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Abstract—Transportation electrification has become a 

prominent area of research and investment, especially in the 

last decades, regarding the increasing concerns for 

environmental sustainability. In this manner, there are 

different studies realized on electric vehicles (EVs), especially 

from the power system integration point of view to enable a 

more extensive penetration without causing adverse impacts on 

system operation. Different approaches for the direct and 

indirect management of EVs based charging demand in power 

systems have already been proposed in the literature as well as 

employed in the industry. In this study, from an indirect 

management point of view, a smart dynamic pricing approach 

based on a fuzzy logic controller based decision-making 

structure is proposed for EV charging in a distribution system. 

The proposed new decision-making method considers 

dynamically varying as well as static operational issues 

together with the social welfare of EV owners to provide real-

time decisions compared to existing studies considering the 

wider EV charging service pricing topic from a different 

perspective. 

Keywords—charging station; distribution system; dynamic 

pricing;  electric vehicles;   fuzzy logic;   smart decision making 

I.   INTRODUCTION 

A.  Motivation and Background 

Environmental awareness increasing gradually during the 
last decades has provoked vital changes in different 
industries. Among them, the transportation industry 
responsible for a vital portion of greenhouse gas emissions in 
the world due to its pivotal position in oil consumption is one 
of the leading industries keeping pace with these changes, 
especially with the electrification attempts. In this manner, 
electric vehicles (EVs) have become a topic of significant 
research and investments in the world lately, where the EVs 
on the roads worldwide has reached a number of over 5.1 
million in 2018 [1]. 

Even the EVs have many advantageous points, especially 
regarding environmental benefits compared to the fossil-

fueled transportation industry, there are also significant 
barriers to overcome for more effective competition with 
conventional rivals. The range anxiety, as well as battery 
aging, can be considered among the in-vehicle problems for 
sole battery EVs while the planning, commissioning, and 
operating the relevant charging infrastructure to supply EVs’ 
demand pertain to the power system related problematic 
issues. 

As a more specific topic in this manner, several 
approaches exist for the active management of the charging 
demand of EVs within the distribution system. The 
mentioned active management approaches can be classified 
as direct and indirect methods. The strategies in which the 
EV charging stations are managed directly by the distribution 
system operators or the aggregators (as a medium) form the 
direct methods. The studies in this area constitute the 
majority of the existing literature and industrial applications. 
On the other hand, the indirect approaches are based on the 
management of EV charging service via a dynamic pricing 
concept considering different operational issues. The 
mentioned pricing based indirect management approaches 
have drawn increasing interest in recent years. 

B.  Relevant Background 

There are several studies in the literature considering the 
pricing based indirect EV charging demand management 
issue. Among them, optimal pricing scheme determination 
oriented studies comprise the most considerable portion in 
this manner. Li et al. [2] considered the EV charging 
management problem from an optimal locational marginal 
pricing (LMP) determination point of view where EV 
aggregators were discussed in a price taker position in 
distribution system operation with social surplus 
maximization objective. Another decentralized EV 
aggregator based study for distribution system operator and 
EV owner interaction was proposed by Xi and Sioshansi in 
[3], where the distribution system operator and the EV 
aggregator had conflicting objectives during the definition of 
optimal price signals. A chance-constrained Mixed-Integer 
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Programming framework based model for optimal EV 
charging LMP decisions tackling with also the EVs based 
uncertainties was proposed by Liu et al. [4] in a dual side 
concept, where the EV aggregator and the distribution 
system operator respectively aimed to minimize the EV 
charging and total electricity consumption costs.  

A cost-minimization oriented optimization problem was 
formulated in [5] for a multi-region EV day ahead charging 
scheduling via distributed charging pricing. Another optimal 
pricing, as well as scheduling approach for EV charging 
specifically for EV sharing business model, was deployed in 
[6]. Besides, the multi-region pricing concept via a self-
adaptive mechanism was also provided for a smart city in [7]. 
A dual step approach to determine the optimal price settings 
for EV charging was proposed by Soltani et al. in [8] to 
benefit from the price elasticity of EV owners. The study in 
[8] was initiated with capturing the price responsiveness of 
EV demand by a conditional random field model where then 
the obtained model parameters were supplied as an input to a 
profit maximization oriented stochastic optimal price-setting 
model. The price elasticity of EV charging service was also 
considered in [9] from a service dropping minimization point 
of view. 

