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Abstract—The smart grid is a fully automatic delivery grid for 
electricity power with a two-way reliable flow of electricity and 
information among different equipment on the grid. With the 
rapid development of smart grids, smart meters and sensors are 
used to monitor the system and provide a wide reporting which 
produce a huge amount of data in various part of the grid. To 
logical manage this trouble, the presented paper proposes a new 
lossy data compression approach for big data compression. In 
the proposed method, at the first step, the optimal singular value 
decomposition (OSVD) is applied to a matrix that achieves the 
optimal number of singular values to the sending process and 
the other ones will be neglected. This goal is done due to the 
quality of retrieved data and the rate of compression ratio. In 
the presented scheme, to implementation of the optimization 
framework, various intelligent optimization methods are used to 
determine the number of optimal values in the elimination stage. 
The efficiency and capabilities of the proposed method are 
examined using the experimental dataset of several residential 
microgrid consumers and market dataset. Simulation results 
show the high performance and efficiency of the proposed model 
in smart grids with big data. 

Keywords—Big data, Data compression, Smart Grid, 
Optimization, Singular value decomposition. 

NOMENCLATURE 

 Original data 
 Reconstructed data 

Cr Compression ratio 
Dr Elements of remained data 
Dd Elements of deleted data 
Do Elements of original data 
GAm 
m 
n 

Genetic Algorithm with mutation 
Rows of the original matrix 
columns of the original matrix 

Nt the threshold of Norm 2 for comparison of 
original and retrieved data 

 Norm 2 of matrix Z 
p The number of deleted singular values 
Sd 

 

 

Number of deleted singular values 
Weight coefficient for Nt 

I. INTRODUCTION  

A. Data in Smart Grids 
Smart grid is an intelligent electricity grid that optimizes 

the generation, distribution, and consumption of electricity 
through the introduction of Information and Communication 
Technologies on the electricity grid which includes the smart 
meters and various sensors in different parts. The 
measurement and monitoring instruments to gathering the 
information in the transmission system and medium-voltage 
level distribution system are managed by supervisory control 
and data acquisition (SCADA) and wide area monitoring 
system (WAMS). Similarly, in the level of consumers, 
advanced metering infrastructure (AMI) and automatic meter 
reading (AMR) systems are employed for data gathering in the 
smart grid.  Phasor measurement units (PMUs) are among the 
other units used in the smart grid to measure the required 
information and send it through a communications platform.  

Fig. 1 shows the general structure of the WAMS system in 
the smart grid. Information for each PMU is transmitted 
through public switched telephone networks, fiber optic cables, 
low altitude satellites, power line carriers (PLCs) or 
microwave links. As a result, a huge amount of multi-source 
varied data is stored in the smart grids. These data if exploited 
properly can reveal much information about the customers and 
generating units and improve the power quality and smart grid 
efficiency. Unfortunately, a challenge in this way is the huge 
volume of transmitted information and the limited bandwidth 
available for the data transfer. To deal with this issue, the 
employment of data compression techniques for reducing the 
size of data transfer can bring great benefit to the smart grid.  
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Figure 1.  WAMS structure in a smart grid 

 
In compression schemes, the initial goal is to earn data 
compression and simultaneously preserving the useful 
characteristics of original data [1]. Data compression is 
broadly classified into two categories, namely lossless 
(original data can be recovered perfectly from the compressed 
data) and lossy (the original data cannot be recovered from the 
compressed data perfectly and there are losses) [2]. Various 
researchers are actively engaged to derive efficient methods of 
data compression using the latest techniques. The following 
subsection reviews the important techniques that have been 
used commonly in data compression.  

B. Literature Review 
Different algorithms have been developed for smart grid data 
compression. These include frequency domain transformation 
such as wavelet decomposition (WD)[3-6] or discrete cosine 
transform(DCT)[6], fuzzy-based methods[12], compressed 
sensing theory [11], SVD-based approaches [13-14] and so 
on. 

In WD-based data compression, Khan et al in [3] proposed 
a new method for data compression and de-noising in smart 
grids based on wavelet transform. This scheme uses the 
wavelet packet decomposition (WPD) that is more accurate 
than wavelet decomposition. In this method WD tree has been 
converted to fully binary tree using a cost function and the 
best tree has been selected from a number of WPD bases. This 
work provides an acceptable compression ratio and a good 
denoising tool. Also, it uses a threshold for reconstruction of 
the signal.  

