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Abstract—Ultra-short-term photovoltaic (PV) power 
forecasting can support the real-time dispatching of power grid 
and the optimal operation of PV power station itself. However, 
due to various meteorological factors, the photovoltaic power 
has great fluctuations. To improve the refined ultra-short-term 
forecasting technology of PV power, this paper proposes an 
ultra-short-term forecasting model of PV power based on 
optimal frequency-domain decomposition and deep learning. 
First, the amplitude and phase of each frequency sine wave is 
obtained by fast Fourier decomposition. As the frequency 
demarcation point is different, the correlation between the 
decomposition component and the original data is analyzed. By 
minimizing the square of the difference that the correlation 
between low-frequency components and raw data is subtracted 
from the correlation between high-frequency components and 
raw data, the optimal frequency demarcation points for 
decomposition components are obtained. Then convolutional 
neural network is used to predict low-frequency component and 
high-frequency component, and final forecasting result is 
obtained by addition reconstruction. Finally, the paper 
compares forecasting results of the proposed model and the non-
spectrum analysis model in the case of predicting the 1 hour, 2 
hours, 3 hours, and 4 hours. The results fully show that the 
proposed model improves forecasting accuracy. 

Keywords—PV power forecasting, ultra-short term, spectrum 
analysis, deep learning, frequency-domain decomposition 

Ⅰ. INTRODUCTION 

1.1 Background and motivation 
Facing the shortage of fossil energy and the deterioration 

of climate such as greenhouse effect, ozone hole and melting 
of polar glaciers, sustainable development of energy and 
environment has attracted worldwide attention. Due to the 
advantages of sustainability, clean and pollution-free, high 
flexibility, etc., PV power generation technology and related 
industries have experienced tremendous growth in the past 
few years [1-3]. PV power affected by various meteorological 
factors is highly uncertain, which will affect stable operation 
of the power grid [4-6]. PV power generation system is 
typically connected to the power grid to compensate for losses 
in conventional power generation systems. In a grid, some 
power generation systems that output constant power are 
called conventional power plants. Others convert their power 
in response to changes of PV generation and demand, which 

balances total power consumption with total power generation. 
These power plants that convert output power are called load-
tracking power plants. When the output power of PV 
generation system is markedly increased or decreased, the 
load-tracking power plants must respond promptly. PV power 
forecast for the 15 min in advance enables the load-tracking 
power plant to react to sudden output changes timely. In order 
to stabilize the operation of the power grid, ultra-short-term 
PV power forecasting is particularly significant [7, 8]. 

1.2 literature review 
Due to various meteorological factors, the photovoltaic 

power has great fluctuations [9-11]. It is difficult to achieve 
satisfactory results with traditional forecasting methods. In 
recent years, the method of first decomposing and then 
predicting photovoltaic power data has become a research 
hotspot. Among them, frequency-domain decomposition 
method excavates and extract PV power characteristics from 
the perspective of the frequency domain, which has become a 
current research hotspot. Literature [12] uses the variational 
mode decomposition (VMD) to decompose different 
frequency components from the historical PV power time 
series. Literature [13] decomposed the time series of solar 
photovoltaic power generation by wavelet decomposition. 
Literature [14] proposed a new forecasting model based on 
Hilbert Huang Transform (HHT) and integrating improved 
empirical mode decomposition (IEMD) with feature selection 
and forecasting engine. IEMD is used to decompose data. In 
the above literature, the data are only decomposed using 
existing models, but few literatures can support the rationality 
of the decomposition results through an effective method. 

1.3 Contribution 
To overcome the shortcomings that there is currently no 

effective method to support the rationality of the frequency 
domain decomposition results, this paper proposes an ultra-
short-term forecasting model of PV power based on optimal 
frequency-domain decomposition and deep learning. First, the 
amplitude and phase of each frequency sine wave is obtained 
by fast Fourier decomposition. As the frequency demarcation 
point is different, the correlation between the decomposition 
component and the original data is analyzed. By analyzing the 
forecasting results of the decomposition components at 
different frequency demarcation points, the optimal frequency 
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demarcation points for decomposing low-frequency 
components and high-frequency components are obtained. 
Then convolutional neural network is used to predict low-
frequency component and high-frequency component, and 
final forecasting result is obtained by addition reconstruction. 

