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Abstract—Residential customers account for an 
indispensable part in the demand response (DR) program for 
their capability to provide flexibility when the system required. 
However, their available DR capacity has not been fully 
comprehended by the aggregator, who needs the information to 
bid accurately on behalf of the residential customers in the 
market transaction. To this end, this paper devised an optimal 
bidding strategy for the aggregator considering the bottom-up 
responsiveness of residential customers. Firstly, we attempt to 
establish the customers’ responsiveness function in relation to 
different incentives, during which a home energy management 
system (HEMS) is introduced to implement load adjustment for 
electrical appliances. Secondly, the function is applied to the 
aggregator’s decision-making process to formulate the optimal 
bidding strategy in the day-ahead (DA) market and the optimal 
scheduling scheme for the energy storage system (ESS) with the 
aim to maximize its own revenue. Finally, the validity of the 
proposed method is verified using the dataset from the Pecan 
Street experiment in Austin. The obtained outcome 
demonstrates the practical rationality of the proposed method. 

Keywords— Aggregator, Bidding Strategy, Demand Response, 
Responsiveness modeling, Day-ahead market. 

NOMENCLATURE 
A. Sets and Indices  
t,i,b,c Index for time, shiftable appliances, ESS, and 

residential customers. 
T,I,B,C Set of timeslots, shiftable appliances, ESS, 

and residential customers. 
B. Parameters 

 DA electrovalence at timeslot t 
 DR price at timeslot t 

 Flexibility price at timeslot t 
 Incentive given to customers at timeslot t 
 The customer baseline load 

 The energy consumption baseline of TCL 
 The energy consumption baseline of BL 

 The baseline load of BL 

 The outdoor temperature at timeslot t 
 Energy efficiency ratio of AC 

 Rated power of AC 
 Equivalent thermal resistance 
 Equivalent heat capacity 
 Heat transfer coefficient 

 Temperature setting for the AC 
 Control cycle of AC 

N Number of AC at the aggregated level 
 The energy consumption baseline of SL 

 The energy consumption of the  shiftable 
appliance 

 The maximum acceptable load transfer times 

 Minimum/ Maximum power limitation for 
battery b at timeslot t 

 Minimum/ Maximum energy limitation for 
battery b at timeslot t 

,  Charging/ Discharging efficiency of ESS 
C. Variables 

 Energy demand of customers after DR 

 The energy consumption of all the TCL  

 The energy consumption of all the SL 
 Flexibility of customers 
 Flexibility of ESS 

 Binary variable denotes the on/off state of AC 
 The indoor temperature 
 The time duration when the AC is on 
 The time duration when the AC is off 

 Energy demand of SL at timeslot t 

 Binary variable that determines whether the 
 appliance shift out at timeslot t 

 Binary variable that determines whether the 
 appliance shift in at timeslot t 

 Binary variable; 1 indicates that the battery b 
is discharging at timeslot t, 0 otherwise  

 Energy of battery b at timeslot t 

 Aggregated power of all the batteries 

 The flexibility offered by customers and ESS 

 The electricity purchased from the DA 
market 

 Revenue of the aggregator 
 Income of providing electricity to customers 

 Income of providing flexibility to ISO 

 Cost of purchasing electricity  
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Cost of offering customers incentives 
D. Abbreviation
IBDR Incentive-based demand response 
PBDR Price-based demand response 
HEMS Home energy management system 
BOS Baseload of the shiftable loads 
BOB Baseload of the base loads 
BL Baseload 
SL Shiftable load 
TCL Thermostatically controlled load 
EC Customers who prefer high economic income 
CC Customers who prefer comfort  

I. INTRODUCTION

Demand response (DR) is designed to induce lower 
electricity consumption in the way of either price signals or 
incentive schemes [1] at times of high market prices or when 
grid reliability is endangered, and thus serves as a promising 
mechanism for system operators to settle the problems in the 
restructured electricity market, price volatility and reliability 
concerns during peak demand [2]. It could achieve a similar 
regulation effect as the adjustment in generation side to cope 
with the imbalance between demand and supply, of which the 
latter becomes uncontrollable recently due to the integration 
of the intermittent renewable energy resources including 
wind farms [3, 4] and solar PV power plants [5, 6]. 