Also, Khan et al. [4] presented an embedded zerotree 
wavelet transform (EZWT)-based approach which has been 
used to depress the signal noise in smart grid. Since EZWT 
does not require tables, codebooks and etc. for extraction of 
original data, it is known as a simple method. In this paper, the 
proposed method has been evaluated using PMU and power 
system data and has been used to compress and elimination of 
noise in data.  

Besides, In [5], Ning et al suggested a lossy method for 
data compression in a smart grid that is based on wavelet 
transform (WT) and multi-resolution analysis (MRA). Due to 
WT-MRA features, this packet is very suitable for 
compression and de-noising of power system signals. In 
decomposition process, Daubechies filter is considered as the 
mother signal. Experimental results illustrated that the WT-
MRI con not only compresses power system signals and it 
must be combined with another algorithm. So, the presented 
method can only solve the white noise of considered signals.  

Moreover, on another research [6] the wavelet 
transformation has been deployed for signal compression. In 
this method, after performing wavelet transformation, 
dynamic bit allocation is defined for compression. To the 
definition of bit allocation, the spectral shape has been 
estimated by several methods in which one is the neural shape 
estimator (NSE). Spectral Shape estimation is necessary to 
eliminate data redundancy and implementation of the entropy 
coding. The results demonstrated that NSE is successful than 
the other estimators which provide an acceptable ratio for 
compression of waveforms. In another study [7], to 
compression of PMU data, a general compression algorithm is 
presented that uses intrinsic correlation using the extraction of 
temporal and spatial redundancies. The mentioned approach is 
designed in two stages which in first stage, the principal 
component analysis has been defined and in the second stage, 
a discrete cosine transform has been used. Also, the 
compression parameters have been adjusted using efficient 
statistical techniques. The results show this approach is 
general, and so can be employed on a phasor data 
concentrators (PDC) fed from any number of PMUs.  

As another application of compression in the electricity 
dataset, [8] provided a novel method based on Deep Stacked 
Auto-Encoders, which compresses the load data on the user 
side. The fuzzy-based methods have been insured by some 
researchers as another way to data compression. For instance, 
in [9] a fuzzy-based approach has been introduced to save the 
required memory and bandwidth, which reduces the 
computational burden for smart grids' data analysis. In this 
regard, data redundancy has been detected by fuzzy-based 
domain transformation. So, the significant amount of data has 
been eliminated and this scheme provides an acceptable ratio 
for data compression. some works using compressed sensing 
theory for smart grid applications emerged lately, such as 
those in [10] which provided the compression technique for 
electricity datasets. The suggested algorithm makes the 
sparsity condition of original data. At the decoder side, an 
iterative threshold algorithm has been employed to reconstruct 
the compressed bitstream. The experimental results illustrated 
that the proposed method has good performance for 
compression and decompression of the original data.  

The use of artificial intelligence such as neural networks 
[11] and intelligent measurement techniques [12] have also 
been investigated in search of compression methods. Barrosa 
et al. [11] suggested a method for the compression of 
electrical power signals using genetic algorithm (GA) and an 
artificial neural network (ANN). The GA is used to select the 
best samples of the signal and the ANN is used to 
compression of remained samples and the reconstruction of 
the signal. This method proposed the compression ratio from 
2.5% to 10% for a recorder installed in a 230-kV electrical 
power system. In [12], an approach has been suggested for 
compression of electricity load data based on intelligent 
measurement. In this method, considering the size of the input, 
a foundation has been provided which is suitable for low-
complexity coding and decoding of smart grid transmissions. 
Linear algebra-based techniques are considered as another tool 
for data compression, which has been investigated in the 
search to propose lossy compression method.  
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For example, In [13], a new lossy method based on SVD 
decomposition has been presented for distribution systems, 
which is useful for the compression of large data. This 
technique reduces a large number of data by rank reduction of 
the matrix which is done by SVD decomposition.  