The main contributions of this paper include: 

(1) By minimizing the square of the difference that the 
correlation between low-frequency components and raw data 
is subtracted from the correlation between high-frequency 
components and raw data, the optimal frequency demarcation 
points for decomposition components are obtained, which 
supports the rationality of the frequency-domain 
decomposition result. 

(2) The method proposed in this paper is verified by the 
data of PV power station in China Ningxia. The results show 
that the proposed model improves the forecasting accuracy. 

The rest of this article is organized as follows. Section 2 
introduces the theory of FFT and deep learning. Section 3 
introduces how to choose the optimal frequency demarcation 
point of frequency-domain decomposition. Section 4 
introduces the model parameters and test results. In Section 6, 
conclusions are drawn. 

Ⅱ. METHODOLOGY 

2.1 Fast Fourier Transform 
Discrete Fourier Transform (DFT) can discretize the 

frequency domain of a finite-length sequence, but its 
computational complexity is too large to process the problem 
in real time, thus leading to the Fast Fourier Transform (FFT) 
[15-17]. FFT decomposes the sequence of  into the two 
lines sequence of . The subscript of one sequence is 
even, the subscript of the other sequence is odd. The DFT of 
two short sequences is the DFT of the original sequence. DFT. 
Repeat the above decomposition principle until it is 
decomposed into a sequence of n rows and columns. The FFT 
uses the periodicity and symmetry to improve the DFT 
algorithm, which greatly reduces the amount of computation. 
Compared with DFT, the FFT is uncomplicated and speedy. 

 
Fig. 1. Relationship between time domain signals and sine wave signals of 
different frequencies 

Fig. 1 shows the relationship between the time domain 
signal and the sine wave signals of different frequencies. The 
black curve represents a piece of PV power and the color curve 

represents the sine wave signals of various frequencies that 
make up this time domain signal. The sine wave is the signal 
with the most single frequency component. Any complex 
signal can be seen as a composite of many sine waves with 
various frequencies and amplitudes. It can be considered that 
sine wave is the basis of all waveforms. Therefore, this paper 
uses FFT to decompose PV power in the frequency domain. 

Discretized sequence decomposed into signals of multiple 
frequencies as shown in Eq. (1). According to Eq. (1), the sine 
wave and the cosine wave of the same frequency are 
superimposed by different coefficients to generate cosine 
waves of various phases of the same frequency. The modulus 

 of complex number in the frequency domain obtained by 
FFT represents the energy of the cosine wave corresponding 
frequency, and the angle of the complex number represents the 
phase  of the cosine wave, thereby obtaining the 
amplitude spectrum and the phase spectrum. The actual 
amplitude  of the k-th point of the cosine is defined by Eq. 

(2). The physical frequency  of the k-th point is 
calculated as shown in Eq. (1). 

        (1) 

                (2) 

              (3) 

In the formula,  is a positive integer. is constant 
component,  is the cosine component amplitude and is 
the sinusoidal component amplitude. Where  is the 

constant component,  is the amplitude,  is 

the frequency,  is the phase,  is a positive integer, and 
 is the sampling interval. 

2.2 Pearson correlation coefficient 
Pearson's correlation coefficient (R) represents the curve 

fit of two sequences. Specifically, the critical criterion for R 
is a very strong correlation between 0.8 and 1.0, a strong 
correlation between 0.6 and 0.8, a medium correlation 
between 0.4 and 0.6, a weak correlation between 0.2 and 0.4, 
and very weak correlation or no correlation between 0 and 
0.2[18].  is defined as shown in Eq. (4): 

    (4) 

2.3 Convolutional neural network 
Convolutional Neural Network (CNN) is a common deep 

learning model with powerful feature extraction capabilities. 
CNN generally consists of five types of cell layers, namely the 
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input layer, the convolutional layer, the pooling layer, the fully 
connected layer, and the output layer [19]. The structure of 
CNN is shown in Fig. 2. 