A game theoretic approach for EV charging service 
pricing was proposed by Yuan et al. [10] for the interaction 
between the charging stations and EVs with conflicting 
targets. In [10], each charging station was aimed to 
maximize its profit by determining the optimal charging 
service price with the forecast of charging station selection of 
EVs, and the mentioned decision of EVs was on the other 
hand considered based on different charging stations’ 
competitive price signals, waiting times and travel distances. 
Another location aware pricing integrated game theoretic 
approach based study can also be found in [11]. The EV 
charging station pricing competition was also considered in 
another study [12], where a heterogeneous distribution for 
charging stations was considered.  

A cooperative operation of power and transportation 
networks where the combined objectives considered the 
minimization of travel times to reach the charging station 
(also taking the traffic conditions into account) as well as the 
congestion in the power system was proposed in [13]. Other 
power and transportation network coupling concepts were 
also introduced in [14]-[16]. The determination of optimal 
charging prices for EVs in parking lots equipped with 
distributed generation and energy storage units considering 
the distribution system constraints imposed by the system 
operator was proposed by Awad et al. in [17].  

A collective charging load management of EV taxi fleets 
through a real-time pricing approach was considered in [18]. 
A dynamic pricing approach dedicated to EV extreme fast 
charging, also considering the traffic conditions between the 
EV location and the charging points, was proposed in [19]. 
An EV charging pricing scheme for the peer-to-peer 
operating possibility of distributed generation equipped 
commercial end-users and EV charging stations was 
presented in [20] with relevant comparisons from the 
prosumer total cost, distributed generation self-consumption 
and prosumer participation willingness points of view. A 
real-time pricing and scheduling approach based on 

reinforcement learning for EV charging service was 
persuaded in [21]. Another interesting study to decide 
dynamic prices for EV charging via a rule-based heuristic 
approach for real-time implementation was proposed in a 
recent study [22]. The bi-directional utilization based 
concept for EV grid interaction management considering 
vehicle-to-X (V2X) possibility apart from solely 
coordinating the EV charging was also evaluated in 
numerous studies such as [23]-[28]. 

A detailed survey on the use of smart approaches based 
on artificial intelligence for the management of EV demand 
in smarter power networks was presented by Rigas et al. [29], 
where a specific subpart was also devoted to EV charging 
demand pricing schemes. There are also numerous more 
studies in the literature that cannot all be referred here, which 
have contributed to the knowledge on the use of pricing 
based indirect EV management for enhanced system 
operation. However, even the use of smart approaches 
enabling a real-time implementation possibility for EV 
charging service pricing is gaining increasing interest; there 
is not a sufficient number of studies dealing with such 
approaches considering simultaneously the power system 
operation based technical as well as EV owner oriented 
social points of such decision-making procedures. 

C.  Contribution and Paper Organization 

In this study, a fuzzy logic controller based smart 
dynamic pricing approach for EV charging service is 
proposed from the distribution system operator point of view. 
The proposed smart decision-making approach considers the 
static and dynamically varying distribution system 
operational conditions as well as the social concept of the 
problem via rewarding the reduction of the energy 
consumption of EVs in demand of charging while reaching 
the charging station as inputs. Accordingly, the proposed 
approach decides the dynamically varying price multipliers 
that can further be turned into real prices to convey the EV 
owners. The performance of the proposed method is tested 
under realistic conditions of a distribution system. Herein, 
the main contributions of the proposed study can be 
summarized as follows: 

 The consideration of dual technical and social sides 
of the pricing problem is realized using a smart real-
time decision-making approach. 

 The differentiation of pricing schemes among 
different buses and charge demanding EVs is 
realized to enable a highly flexible indirect EV 
charging management possibility. 