Residential customers approximately account for 30-40% 
of the whole energy consumption; therefore, the involvement 
of residential customers plays an indispensable role in the 
further promotion of DR. However, its potential has not been 
fully exploited yet due to the capacity of the widely 
distributed residential customers [7] is too small to meet the 
market access threshold. Active participation of residential 
customers in DR [8] and electricity market could be achieved 
through an emerging market entity, the aggregator, who 
functions as an intermediary between the market and 
customers [9]. Although the participation of aggregators will 
lead to a more complicated market structure, its positive 
impact on the economy, reliability [10], and sustainability of 
system operation is more important.  

The aggregator could simply gather the flexibility of 
customers to participate in either price-based or incentive-
based DR programs (PBDR or IBDR) [11, 12]; meanwhile, it 
could also function as a retailer that purchases electricity from 
the energy market to satisfy customers’ daily usage. Except 
for residential customers, other flexible resources like ESS, 
distributed generations (DGs) are also an indispensable 
component of the aggregator, who can therefore trade in the 
energy, capacity, and balancing market taking advantage of 
these resources. Here we assume that the aggregator is in 
charge of both residential customers and ESS resources to 
participate in the IBDR and bids in the day-ahead (DA) market 
as a price-taker to optimize its own profit. 

As a profit-seeking entity, how to bid accurately in the 
electricity market and thereby earn the maximal profit is an 
unavoidable issue for the aggregator and has been 
investigated by many literature [13-18], among which some 
seek to achieve the profit-maximize objectives of all the 
market participants [13]; some design a quantitative 
compensation mechanism for residential customers to 
promote their involvement in DR [14]; and some target at the 
uncertainties confronted by the aggregator during the trading 
process including the generation of DGs, electricity market 

prices and participation factor of customers [15-18]. While 
these researches obtain the corresponding optimal strategy 
under various scenarios, they fail to take the physical 
constraints of the residential customers in DR programs into 
consideration, e.g., the load reduction capacity of each 
household appliance, the corresponding preference settings, 
etc., which will directly affect the bidding strategy 
formulation of the aggregator. Since in an IBDR, the 
aggregator relies on the agile household appliances to offer 
flexibility in reaction to changes in the electricity tariff and 
develop the electricity purchasing scheme without 
compromising the preferences of the customers [19-21]. If 
the responsiveness and preference of customers could not be 
considered and modeled properly, the aggregator will 
encounter a situation where it could not purchase precisely in 
the electricity market and thus endure the risk of profit-loss. 

The modeling of residential customers’ flexibility has been 
the focus of many recent studies [22-26]. Mathematical 
flexibility characterization methods are presented in [22] for 
different types of loads [23, 24] in the residential sector. The 
second method involved is the empirical methodology, which 
quantifies the full probability distribution function of the 
flexibility in response to economic incentives considering the 
surrounding variables through the quantile regression method 
[25]. The third group is a support vector machine (SVM) 
based forecast model, it could either be combined with the 
identification and extraction of cardinal features that may 
pose significant influence on the aggregated DR capacity [26], 
e.g., the weather conditions and monetary reward; or be
combined with the classification of feasible and non-feasible
home energy management system (HEMS) operating
trajectories [27], to forecast the flexibility for aggregated
smart houses. Remarkable performance has achieved by
these studies in handling the problem of quantifying
customers’ response, however, it would be better to further
combine these studies with practical problems like the
bidding problem of the aggregator. Few studies have
proceeded from the household appliances’ level and
integrated the responsiveness of residential customers into
the optimal bidding problem of the aggregator.

To this end, this paper aims to characterize the 
responsiveness of residential customers under different 
incentives, which would then serve as a foundation for the 
aggregator to trade precisely in the DA market. The HEMS is 
introduced here since it has been extensively deployed to 
better schedule the residential customers’ electricity 
consumption during DR events considering external factors 
including the weather, daily activities, customers’ 
preferences, population, etc. [28, 29]. The contributions of 
this paper can be summarized as follows: 

(1) The acquisition of the responsiveness function of the
aggregated residential customers in relation to different 
incentives through the polynomial regression method. The 
response is the accumulation of the flexibility from each 
electrical appliance, which is controlled through the HEMS. 

(2) An optimal bidding model for the aggregator in the
DA market considering both the residential customers and 
ESS is proposed at the premise of the obtained 
responsiveness function, which could improve the accuracy 
of the aggregators’ transactions and therefore gain more 
revenue. 