Actually, some singular values of the diagonal matrix are 
neglected by the try-and-error approach. Hence, an 
approximation of the original matrix is achieved and on the 
decoder side, data is accurately recovered. As another research, 
[14] introduced a novel lossy compression method based on 
the combination of SVD decomposition and wavelet 
difference reduction (WDR). At first, considering the visual 
quality of original images, the rank of the original matrix has 
been reduced using the try-and-error technique and then WDR 
has been applied to reduced data. In this method, the SVD 
decomposition has a good Peak Signal-to-Noise Ratio (PSNR) 
with a low compression ratio, accordingly, the WDR has been 
added to SVD decomposition. The use of compression 
methods in general, and lossy compression in particular, with 
electricity dataset, has been previously investigated. As a 
study in loss-less compression methods, [15] introduced 
various lossless compression methods such as Lempel–Ziv–
Markov chain algorithm (LZMA) in smart grids. the presented 
scheme has been employed on a dataset that is achieved by 
continuous monitoring. In this technique, for the increment of 
the compression ratio, the differential encoding has been used 
as analytical modules compressors.  

To the best of authors’ knowledge, in the previous SVD-
based researches, the rank reduction is based on the try-and-
error approach. To solve this issue, an optimization framework 
has been presented in the presented paper. In this regard, 
considering the accuracy of reconstructed data and 
compression ratio, the optimal SVD decomposition to rank 
reduction is suggested. In the optimization framework, The 
inverse of compression ratio is considered as the objective 
function in a minimization problem and the proximity between 
the original and the reduced matrix is considered as the 
problems’ constraint. Accordingly, this paper focuses on 
optimal SVD with a proper compression ratio, which reduces 
the computational burden. The proposed algorithm is simple 
and efficient for the implementation of the compressor. 

The remainder of the paper is organized as follows: In 
section II, A summary of data compression in smart grids is 
presented. In section III, the overview of the used 
methodologies in the proposed compression technique is 
discussed in which details of the SVD and optimization 
framework are addressed. Then in section IV, the proposed 
lossy compression is introduced. The experimental results are 
expressed in V and the discussions are given in Section VI 
followed by the conclusions in the last section. 

II. COMPRESSION IN SMART GRIDS 
      The generation, transmission, and distribution of the 
power in smart power systems are deeply impressed by data 
analyzing. Therefore, a considerable increase in data 
exchange and in the required memory is likely to occur [16] 
and the required data storage and bandwidth of the 
communication links in the smart grids have a growing trend. 

Besides, to obtain accurate and real-time running status 
information of the smart grid, the frequency of sampling 
should be increased. Accordingly, the importance of data 
compression in the smart grid will be more highlighted.       
The proposed compression method is presented in the 
following. This method can be employed effectively in 
different points of the grid where the volume of the sent and 
received data is high. 
A.  The SVD Decomposition 
       The SVD is a computational tool for approximating a 
matrix by three other matrices. Indeed, it decomposes matrix 
A into U, V, and Σ. Let m and n be arbitrary and A be a  
matrix. A singular value decomposition of A is a factorization 
as can be seen in (1). 

 (1) 

where U  is a  real or complex unitary matrix, Σ is a 
 rectangular diagonal matrix with non-negative real 

numbers on the diagonal, and V is a real or complex 
unitary matrix. The diagonal entries  of  Σ are known as 
the singular values of A. briefly [17]: 

o U: is m × m unitary (the left singular vectors of A) 
o V: is n × n unitary (the right singular vectors of A) 
o Σ: is m × n diagonal (the singular values of A)  

where, 

 
In Fig. 2, the SVD decomposition on a matrix has been 
shown. As already mentioned, Σ is a diagonal matrix whose 
elements on its original diameter are singular values that are 
placed in descending order. Each singular value is involved in 
the retrieving process of the original matrix. In other words, 
equation (1) can be rewritten in the form of equation (2) [16]. 

 (2) 

where ui and vi are the left and right singular vectors of the 
matrix A, respectively and is the ith singular value. As can 
be seen, the smaller singular values play a smaller role in the 
building of the original data. Thus, the low-rank matrix 
approximation can be used by the elimination of smaller 
values and the original information can be retrieved with 
appropriate approximation as can be seen in (3a). According 
to (3b), Σ is decomposed to a submatrix including the 
important singular values ( ) and three non-important 
submatrices which are approximated by zero matrices with 
the same dimension. 

 
Figure 2. The SVD form of a matrix 
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 (3a) 

 (3b) 

As can be seen in (4),  is a low ranked approximation m×n 
matrix, the matrix  is m× (n-p),  is n× (n-p), and  is 
(n-p) × (n-p).  