The rest of this paper is organized as follows: Section II 
indicates the details regarding the methodology of the 
proposed model. Section III describes the evaluated 
distribution system with the relevant input data. Moreover, 
the simulation results are discussed in this section. Finally, 
concluding remarks of the study are highlighted in Section 
IV.  

II.   METHODOLOGY 

The application concept of the general decision-making 
mechanism is depicted in Fig. 1. Herein, firstly the EV 
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owner easily conveys the charging demand, also mentioning 
the current charge status to the system operator via a 
smartphone application. Accordingly, a set of reachable (in-
range) charging stations is provided for the mentioned EV by 
calculating the approximate range that the EV can reach with 
the current charge status and then considering the distance 
between the location of the EV and charging stations. 
Afterward, the set of in-range charging stations is reduced to 
a subset of available in-range charging stations considering 
the service status (either on duty or reserved for charging 
service dedicated to another EV) of the mentioned charging 
station. Then, a price multiplier is provided for each of the 
available in-range charging stations and each EV by the 
fuzzy logic controller based decision-making mechanism. 
The mentioned price multiplier can be accordingly used by 
the system operator to determine the real charging prices by 
multiplying them with any determined varying or constant 
base price. As the mentioned last stage after the 
determination of price multipliers includes the energy market 
integration, service costs, management policy, etc. issues, the 
mentioned final part is naturally out of the scope of this study. 
Besides, a similar sample concept for the mentioned 
smartphone application and the relevant other procedures can 
also be exemplified in the previous studies of the Authors in 
[30] and [31]. 

 
Figure 1. The application concept of the general decision making 

mechanism. 

As mentioned above, the smart dynamic pricing 
mechanism is based on fuzzy logic controller approach, 
which is a vitally effective method widely used in several 
industrial applications and academic studies since initially 
proposed by Lotfi Zadeh in the 1970s. Unlike Boolean 
Algebra defining the decisions either as 1 or 0, fuzzy logic 
also describes the partial membership conditions to different 
system states, enabling a closer behavior to the real-time 
human decision making procedure. The independence from a 
full mathematical model of the process to make a decision 
via exploiting from the expertise of the designer on the 
procedure makes the fuzzy logic approach a very powerful 
tool to use, especially in real-time highly complex decision-
making procedures. 

The mentioned fuzzy logic controller based pricing 
mechanism is depicted with the block diagram given in Fig. 
2. As seen, the decision-making mechanism considers the 
relative bus distance, normalized bus loading, and relative 
time distance information as inputs to determine the relevant 

price multiplier for each EV demanding charging service and 
for each available in-range charging station. The rule base 
for the mentioned concept is depicted in Table I while the 
relevant decision surface for two sample inputs, and the 
output is given in Fig. 3 as an example where the mentioned 
surface is identical for all combinations of any two inputs 
and the output.  

 

Figure 2. The block diagram of the fuzzy logic controller based decision 

making mechanism. 

 

Figure 3. A sample decision surface for the fuzzy logic controller based 

decision making mechanism. 

Herein, the relative bus distance corresponds to the 
normalized value obtained via dividing the distance of each 
charging station integrated bus to the main substation by the 
similar distance magnitude of the bus with the greatest 
distance to the main substation. The consideration of this 
input depends on the logic of incentivizing the buses leading 
to lower losses due to the direct proportion of the losses 
caused by a load in any bus with the distance of the relevant 
bus from the main supply point. As the second input of the 
fuzzy logic controller based smart pricing approach, the 
nominal transformer loading values are obtained by dividing 
the loading of the buses during the decision making time by 
the nominal bus power. The consideration of this issue relies 
on the mentality of incentivizing the less loaded busses 
during pricing decisions. As the final input of the smart 
pricing mechanism, the relative time distance is obtained via 
dividing the reaching time of an EV to any available in-range 
charging stations by the highest time among the time set 
composed of the reaching times to all charging stations. 
Herein, the mentioned reaching times are affected by the 
dynamic conditions such as the distance between the EV and 
the available in-range charging stations as well as the traffic 
conditions and these reaching times can easily be obtained 
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using a navigation application (such as Google Maps) 
operated at the background of the decision-making 
mechanism. The mentioned final input is in the scope of the 
social responsibility of the system operator gaining increased 
importance recently rather than technical operating 
conditions and relies on the principle of providing price 
advantage for the nearer charging stations those can reduce 
the energy consumption during the process of the EV to 
reach the charging station.  

