark models 
are built by using two typical DIPT methods: PIV and FPCT. 
Besides, 5 different output time resolutions are considered. 
Through simulation, it can be seen that whether it is to predict 
the image structure information or the image pixels, CAE 
models are basically better than DIPT models, and 2D CAE 
models are basically better than 3D CAE models. It can be 
seen that 2D CAEs have the best image prediction ability for 
spatiotemporal information due to comparatively long input 
image sequence length and powerful nonlinear relationship 
fitting capacity. 

The above research cloud also be expected to support 
further studies in irradiance and PV power forecasting, such 
as building a mapping relationship from a predicted cloud 
distribution or its features to the corresponding surface 
irradiance to realize irradiance forecasting. 

In fact, the impacts caused by deep penetration of 
renewable energy on generation flexibility and operating costs 
of power grid [31] are significant and reflect in many aspects 
not only include power forecasting [32-37] for supply-demand 
balancing and energy trading under various scenarios [38-40], 

but also refer to load forecasting/load pattern [41-44], demand 
response applications [45-48], aggregator aggregated capacity 
forecasting and multi-aggregator scheduling with plenty 
distributed PV systems [49-52]. The abovementioned research 
topics will be conducted in the future works. 
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