(3) The dataset from the Pecan Street experiments in
Austin is utilized to verify the validity of the proposed 
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optimal bidding model and further prove its universality for 
various scenarios. 

The remainder of this paper is organized as follows. In 
section II, the market structure is firstly introduced, followed 
by a brief introduction to the basic idea of this paper. Section 
III models the responsiveness of residential customers and 
then formulates the bidding strategy of the aggregator. A case 
study is carried out in section IV to verify the effectiveness 
of the model. Finally, the paper is summarized in section V, 
and the study prospect is advanced. 

II. PROBLEM STATEMENT AND PROPOSED FRAMEWORK

A. Market structure
To better introduce the target problem of this paper, here the

hierarchical market structure is firstly presented in Fig. 1. The 
direction of information flow in the figure is counter-
clockwise inside the ellipse and clockwise outside. The 
aggregator offers DR service to the ISO and gains reward 
correspondingly. Besides, the aggregator bids in the DA 
market to purchase adequate electricity, which would be 
provided to the customers to satisfy their daily usage and to 
the ESS when they are charging. In accordance with the 
specific incentive given by the aggregator, the residential 
customers will change their inherent electricity consumption 
habits to earn compensation. The responsiveness of a 
customer could be traditionally calculated through the 
difference between power consumption in DR and without DR. 
To properly model the responsiveness of customers under 
specific incentive and then formulate the optimal bidding 
strategy of the aggregator correspondingly are the 
concentration of this paper. 

Fig. 1 The structure and mechanism of the electricity market  

B. Residential customers
Each residential customer is assumed to be an independent

individual who has control over all of its appliances through 
the HEMS. Since the bottom-up responsiveness of the 
residential customers will be investigated, that is, the response 
of household appliances, thus they can be further subdivided 

into: 1) Thermostatically controlled loads (TCL) that have the 
ability to store energy in the form of temperature, here only 
the air conditioner (AC) is considered; 2) Shiftable load (SL), 
including cloth-washer, furnace, and boiler, which can be 
transferred to other periods of time without significantly 
influence the regular usage of customers; 3) Baseload (BL), it 
mainly refers to appliances like electric cooker, refrigerator, 
lighting, computer, etc., which cannot be shifted or curtailed 
since they are the basic living guarantee.  

For residential customers, various family backgrounds lead 
to different preferences. Here the customers are divided into 
two main categories: 1) customers who prefer high economic 
income (EC) and 2) customers who prefer comfort (CC). The 
former would respond positively to the incentives of 
aggregators so as to obtain more income while the latter pays 
more attention to their own comfortableness and are unwilling 
to change electricity consumption habits. 

C. Basic idea and the proposed framework
The proposed bottom-up framework to handle the optimal

bidding problem for the aggregator is presented in Fig. 2. It 
mainly includes two stages.  

Fig. 2 Architecture of the proposed framework 

The first stage is to solve the problem concerning the 
description of the aggregated responsiveness of residential 
customers under different incentives.  

The first challenge that will be confronted here is data 
deficiency. Since once the DR program is implemented, the 
customers’ profile would be altered. One possibility is that we 
have access to the DR data but no non-DR data, and the other 
case is the opposite. The electricity appliances consumption 
data of 200 residential customers is available here and is 
regarded as the baseline load. Therefore, on the basis of the 
mathematical modeling of air conditioners and the shiftable 
loads, we come up with the DR data, which will be further 
compared with the baseline to obtain the amount of 
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responsiveness. Noted that the data of each load categories 
should be compared with the corresponding baseline first and 
then accumulated to obtain the overall responsiveness of a 
residential customer, rather than the difference between the 
baseline before and after DR. This is because both load 
reduction and shifting exists in this process, chances are that 
the electricity of one appliance is curtailed in a time period but 
another appliance is shifted in, which would result in the offset 
of their function. In this case, the customers could not be 
remunerated reasonably for the service they provide and 
would consequently lead to their inactive participation in DR 
programs. Therefore, the flexibility of each kind of load would 
be calculated first to ensure the accuracy of the obtained 
aggregated responsiveness.  