Such comfort, savings, etc. improvement based end-user 
oriented approaches are considered vital in different 
applications in the world to enhance the participation of end-
users to such demand manipulation oriented programs. 
Considering these three inputs, the price multiplier under 
dynamic conditions is determined special to each EV and bus 
pair via the relevant decision-making mechanism. 

III.  TEST AND RESULTS 

The method propounded for pricing of EV charging 
service within a distribution system has been tested using the 
model of a real distribution system portion managed by 
Osmangazi Electricity Distribution Company (OEDAŞ). 
Figure 4 shows the single line diagram of the evaluated 
distribution system model.  

 

Figure 4. Single line diagram of the evaluated distribution system. 

TABLE I. FUZZY LOGIC CONTROLLER RULE BASE 

R I1 I2 I3 O R I1 I2 I3 O R I1 I2 I3 O R I1 I2 I3 O R I1 I2 I3 O 

1 VL VL VL VL 26 L VL VL VL 51 M VL VL L 76 H VL VL L 101 VH VL VL LM 

2 VL VL L VL 27 L VL L L 52 M VL L L 77 H VL L LM 102 VH VL L LM 

3 VL VL M L 28 L VL M L 53 M VL M LM 78 H VL M LM 103 VH VL M M 

4 VL VL H L 29 L VL H LM 54 M VL H LM 79 H VL H M 104 VH VL H HM 

5 VL VL VH LM 30 L VL VH LM 55 M VL VH M 80 H VL VH HM 105 VH VL VH HM 

6 VL L VL VL 31 L L VL L 56 M L VL L 81 H L VL LM 106 VH L VL LM 

7 VL L L L 32 L L L L 57 M L L LM 82 H L L LM 107 VH L L M 

8 VL L M L 33 L L M LM 58 M L M LM 83 H L M M 108 VH L M HM 

9 VL L H LM 34 L L H LM 59 M L H M 84 H L H HM 109 VH L H HM 

10 VL L VH LM 35 L L VH M 60 M L VH HM 85 H L VH HM 110 VH L VH H 

11 VL M VL L 36 L M VL L 61 M M VL LM 86 H M VL LM 111 VH M VL M 

12 VL M L L 37 L M L LM 62 M M L LM 87 H M L M 112 VH M L HM 

13 VL M M LM 38 L M M LM 63 M M M M 88 H M M HM 113 VH M M HM 

14 VL M H LM 39 L M H M 64 M M H HM 89 H M H HM 114 VH M H H 

15 VL M VH M 40 L M VH HM 65 M M VH HM 90 H M VH H 115 VH M VH H 

16 VL H VL L 41 L H VL LM 66 M H VL LM 91 H H VL M 116 VH H VL HM 

17 VL H L LM 42 L H L LM 67 M H L M 92 H H L HM 117 VH H L HM 

18 VL H M LM 43 L H M M 68 M H M HM 93 H H M HM 118 VH H M H 

19 VL H H M 44 L H H HM 69 M H H HM 94 H H H H 119 VH H H H 

20 VL H VH HM 45 L H VH HM 70 M H VH H 95 H H VH H 120 VH H VH VH 

21 VL VH VL LM 46 L VH VL LM 71 M VH VL M 96 H VH VL HM 121 VH VH VL HM 

22 VL VH L LM 47 L VH L M 72 M VH L HM 97 H VH L HM 122 VH VH L H 

23 VL VH M M 48 L VH M HM 73 M VH M HM 98 H VH M H 123 VH VH M H 

24 VL VH H HM 49 L VH H HM 74 M VH H H 99 H VH H H 124 VH VH H VH 

25 VL VH VH HM 50 L VH VH H 75 M VH VH H 100 H VH VH VH 125 VH VH VH VH 

*R: Rules, I1: Input-1, I2: Input-2, I3: Input-3, O: Output, VL: Very Low, L: Low, LM: Low Medium, M: Medium, HM: High Medium, H: High, VH: Very High 

 
Figure 5. Relative distance values for different buses. 