 

 
 

Fig. 2. The structure of CNN 

2.3.1 Convolution layer 

The role of the convolutional layer is to extract features 
from the input information. The convolutional layer is 
typically composed of multiple convolution kernels, each of 
which is used to compute a feature map. Each cell of the 
feature map is connected to the region of the adjacent cell in 
the previous layer. Convolution of the input by the 
convolution kernel and nonlinear processing of convolution 
results by activation function can acquire the new feature map. 
The formula for the convolutional layer is shown by Eq. (5) 

                          (5) 

Where  and  are the weights and bias of the k-th 
convolution kernel in the l-th convolutional layer, respectively. 

 is the input information of  region in the l-th 

convolution layer. The weight  in the l-th convolution 
layer is shared by each region of the input information, which 
is weights sharing.  is the activation function applied to 
the convolution layer, which can effectively improve the 
fitting ability of the model. 

2.3.2 Pooling layer 

The role of the pooling layer is to reduce the size of the 
feature map generated by the convolution layer, and to 
effectively extract the feature information in the feature map. 
The formula for poor layer is shown by Eq. (6) 

                             (6) 

Where , and  are the information at 

location .  

2.3.3 Fully connected layer 

The function of the fully connected layer is to summarize 
the distributed feature representations learned by the previous 
layer into the same space for subsequent applications. All the 
neurons in the previous layer are connected to each neuron in 
the current layer. 

2.3.4 Description of one-dimensional CNN 

One-dimensional(1D) CNN is a branch of CNN[20]. The 
convolution kernel window of CNN1D slides in a single 
direction (i.e. time step). Because photovoltaic power is time 

series data, this paper chooses CNN1D to build forecasting 
model. In the 1D convolution layer, the size of kernel is 3 and 
the corresponding stride is 1. In the 1D pooling layer, the size 
of kernel is 2 and the corresponding stride is 1. The specific 
flow chart is shown in Fig. 3.  

 
Fig. 3. Illustration of 1D convolution and 1D pooling 

2.4 Combined Model Framework 

 
Fig. 4. Ultra-short-term forecasting model of PV power based on optimal 

frequency-domain decomposition and deep learning 

The framework of ultra-short-term forecasting model of 
PV power based on optimal frequency-domain decomposition 
and deep learning proposed in this paper is shown in Fig. 4. 
First, the amplitude and phase of each frequency sine wave is 
obtained by fast Fourier decomposition. As the frequency 
demarcation point is different, the correlation between the 
decomposition component and the original data is analyzed. 
By minimizing the square of the difference that the correlation 
between low-frequency components and raw data is 
subtracted from the correlation between high-frequency 
components and raw data, the optimal frequency demarcation 
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points for decomposition components are obtained. Then 
convolutional neural network is used to predict low-frequency 
component and high-frequency component, and final 
forecasting result is obtained by addition reconstruction. 

Ⅲ. SPECTRUM ANALYSIS 

3.1 Frequency domain decomposition 
This paper selects the PV data of Ningxia PV Power 

Station in China from 0:00 on January 1, 2017 to 23:45 on 
December 31, 2017 to train the model, and perform frequency 
domain decomposition through FFT to obtain the amplitude 
spectrum and a part of the phase spectrum, which are shown 
in Fig. 5 and Fig. 6, respectively. 

 
Fig. 5. Amplitude spectrum of PV power 

 
Fig. 6. Phase spectrum of PV power 

3.2 Selection of optimal frequency demarcation point 
Through FFT spectrum analysis, PV power can be 

decomposed into low-frequency components and high-
frequency components. The low-frequency component 
represents the regular part of PV power, which indicates its 
trend characteristics, while the high frequency component 
represents the randomness of PV power, which indicates its 
fluctuation characteristics affected by other factors such as 
weather. How to accurately decompose low-frequency 
components and high-frequency frequencies has always been 
a difficult problem. In order to solve this problem, this article 
chooses the optimal frequency demarcation point from the 
perspective of the correlation between decomposed data and 
raw data. Fig. 7 shows the correlation between decomposed 
components and raw data. When frequency-domain 
decomposition is performed on PV power data, the more 

frequencies selected, the stronger the correlation between low-
frequency components and raw data, and the weaker the 
correlation between high-frequency components and raw data. 