The second challenge is how to model the change in the 
customers’ preference with the variation of incentives. It is 
evident that with the alteration of incentive, the engagement 
of customers in DR would also change, specifically, the 
tolerable temperature range for the air conditioners and the 
acceptable load transfer times will change. However, it would 
be quite tedious to adjust these settings accordingly whenever 
the incentive changes. Thus, the change in preference settings 
is transformed into the change in the proportion of EC and CC 
customers at the aggregated level. The proportion of EC is 
supposed to follow the normal distribution, which is the most 
commonly exists distribution. The customers’ preferences are 
sensitive to many factors, including the incentive, education 
experience, weather, etc.; therefore, it is reasonable to assume 
that it follows the normal distribution according to the central 
limit theorem. Noted that, if the DR dataset is available, there 
is no need to simulate the electricity consumption with DR but 
to estimate the baseline so as to calculate the responsiveness. 
After the acquisition of residential customers’ responses under 
different incentives, the polynomial regression method is 
adopted to fit the customers’ response function. 

The second stage is the bidding optimization process for the 
aggregator taking into consideration both the residential 
customers and ESS. With the objective of maximizing the 
revenue of aggregators, the model would come up with the 
scheduling scheme of the ESS and the bidding strategy in the 
DA market.  

III. PROBLEM FORMULATION

A. Residential customers
For residential customers, their daily electricity

consumption with DR is the sum of the TCL, SL, and BL, 
presented in (1). Equation (2) calculates the flexibility offered 
by customers, or to say, the sum of the consumption changes 
of different load types. Noted that it is different from the net 
difference reflected in the customers’ profile, which is also 
the basis for the ISO’s reward. Different types of appliances 
would respond diversely under different given incentives, 
and the data-acquisition process could be shown as follows.  

(1) 

(2) 
a) TCL

Air conditioner, as the most typical TCL, plays an
indispensable part in the DR program, and thus its 
mathematical modeling method has been thoroughly 
investigated. Based on the previous study [30-32], the 
characteristic of air conditioner can be presented in (3)-(10). 
Equation (3) and (4) shows the relationship between the 

indoor/outdoor temperature and the power of the air 
conditioner. The preferred temperature setting for the EC is 
given in (5), which serves as the boundary constraints of the 
indoor temperature. For simplicity, the value for all the EC 
customers is set to be the same. Whether and how long should 
the air conditioner be on or off are determined by the outdoor 
temperature and indoor temperature settings, shown in (6)-
(8). The transformation of the on or off state could be 
expressed clearly by equation (9). The electricity 
consumption of air conditioners at the aggregated level can 
be calculated through (10). It should be noted that the air 
conditioner could work at both the refrigeration and the 
heating state, and the corresponding modeling is quite similar, 
here the condition in a typical summer day is studied. 

 (3) 

(4) 
 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

(10) 

b) Shiftable load (SL)
Shiftable load contains the aforementioned cloth-washer,

furnace, and boiler. The total amount of electricity 
consumption of these appliances ought to remain constant 
across the whole-time interval, as is presented in (12). 
Provided an electrical appliance is transferred to another time 
period, then the energy demand at this time will reduce by the 
energy that would have been consumed by it. Similarly, if 
another appliance moves in during this period, their load 
demand ought to be added, just as (11) denotes. It should be 
emphasized that the variation process of load demand is 
intermittent since the increase or decrease is based on 
appliance. Equation (13) indicates that for the ECs who are 
willing to offer load shifting, the maximum acceptable load 
transfer times would be given, while for the CCs the value is 
equal to zero. The amount of SL at the aggregated level could 
be calculated through (14). 

 (11) 

(12) 

(13) 

(14) 

c) BL
BLs are the critical loads whose operation would directly

influence the normal life of customers and therefore could not 
be interrupted or transferred under any circumstances. The 
energy demand for BL would remain unchanged for any time 
period t, as is shown in (15). 
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B. ESS
The ESS is assumed to be a kind of flexible resource that

directly controlled and dispatched by the aggregator. With the 
objective to maximize its own interests, it is profitable for an 
aggregator to arrange the ESS to discharge when the 
electricity price is high in order to avoid exorbitant cost and 
charge when the price is low so as to reserve energy at a lower 
cost. The physical constraints of the ESS could be 
mathematically expressed by (16)-(23). The power and 
energy boundary of ESS is given in (16) and (17) first, 
followed by the energy balance in the adjacent period in (19) 
for both charging and discharging states. As (20) presents, the 
energy of the ESS after one cycle (24h is regarded as a 
complete cycle here) ought to be consistent with that at the 
beginning. The most important constraint is, the aggregated 
power offered by the ESS along with the electricity purchased 
from the DA should satisfy the daily usage of customers, 
shown in (22). Equation (23) denotes that only the energy 
discharged by ESS is regarded as its flexibility.  