As can be seen in the demonstration, it is a radial type 
24-bus network with eleven of the 24-bus are equipped with 
a transformer. The percentage of relative bus distances for 

the buses equipped with charging stations within the relevant 
distribution system region is portrayed in Fig. 5. Similarly, 
the percentage of bus loading values is also depicted in Fig. 6. 
Herein, a test regarding three EVs conveying their charging 
requests from different locations of the distribution system is 
realized. Among the mentioned EVs, EV-1 is located at Bus-
12 while EV-2 and EV-3 demand charging respectively from 
Bus-21 and Bus-1. For the sake of simplicity, it is assumed 
here that all the charging stations in all buses of the sample 
distribution system region are within the range of all EVs 
considering their charge levels and each bus includes at least 
one available charging station to possibly reserve by each of 
the mentioned EVs. In this manner, the relative time distance 
values to charging station equipped buses are shown in Figs. 
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7-9 respectively for EV-1, EV-2 and EV-3. As a navigation 
application is not operated behind the decision making 
approach in the current version of the study and the 
mentioned distribution system region includes negligible 
amount of traffic in real conditions, it should here be noted 
that the real distances between the EV locations and the 
distribution system buses are utilized for the calculation of 
the mentioned relative time distances in order to obtain an 
acceptable level of convergence in this case study.  

 

Figure 6. Transformer loading levels for different buses. 

 

Figure 7. Relative time distance values to different buses for EV-1. 

 

Figure 8. Relative time distance values to different buses for EV-2. 

The price multipliers determined by the fuzzy logic 
controller based decision making mechanism for each EV 
and each bus under aforementioned operating conditions are 
depicted in a summarized way within Fig. 10. Firstly, it can 
be observed that the price multipliers are not identical for 
different EVs in distribution system buses. This issue shows 
importance specifically in order to incentivize the routing of 
EV owners to nearer buses those can be reached with lower 
energy consumption. Herein, the social responsibility output 
is obtained via lowering the energy consumption of each EV 
while reaching the relevant charging station and therefore 
reducing the indirect impact of the cumulative summation of 
the consumptions during these conditions without the 
objective of a real journey on several issues such as energy 
economy, emissions, distribution system operation (due to 

the fact that energy consumptions increase the charging 
demand either from power or time points of view), etc. 
Besides, it can also be seen from Fig. 10 that the price 
multipliers decided for each EV also differ between buses 
and price multipliers even below 0.6 or above 1.4 occur.  

 

Figure 9. Relative time distance values to different buses for EV-3. 

 

Figure 10. Determined price multiplier values for different buses regarding 

charging of different EVs. 

The price multipliers are manipulated sensitively under 
different EV locations and varying bus loading conditions 
via the mentioned real-time smart decision making approach. 
This issue clearly figures out that the relevant decision 
making mechanism effectively capture the variations of 
system operating conditions in a dynamic manner in order to 
present the applicability of the proposed approach with 
possibly required modifications.   

IV. CONCLUSION 

The role of EVs in the transportation industry has 
recently experienced a rapid increase and is expected to grow 
more vitally in the upcoming decade. The active 
coordination of charging demand of the EVs has a specific 
importance in this manner for a wider adoption to an 
electrified transportation.  In this study, a smart real-time 
pricing strategy for EV charging service in a distribution 
system was proposed. The mentioned strategy depends on a 
fuzzy logic controller based decision making mechanism. 
The tests conducted using a real distribution system portion 
data revealed the sensitivity of the proposed approach to the 
different distribution system related operating conditions as 
well as status of the EV owners demanding charging service.  

The outcomes of the decision making mechanism can be 
enabled to use in real applications via indicating the price of 
the least costly charging station (or demanding to select at 
most one option among different charging station options 
with the information of price and time to reach) to the EV 
owner via a smart phone application and then routing the 
relevant EV owner to the reserved charging station using a 
background navigation application if the proposed charging 
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station is approved. This condition is proposed to consider as 
a possible topic of future research in this manner. 
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