 
Fig. 7. Correlation between decomposition components and raw data 

before weighting 

To illustrate the effect of the correlation between the 
decomposition component and raw data on the forecasting 
results, this paper uses the CNN model to predict low-
frequency components and high-frequency components from 
0:00 on January 1, 2017 to 23:45 on December 31, 2017. 
Table Ⅰ compares forecasting results of low-frequency 
components at different frequencies. Table Ⅱ compares the 
forecasting results of high-frequency components at different 
frequencies. The frequency demarcation point selected in 
Tables Ⅰ and Table Ⅱ are frequency nodes with relatively large 
amplitudes in amplitude spectrum of Fig. 5. As the correlation 
between the low-frequency component and raw data increases, 
the curve fitting effect becomes better. As the correlation 
between the high-frequency component and raw data 
decreases, the curve fitting effect becomes worse. The 
relationship between the selected frequencies and the 
correlation of decomposition component and raw data shows 
that as the frequency number increases, the better forecasting 
result of the low-frequency component and the worse 
forecasting result of the high-frequency component, so the 
two are contradictory. Low-frequency components represent 
the regular part of PV power which can be accurately 
predicted, while high-frequency components are relatively 
random, which are difficult to predict. If the proportion of 
low-frequency components in raw data can be increased, 
accurate forecasting of low-frequency components to balance 
forecasting errors of high-frequency components will 
effectively improve the overall forecasting accuracy. 
Therefore, the idea of optimal frequency demarcation point 
selection proposed in this article is that low-frequency 
component consider to select the highest frequency 
demarcation point as possible, and accounts for a large 
proportion, and then the second-level is that high-frequency 
component, which hope the frequency selection is not too high. 
Otherwise, forecasting is too difficult to get a certain level of 
balance.  

 From Fig. 7, it can be seen that when the frequency 
reaches a certain value, as the frequency band increases, the 
correlation between low-frequency components and raw data 
does not increase significantly. It can be considered that there 
is no significant increase in the correlation between low-
frequency components and raw data, while the correlation 
between high-frequency component and raw data continues to 
decline. This optimal frequency demarcation point that 
balances both low-frequency components and high-frequency 
components not only ensures sufficient extraction of low-
frequency components, but also does not cause the difficulty 

1 365f =
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of predicting high-frequency components to an unacceptable 
level due to excessive extraction of low-frequency 
components. In this paper, the optimal frequency is solved by 
minimizing the square of the difference that the correlation 
between low-frequency components and raw data is 
subtracted from the correlation between high-frequency 
components and raw data, which can be regarded as an 
optimization problem. The specific formula is given in Eq. (7).  

                    (7) 

Among them,  is an objective function. When the 
objective function reaches the minimum value, the correlation 
between low-frequency components and raw data and the 
correlation between high-frequency components and raw data 
reach an optimal balance.  is the correlation between 

low-frequency components and raw data,  is the 
correlation between high frequency components and raw data, 
and  is the total number of sampling frequencies.  

 
Fig. 8. The graph of the squared difference before weighting 

Fig. 8 is a graph of the obtained square of the difference 
that the correlation between low-frequency components and 
raw data is subtracted from the correlation between high-
frequency components and raw data. It can be seen from the 
figure that when the frequency demarcation point  is 365, 
the correlation between low-frequency components and raw 
data and the correlation between high-frequency components 
and raw data reach a balance. However, due to the strong 
regularity and high forecasting accuracy of low-frequency 
components, this article first hopes that the proportion of low-
frequency components is high. When the frequency value 
continues to increase, the correlation between the low-
frequency components and raw data can be improved. 
However, when the correlation between the low-frequency 
components and raw data is basically unchanged, the 
forecasting accuracy of low-frequency components basically 
reaches the maximum value. At this time, the accuracy of final 
forecasting result mainly depends on high-frequency 
components. Therefore, in order to give priority to low-
frequency components, the frequency value is continuously 
increased. This article adds weight values to the objective 
function in Eq. (7). By multiplying the correlation between 
low-frequency components and raw data by a low weight 
value and multiplying the correlation between high-frequency 
components and raw data by a high weight value. In this way, 
the design idea of giving priority to low-frequency 