(16) 

 (17) 

(18) 

(19) 

 (20) 

(21) 

(22) 
(23) 

C. Optimal bidding model
The aggregator is a profit-seeking entity with the target to

maximize its profit. The revenue of the aggregator can be 
divided into two parts, one is the income of selling electricity 
to residential customers (25), and the other is the 
remuneration for the flexibility provided to ISO (26). 
Similarly, the expenditure during its transaction also contains 
two portions, the cost to purchase electricity from the DA 
market (27), and the incentive offered to customers so as to 
encourage their participation (28). What needs to be 
explained is that ISO awards the aggregator according to the 
difference between the load profile before and after DR, 
while the aggregator awards the customers based on the 
changes of various types of loads separately so as to 
compensate fairly. The constraints of ESS mentioned above, 
and the responsiveness function of residential customers 
serve as the constraints of this optimal bidding model. 

(24) 

(25) 

 (26) 

(27) 

(28) 

III. CASE STUDY

A. Dataset and Parameter Settings
The dataset utilized in this research is from the Pecan Street

experiment in Austin, TX [33], where a total of 500 
residential customers are investigated and the minute-
resolution electricity consumption data at both the household 
level and appliance level are given. 200 of them are selected 
to verify the proposed optimal bidding strategy in summer; 
each is equipped with the electrical appliances involved in 
this research. Some relevant parameter settings are listed in 
Table I. It should be noted that the parameters of each AC 
should be different; here only one type is given.  

TABLE I. PARAMETER SETTINGS 

Parameter Value Parameter Value 

10, 120 -10, 30

 0.95 40 

R ( ) 5.56  C ( ) 0.18 

, 24,30  2.7 

5 0.1877 

 0 5 

($) {0.1213,0.1147,0.1086,…,0.1535,0.1389,0.1210} 

($) {0.2296,0.2156,0.2106,…,0.3754,0.3303,0.2735} 

( ) 
{29,28,29,28,27,26,27,28,30,31,32,34,35,36,37, 
38,38,37,36,33,30,30,29,29} 

B. Responsiveness of residential customers under different
incentives

The first step is to discover how would the residential 
customers’ respond to the different incentive signals, which 
could be obtained through the accumulation of the 
responsiveness of different appliances. After the acquisition 
of the specific data, the polynomial fitting method is 
introduced to fit the response characteristic. The obtained 
mathematical expression is shown as follows: 

(29) 

Both the response value and the fitted curve are presented 
in Fig. 3, which intuitively reflect the well following 
performance of the fitted curve. It could also be observed that 
the response curve exhibits a similar trend with the change in 
the proportion of residential customers. 

Fig. 3. Response of residential customers under different incentives

C. Selection of the optimal incentive value

To discover the optimal incentive value that the aggregator
should offer to the customers, here various scenarios with 
different incentives are tested and the corresponding revenue 
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of the aggregator could be obtained, as presented in Fig. 4, 
which indicates that the revenue increases with incentive and 
reaches the maximum at around 0.25, and then decreases 
subsequently. To seek out the peak point, we further listed the 
revenue and the proportion of EC around the peak in Table II, 
from which we could clearly observe that the optimal 
incentive value is 0.237 and the corresponding EC percent is 
74%. This fact implies that if the incentive is less, the 
flexibility of aggregator is insufficient to achieve the 
maximum point, and if the incentive grows further, the 
increase of profit brought by the increase of flexibility could 
not offset the cost ought to be paid to customers. 

Fig. 4. Revenue of the aggregator under different incentives 

TABLE II. REVENUE AND PROPORTION OF EC AROUND THE PEAK 

Incentive Revenue EC (%) Incentive Revenue EC (%) 
0.229 7231.404 70.5 0.259 7365.672 82 
0.233 7045.970 72.5 0.263 7206.750 83 
0.237 7418.050 74 0.267 7301.044 84.5 
0.240 7239.692 75.5 0.270 7257.877 85.5 
0.244 7311.308 77 0.274 7274.607 86.5 
0.248 7406.580 78 0.278 7102.186 87 
0.252 7310.279 79.5 0.282 7265.140 88 
0.255 7342.050 81 0.285 7009.526 89 

D. Optimal bidding strategy under the optimal incentive
Then a further investigation of the aggregator’s bidding

strategy in the optimal cases is provided. The value of some 
important variables is presented in Table II and the 
corresponding outcome is shown in Fig. 5-7. 