 (4) 

Due to the fact that , and can provide an acceptable 
approximation of the original data (A) and can be sent instead 
of A, their dimension specifies the compression ratio. 
Therefore, the compression ratio is defined as (5). 

 (5) 

The compression is done when the ratio is more than 1. 
Equations (6)-(8) provide a lower bound on the number of 
neglected singular values.  

 (6) 

 (7) 

 (8) 

In the compression schemes, along with the compression 
ratio, the redundancy of data can also be determined by 
equation (9). 

 (9) 

In this process, according to (4) we have: 

 (10) 

To find the redundant data, both sides of (10) is divided by 
the original data, so:  

 

(11) 

Therefore, by (11), the percentage of duplicate and redundant 
data is calculated. 
Another important issue refers to the calculation of the 
retrieved data precision in the decoding process. The mean 
square error (MSE) criteria in (12) has been used to check the 
accuracy and proximity between original and retrieved data. 

 (12) 

B. Optimization Framework 
    Another consideration is the amount of rank reduction 
without damaging the original data. Accordingly, it is not 
allowed to remove any large number of singular values. So 
far, in the related researches such as [13], the number of 
eliminated singular values have empirically been determined 
by the try and error approach. However, in this paper, an 
optimization framework is proposed to obtain the optimal 
number of singular values to be ignored. Before presenting 
the optimal singular value decomposition in section III, the 
general form of an optimization problem that can be seen in 
(13) is reviewed. 

 (13) 

Where F is the objective function, X is the set of decision 
variables, H is equality constraints and G is in-equality 
constraints [18-19]. Taking the feasible region of the problem 
into account, the aim of the minimization problem is to find 
the optimal point which satisfies (14). 
                                              (14) 

For this purpose, evolutionary algorithms have been used 
to solve the formulated optimization problem [20-21]. 

III. PROPOSED METHOD 
      As already mentioned, data types with significant 
volumes should be transmitted to the different points of the 
smart grid, for example, information of various participants 
on the electricity market, weather data including solar, wind, 
humidity and temperature data and etc., which are very 
important for optimal, resilient and reliable operation. Also, 
the selected dataset normally is in the form of a matrix for 
sending it to the network operator. Generally, the ways of 
data transmission are divided into encoding and decoding 
processes. In fact, in the encoding phase, data processing is 
performed to prepare data. After this operation, the data is 
transmitted through the communication channel and will be 
recovered to the initial form in the decoding phase. This 
process is shown in Fig. 3.  
In the proposed method, the original data matrix is 
decomposed into U, V and  by the SVD decomposition. 
Then, the optimal rank reduction is specified and three rank-
reduced matrices will be ready for sending. At first, the 
optimization problem will be presented. The decision variable 
x in this problem is the number of singular values that will be 
eliminated. In fact, the number of eliminated singular values 
influences the compression ratio and data quality. Since the 
main goal of the problem is data compression, the inverse of 
the compression ratio can be considered as the objective 
function in (15). 

  (15) 

By the minimization of (15), the compression ratio will be 
minimized.  
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Figure 3. A data communication channel and transmission process 

Alternatively, the objective function can be considered as the 
negative value of x as can be seen in (16). In fact, more 
compression can be gained by maximizing the number of 
neglected singular values.  

 (16) 

As an important consideration, the compression is valuable if 
the information can be retrieved with acceptable accuracy. 
Therefore, a constraint is defined by (17) for the optimization 
problem.	
	

              (17) 
This constraint emphasizes the proximity of two matrices 
with norm 2 criteria. In other words, introducing (17) 
indicates the norm 2 of the difference between the original 
and recovered matrix is less than the Nt value. In this step, an 
important issue refers to determining the upper bound of the 
constraint (Nt). Nt can be determined based on the matrix A as 
can be seen in (18). In this way, we will have a vision at this 
threshold. In this regard, the upper bound of (17) is restricted 
to a fraction of norm2 of the original matrix. 

 (18) 

To convert a constrained problem to an unconstrained one, 
the penalty coefficient is added to the cost function. 
Accordingly, the fitness function is calculated as (19). 