components is achieved. The new objective function is shown 
by Eq. (8). This paper chooses = 0.173, = 0.827, and 
obtains the frequency demarcation point = 1825.  

 
Fig. 9. Correlation between decomposition components and raw data after 

weighting 

 
Fig. 10. The graph of the squared difference after weighting 

 
Fig. 11. Optimal frequency decomposition result 

Fig. 10 shows the square of the difference that the 
correlation between low-frequency components and raw data 
is subtracted from the correlation between high-frequency 
components and raw data after weighting. It can be seen that 
after , as the frequency band increases, the correlation 
between low-frequency components and raw data does not 
increase significantly, while the correlation between high-
frequency components still maintains a downward trend. 
Therefore,  is the optimal frequency demarcation point 

. Fig. 11 shows the decomposition results at frequency 
demarcation point . 

               (8) 
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Where  is the weight of the correlation between the low 
frequency component and the original data, and  is the 

weight of the correlation between the high frequency 
component and the original data.

 

Ⅴ. CASE STUDY  

4.1 Simulation data and simulation platform 
The data used for the simulation in this paper are historical 

weather data and historical power with 15 min time resolution 
from 0:00 on January 1, 2017 to 23:45 on January 31, 2018 in 
Ningxia PV Power Station in China. This article uses the data 
from 0:00 on January 1, 2017 to 23:45 on December 31, 2017 
as training set, and the data from January 1, 2018 0:00 to 
January 31, 2018 23:45 as testing set. The time scale of input 
data is 24 hours, and the time scale of output data is 1 hour, 2 
hours, 3 hours, and 4 hours. 

We use Python 3.6.1 with Tensorflow and scikit-learn to 
perform all the simulations. 

4.2 Data processing 
During model training, to eliminate the difference in 

magnitude between each dimension data, the samples of input 
data will be normalized. The range of values of all samples is 
converted to [0, 1], which avoids large differences in sample 
magnitude leads to large network forecasting errors. Its 
formula is shown in (9): 

                            (9) 

a
b

* min

max min

-
=

-

M M
M

M M

TABLE. Ⅰ. COMPARISON OF R OF LOW FREQUENCY COMPONENTS AT DIFFERENT FREQUENCIES 

Time Scale of 
forecasting 

Evaluation indexes 
365 730 1092 1458 1825 2185 

1h 0.9243 0.9654 0.9792 0.9994 0.9997 0.9998 

2h 0.9067 0.9534 0.9635 0.9947 0.9980 0.9984 

3h 0.8286 0.8438 0.8912 0.9032 0.9132 0.9245 

4h 0.7395 0.7627 0.7821 0.7932 0.8060 0.8125 

 
TABLE. Ⅱ. COMPARISON OF FORECASTING RESULTS R2 OF HIGH FREQUENCY COMPONENTS AT DIFFERENT FREQUENCIES 

Time Scale of 
forecasting 

Evaluation indexes 
365 730 1092 1458 1826 2186 

1h 0.6722 0.6584 0.4783 0.2947 -0.1446 -0.1876 

2h 0.6612 0.6457 0.4378 0.2653 -0.3992 -0.5743 

3h 0.6576 0.6369 0.3989 0.2375 -0.7690 -1.0467 

4h 0.6378 0.6128 0.3648 0.2014 -1.3688 -1.5674 

 