The detail composition of the flexibility of a residential 
customer is presented in Fig. 5, where columns in different 
colors represent different kinds of responsive appliances. The 
columns below the abscissa axis stand for that some 
appliances move in during this period. For example, the third 
negative column (the fourth column) consists of the 
electricity consumption of the cloth-washer and the water-
heater, that is, the two appliances are shifted from their 
normal operation time period to this one. It could also be 

observed that the load primarily transfers from around 15-21h 
to 0-5h. This is in accordance with the profit-maximization 
target of the aggregator since the DA electricity price and 
original energy demand of customers are both high in the 
former period and low in the latter. Similarly, the optimal 
scheduling scheme of the ESS reflects the same regularity, 
displayed in Fig. 6. The ESS would be arranged to discharge 
when the DA price is high and charge when it is low.  

The revenue of the aggregator in each time period is shown 
in the first subgraph in Fig. 7. It could be observed that the 
profit of the aggregator is negative in some periods (0-5h). 
Since the ESS will charge and some appliances will move in 
during this period as mentioned before, thus the aggregator 
has to spend more on the purchasing of electricity, which 
leads to the situation where the revenue of selling flexibility 
could not offset the cost; therefore, the revenue is negative 
consequently. Noted that the overall revenue is still positive, 
as can be found in Table III. The second subgraph compares 
the initial and adjusted baseline. The difference between them 
is composed of both load curtailment and transfer. The reason 
why the modified baseline exceeds the original baseline is the 
shift-in of some appliance. The flexibility composition is 
exhibited in the third subgraph. For the ESS, only the energy 
discharged is regarded as its flexibility, the energy-charged is 
not considered because it brings the aggregator additional 
electricity purchase assignment rather than flexibility. 

TABLE III. RESULTS OF BIDDING WITH CERTAIN INCENTIVE 

Parameter Value Parameter Value 
39467.36159 194368.9015 

30579.67387  7418.05 

13117.21542 24619.62295 

22910.76607 7408.022286 

Fig. 6. The relationship of ESS charging/discharging scheme and DA price  

Fig. 5. Composition of a residential customer’s flexibility  
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Fig. 7. Some outcome of the optimal bidding model 

E. Sensitivity analysis under different distribution
The composition of residential customers cluster is a

significant factor that influences the optimal bidding strategy 
of the aggregator. In the previous study, the proportion of EC 
is assumed to follow the normal distribution ( ). 
To verify the rationality of the method proposed in this paper, 
a further comparison is carried out to investigate the bidding 
strategy under normal distribution with different expected 
values and variance. The parameter settings are presented in 
Table IV. The incentive value that could maximize the 
revenue of the aggregator could be obtained through the same 
procedure as before, the outcome is shown in Table V and 
Fig. 8-9.  

As can be discovered, the optimal profit of the aggregator 
would decrease with the increase of the deviation value σ and 
the expected value μ. Since the deviation determines the 
distribution amplitude, the larger the deviation value is, the 
smoother the distribution curve will be, that is, the residential 
customers would become more insensitive to the incentive 
signal. When the aggregator provides customers with more 
incentive, the growth rate of EC would be slower, which lead 
to the situation where the same optimal incentive value 
corresponds to different EC proportion. Therefore, the 
flexibility offered by residential customers decreases and the 
aggregator earns less. As for the expected value μ, it 
determines the location of the distribution curve. A smaller 
value of μ stands for that many CC customers will transform 
to EC at a relatively low incentive, and the optimal incentive 
decrease consequently. Thus, the aggregator could achieve a 
higher profit. The results could serve as a recommendation 
for the aggregator to offer residential customers more DR-
related information to help them better comprehend the 
potential benefits, which may inspire a higher engagement at 
a relatively low incentive value. For all the distribution of 
residential customers, the proposed bidding model could 
come up with the optimal bidding model of the aggregator, 
which would be suitable for other situations that may occur 
in practice. 