 (19) 
Where K is the penalty coefficient. Thus, failing to satisfy the 
constraint (17), will impose a penalty on the fitness function 
and the solution has a lower probability for selection. 
Another consideration is the range of decision variables. X is 
an integer number whose upper limit is equal to the number 
of singular values. As described in the previous section, 
according to (8), its lower limit is determined by (20). 

 (20) 

To ensure more compression, the lower limit can be 
calculated as follows: 

     (21) 

 (22) 

Where cr0 is the pre-specified minimum compression ratio. 
But, if this value is much greater than 1, then the problem 
may become infeasible. Accordingly,  should be selected 
rationally. 

IV. NUMERICAL RESULTS AND DISCUSSIONS 
The presented scheme has been implemented using MATLAB 
2018a on the market data. All implementations have been 
done on a PC Intel core i7, processor 1.8 GHz, with RAM 
8GB. The data information and the simulation results are 
expressed in the following. 
A. Data 

To evaluate the efficiency of the proposed method, two 
types of datasets have been tested. In case study 1, a dataset 
from Day-Ahead Energy Market of New England’s wholesale 
electricity marketplace on January 1, 2018, for 315 
participants has been tested. It should be noted that each agent 
must send the 5-segment (price-power curve) for 24-hour. 
Hence, the information matrix has 315 rows (equal to the 
number of market participants) and 240 columns (5 segments 
of power and 5 segments of the price for 24 hours). These 
datasets are available in [22]. The available data for case study 
2 is electrical data over a single 24-hour period from 443 
unique homes on February 4, 2011. This database refers to the 
different features of each home in a micro-grid for a 24-period. 
The size of the database is 1440 × 443 and is available in [23]. 

B. Case study 1 
To implement the proposed method and to find the number 

of optimal singular values to be eliminated, the evolutionary 
algorithms like differential evolution (DE) [24], simulated 
annealing (SA) [25], teaching-learning based optimization 
(TLBO) [26], particle swarm optimization (PSO) [27], 
genetic algorithm with mutation (GA-M) and GA [28] have 
been used on the above mentioned market data. In Table I, 
the optimal solution (the mean value of the optimal number 
of eliminated singular values over 20 runs for each algorithm) 
has been shown with some statistical indexes to evaluate the 
quality of each algorithm.  
Also, the run time of these algorithms is seen in Table I. it 

should be noted in this table the condition is almost similar 
for all algorithms.  As it turns out, in Table I, in order to 
achieve a robust answer, the number of required iterations is 
observed in each algorithm.  
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TABLE I: 
 THE NUMNER OF RECOMMENDED SINGULAR VALUE FOR DELETION BY 

EVOLUTIONARY ALGORITHMS 
 DE 

[24] 
SA 
[25] 

TLBO 
[26] 

PSO 
[27] 

GA-M 

[28] 
GA 
[28]  

Iteration 14 150 5 6 6 100 

Mean 209 209 210 210 210 ≈206 

Standard 
deviation 

0 0 0 0 0 4.51 

Run time 
(second) 

1.58 2.76 1.17 0.77 1.82 4.37 

In fact, the first four algorithms with a fixed number of 
iterations have been converged to the specific solutions with 
the standard deviations of 0 for 20 runs. But in GA, despite 
the 100 number of iterations, still it is not converged to a 
unique solution, but the average of the answers is close to the 
optimal answers of the other algorithms. Besides, DE, TLBO, 
PSO, GA with mutation and SA have converged to the 
optimal solution. According to Table I, the PSO algorithm is 
the fastest algorithm among all to solve the problem.  
In the following, the compression ratio and the percentage of 

redundant data for the achieved solutions have been 
calculated and addressed in Table II. As can be seen from this 
table, the compression ratio by the presented scheme has a 
high performance and offers a high compression ratio and 
also removes a huge redundant data. Accordingly, the 
proposed method can be used for data reduction with 
reasonable accuracy.  
In decoding and restoration process, the precision of the 

recovered matrix is satisfactory and this matter has been 
investigated by using the MSE and norm2 value of the 
difference between the original and recovered matrices in 
Table III. The number of the original matrix elements is 
75600. According to the results of Table III, it is inferred that 
the restoration accuracy of the proposed method with various 
algorithms is acceptable. The following analysis is performed 
on the result of PSO algorithm. Since the accuracy of the data 
recovery is dependent on compression ratio, the optimization 
problem is solved with the different thresholds (Nt). In this 
case, in order to cover a wider range of Nt, α has been 
selected from 0.000001 to 0.01. According to Table IV, by 
the selection of a bigger Nt, the accuracy of retrieval 
information will be increased. For example, with threshold 
0.17, a very high precision result is achieved by the 
elimination of 166 singular values while the minimum MSE 
of the retrieved information is 1.674e-06 proofing the high 
accuracy. Also, this accuracy presents that the compression 
ratio is equal to 1.84. In general, if Nt becomes larger, the 
problem is relaxed to have more compression and, as it is 
expected, the accuracy will be decreased. For example, in Nt  
= 1701, the compression ratio is 15.11, but the error in this 
situation is high and reaches about 174 of the largest element 
in the original matrix. 
Fig. 4(a) illustrates the relationship between MSE criteria 

and the percentage of the redundant data based on the number 
of deleted singular values in the proposed lossy compression 
scheme for market data. 

TABLE II: 
 CALCULATION OF COMPRESSION RATIO AND PERCENTAGE OF 

REDUNDANT DATA IN CASE STUDY 1 

Algorithm Cr R% 
DE [24] 4.3861 77.20 
SA [25] 4.3861 77.20 

TLBO [26] 4.5323 77.93 
PSO [27] 4.5323 77.93 
GAm [28] 4.5323 77.93 
GA [28]  3.999 74.99 

TABLE III: 
 CALCULATING MSE AND N2 CRITERIA BETWEEN ORIGINAL AND 

RECOVERED MATRIX 

Algorithm Dr MSE  

DE 17236 0.6007 113.4006 
SA 17236 0.6007 113.4006 

TLBO 16680 0.9152 154.1976 
PSO 16680 0.9152 154.1976 
GAm 16680 0.9152 154.1976 
GA 18904 0.1818 55.6600 

According to Fig. 4(a), if the number of deleted singular 
values becomes greater, the percentage of the redundant data 
will also become more. Besides, If the amount of redundancy 
becomes higher, the data will become more compressed and a 
larger amount of data is deleted, so the magnitude of MSE 
error increases with increasing the redundancy as shown in 
Fig. 4(a). Fig. 4(b) is the presentation of the relationship 
between N2 criteria and the compression ratio due to the 
number of the deleted singular values. As can be seen from 
Fig. 4(b), the behavior of the compression ratio and N2 is in 
the same direction, since the high compression ratio implies 
the elimination of more values from the original data. As 
already mentioned, with a reduction in the amount of data and 
an increase in the number of deleted values, the accuracy will 
be reduced and will increase the error. Hence, with increasing 
the compression ratio, the amount of N2 will be increased. 

 
Figure. 4. The relationship of the neglected singular values with MSE (a) and 

Norm2 (b) for market dataset 
C. Case study 2 
To display the capabilities of the presented method on a 
different database, the information of electrical data for 24-
hour has been considered as the original matrix. In this regard, 
evolutionary optimization methods have been used to find the 
number of optimal singular values.  
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Referring to Table V, each method gives a compression ratio 
and an acceptable percentage of the redundancy. The number 
of elements in the original matrix is 637920.  
As the Cr and R% values show in Table VI, the robust TLBO 
with Cr = 2.015 and R% = 50.38 provide an acceptable 
compression rate and GA, GA-M and PSO don’t reveal 
competence over other algorithms and they need more 
iterations. The mutation of GA in GA-M imposes a lot of 
calculations in each iteration. Since the considered database 
has a large number of elements, only TLBO, DE and SA 
algorithms can converge to the best answer and the other ones 
encounter computational errors.  
Referring to Table VI, by increasing Nt, the compression ratio 
will be increased as well as the accuracy will be decreased. 
For instance, in Nt=17.593, MSE is better than the  
Nt =175.93. Generally, if Nt becomes larger, the problem is 
relaxed for more compression and the accuracy will be 
decreased. Also, due to the data type and their obtained 
singular values, the problem does not reach any solution for 
α=0.0001. Accordingly, by changing the α coefficient, some 
solution has been achieved, in which the amount of α= 0.001 
gives an acceptable answer. 
To evaluate the accuracy of the proposed method, Fig. 5 
shows significant considerations. Concerning Fig. 5 (a) and 
(b), the increment of the number of the neglected values leads 
to the increment of the Cr and R%. Besides, with the 
increment of data redundancy and compression ratio, the 
accuracy criteria don’t change over a wide range and these 
errors have been suddenly augmented. Hence the TLBO 
algorithm which has the closest solution to this point 
performs better than other ones. 