TABLE IV. PARAMETERS OF DIFFERENT DISTRIBUTIONS  

Distribution (D)  Distribution (D)  
D1 0 1 D10 -2 5 
D2 0 2 D11 -1.5 5 
D3 0 3 D12 -1 5 
… … … … … …
D9 0 9 D17 2 5 

TABLE V. RESULTS OF DIFFERENT DISTRIBUTIONS 

EC 
(%) 

Optimal 
Incentive 

Optimal 
profit 

EC 
(%) 

Optimal 
Incentive 

Optimal 
profit 

D1 92 0.237 9044.74 D10 73.5 0.165 9780.76 
D2 84 0.237 8392.89 D11 73.5 0.184 9147.52 
D3 79 0.237 7720.56 D12 73.5 0.203 8625.34 
D4 76 0.237 7543.01 D13 73.5 0.221 7920.97 
D5 73.5 0.237 7418.05 D5 73.5 0.237 7418.05 
D6 71.5 0.237 7205.29 D14 73.5 0.259 7208.09 
D7 70 0.237 7029.39 D15 73.5 0.278 6803.43 
D8 69 0.237 6881.31 D16 73.5 0.296 6244.16 
D9 68 0.237 6751.33 D17 73.5 0.315 6008.75 

Fig. 8. Probability density function of different distributions  

Fig. 9. Revenue of the aggregator under different distributions 

F. Comparision
To verify the rationality of the method proposed in this

paper, a further comparison is carried out. The general 
optimal bidding strategy without considering the specific 
usage of each appliance (method 2), as is proposed in [14], 
will be investigated together with the method introduced here 
(method 1).  

The outcome is presented in Table VI and Fig. 10. As can 
be discovered, the revenue and the flexibility of method 1 are 
inferior to that of method 2. The interpretation for the low 
income of method 1 is that the change of load is not 
continuous as method 2, thus is incapable of reaching the 
optimal value. This could also serve as the explanation for 
Fig. 10. The total flexibility in method 2 is more and the 
curves are generally smoother than method 1 where the 
changes are on the basis of the whole appliances. Since the 
formulation of ESS charging scheme follows the same basic 
principle, that is, charge when the electricity price is low and 
discharge con the contrary; thus, the scheme is essentially the 
same while for method 1 the value is not the optimum 
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mathematically. The inconformity in flexibility leads to the 
consequence that the actual load demand is also different. The 
aggregator in the first method needs to purchase more 
electricity from the DA market and meanwhile gain less from 
selling flexibility, therefore the net revenue decreases. The 
result further proves the rationality of this method because the 
optimal value obtained by the previous method could not 
realize physically. 

Fig. 10. Comparison between method 1 and method 2  

TABLE VI. VALUES OF SOME IMPORTANT VARIABLES  

Method 1 Method 2 
Revenue of aggregator ($) 5232.285 6986.661 

Flexibility of one customer (kW) 44.27 45.79 
ESS flexibility (kW) 21569.22 23321.52 

DA electricity purchase (kW) 96621.95 94236.83 
Actual demand of customers(kW) 137097.15 128643.62 

IV. CONCLUSION

This paper proposes an optimal bidding strategy of the 
aggregator on the basis of the responsiveness modeling of 
residential customers. Three types of loads are taken into 
consideration and the residential customers are categorized 
into EC and CC according to their preference for comfort or 
economic profit. After the acquisition of the customers’ 
response at the aggregated value, the polynomial fitting is 
suggested as a reasonable choice for processing the response 
function, which would be applied to the formulation process 
of the optimal bidding strategy of the aggregator. The 
numerical results verify the validity of the proposed bidding 
model, which is also be suitable for customers’ clusters with 
different levels of sensitivity to incentives. And it could also 
be concluded that the obtained bidding strategy is optimal 
physically rather than mathematically. Furthermore, since the 
revenue of the aggregator peaks when the EC percent is 
around 73, it could be implied that increasing the proportion 
of EC could improve the revenue to some extent. It might be 
better for the aggregator to induce more customers to provide 
more flexibility. 

It still needs be noted that the initial focus of this work is to 
integrate customers’ behavior modeling into the bidding 
process of the aggregator. Future investigations to be 
undertaken will take into consideration the uncertainties in 
customers’ behavior, weather condition forecast and price 
forecast [34]. Furthermore, the popularity of electric vehicles 
[35] as well as the increasing number of residential customers
who own distributed generation units [36-39] (especially PV
equipment, e.g. solar water heaters) that brings tremendous
impact to the customers’ normal electricity consumption. In
addition, the optimal bidding strategy while the power system
parameters have been modified by cyber-attack [40] will be
discussed in the future research.
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