TABLE IV. 
 CALCULATING OF VARIOUS ACCURACY WITH DIFFERENT Nt 

FOR MARKET DATA 
α Nt MSE Sd Cr 

0.000001 0.17 1.674e-06 166 1.84 
0.00001 1.701 1.837e-04 176 2.12 
0.0001 17.01 0.0150 196 3.09 
0.001 170.1 0.9152 210 4.53 
0.01 1701 174.4055 231 15.11 

 
TABLE V. 

CALCULATION OF COMPRESSION RATIO AND PERCENTAGE OF 
REDUNDANT DATA FOR CASE STUDY 2 

 DE SA TLBO PSO GA-M GA 

Cr 2.003 2.003 2.015 - - - 

R% 50.08 50.08 50.38 - - - 

Dr 318396 318396 316512 - - - 
TABLE VI. 

 CALCULATION OF VARIOUS ACCURACY WITH DIFFERENT FOR 
ELECTRICAL DATASET OF HOMES 

α Nt MSE Sd Cr 

0.0001 1.7593 - infeasible - 

0.001 17.593 0.0261 275 2.015 

0.01 175.93 0.9803 428 22.57 

 
Figure. 5. The relationship of the neglected singular values with MSE (a) and 

Norm2 (b) for electrical dataset of homes 
D. Discussion 
Generally, in the proposed scheme, GA, GA-M, DE, SA, 
PSO, and TLBO are used to solve the optimization 
framework. In the first case study with a size of 315×240, the 
highest compression ratio is 4.5323, i.e. 77.93% of the 
original data are redundant and the original matrix can be 
reconstructed by 22.07% of elements. In fig. 4 (a), since the 
neglected singular values are small and don’t have a 
significant effect on the data, about 225 singular values can 
be eliminated with constant MSE. According to fig. 4 (b) the 
behavior of N2 and Cr is similar to MSE. These properties are 
affected by the nature of the data. In other words, more 
dependency of rows in the matrix leads to more accuracy in 
compression. Also, in the second dataset with the size of 
1440×443, the highest compression ratio is 2.015. 
Accordingly, the proposed method eliminates 50.38% of the 
original data considering the high accuracy on the decoder 
side.  
Moreover, Fig. 5 (a) shows that if the number of neglected 
singular values is high, the MSE will be augmented. So, 
accuracy of the reconstructed data will be decreased and the 
rate of the redundant data will be augmented. It is observed 
that the MSE approximately has remained constant and then 
it has been sharply increased. Referring to Fig. 5 (a) and (b), 
the MSE and N2 do not change in wide range and errors are 
suddenly increased at one point. Hence, the PSO and TLBO 
which have the closest response to this point, perform better 
than the other ones. Consequently, PSO and TLBO have 
generally good performance in optimality and runtime, while 
in the second case study, the optimal performance is achieved 
by TLBO algorithm. The results of this application on both 
datasets have been demonstrated in Table II and Table V, 
respectively, which demonstrate the examples of the 
optimally compressed data on the smart grid. This paper 
addresses the optimal compression of data in smart grids 
based on the SVD decomposition and evolutionary 
algorithms. 
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V. CONCLUSION 
This paper proposed a scheme for the data compression that 

is based on the optimal SVD. The presented method can 
individually solve the issues appearing by the big volume of 
data such as required bandwidth and data storage by reducing 
the number of data elements. The proposed framework 
achieves the higher compression ratio as well as the 
satisfaction of accuracy constraint simultaneously and the 
redundant section is cut down. It is simple and efficient and 
could be utilized to market operator [29], load aggregator 
[30-32] and electricity retailers [33, 34]. The optimization 
using evolutionary methods such as DE, TLBO, PSO, GA, 
and GA with mutation show significant improvements in the 
performance of the proposed compression which is used to 
enhance the performance of SVD-based compression 
methods. Results show the effectiveness of the method on 
various datasets with satisfactory responses and accuracy. 
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