TABLE. Ⅲ. ERROR INDEXES OF LOW FREQUENCY COMPONENT 
FORECASTING AT DIFFERENT TIME SCALES 

MODEL 
Evaluation indexes 

MAE RMSE R 

1h 0.0683 0.0860 0.9997 

2h 0.3532 0.4520 0.9980 

3h 1.0509 1.3302 0.9232 

4h 1.4887 2.0172 0.8060 

 

TABLE. Ⅳ. ERROR INDEXES OF HIGH FREQUENCY COMPONENT 
FORECASTING AT DIFFERENT TIME SCALES 

MODEL 
Evaluation indexes 

MAE RMSE R 

1h 0.4618 0.8336 -0.1446 

2h 0.4864 0.8782 -0.3992 

3h 0.5467 0.9453 -0.7690 

4h 0.5712 0.9867 -1.3688 

 

TABLE. Ⅴ. FORECAST 1 HOUR RESULT ERROR 

MODEL 
Evaluation indexes 

MAE RMSE R 

No frequency 
decomposition 1.1001 2.1467 0.7654 

Frequency 
decomposition 0.4011 0.8198 0.9695 

 

TABLE. Ⅵ. FORECAST 2 HOUR RESULT ERROR 

MODEL 
Evaluation indexes 

MAE RMSE R 

No frequency 
decomposition 1.6755 2.8731 0.5864 

Frequency 
decomposition 0.4875 0.9297 0.9610 
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4.3 Performance criterion 
In order to evaluate the performance of the forecasting 

model, we employ two effective error indexes that are Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE). 
Under the same set of training data, the smaller MAE and 
RMSE, together with the higher R, and the better the 
forecasting model effect. The mathematical formulas for the 
two error indexes are shown in (10) and (11): 

                           (10) 

                    (11) 

4.4 Test results 

4.4.1 Decomposition component forecasting results 
Table Ⅲ and Table Ⅳ show forecasting error indexes of 

low-frequency and high-frequency components at different 
time scales. From the results, it can be seen that as the number 
of hours increases, MAE and RMSE also increase, and 
forecasting accuracy decreases. This shows that as the time 
scale increases, the difficulty of forecasting increases. 

4.4.2 Ultimate forecasting results  
Fig. 12 shows final forecasting results at different time 

scales, and Tables Ⅴ-Ⅷ shows the comparison of error 
indicators with and without frequency-domain decomposition 
model. As the number of hours increases, compared with the 
model without frequency-domain decomposition, MAE of the 
proposed model has improved accuracy by 63.54%, 70.90%, 
43.23% and 32.91%, MAE of proposed model has improved 
accuracy by 61.81%, 67.64%, 49.61% and 33.70%, and the R 
of proposed model has improved accuracy by26.67%, 63.88%, 
83.56% and 78.47% respectively. It can be seen that proposed 
frequency domain decomposition method improves 
forecasting accuracy. High-frequency component is more 
volatile after the absence of low-frequency components, 
which may lead to reduced forecasting accuracy of high-
frequency component. However, the method of selecting the 
optimal frequency demarcation point proposed in this paper, 
which not only improves the proportion of low-frequency 
components in raw data, but also balances the difficulty of 
predicting high-frequency components to a certain extent. 
Therefore, after adding and reconstructing low frequency 
component and high frequency component, the accuracy of 
ultimate results obtained is generally improved. 

Ⅵ. CONCLUSION 
To overcome the shortcomings that there is currently no 

effective method to support the rationality of the frequency 
domain decomposition results, this paper proposes an ultra-
short-term forecasting model of PV power based on optimal 
frequency-domain decomposition and deep learning. First, the 
amplitude and phase of each frequency sine wave is obtained 
by fast Fourier decomposition. As the frequency demarcation 
point is different, the correlation between the decomposition 
component and the original data is analyzed. By minimizing 
the square of the difference that the correlation between low-
frequency components and raw data is subtracted from the 
correlation between high-frequency components and raw data, 
the optimal frequency demarcation points for decomposition 
components are obtained. Then convolutional neural network 
is used to predict low-frequency component and high-
frequency component, and final forecasting result is obtained 
by addition reconstruction. The results fully show that the 
ultra-short-term forecasting model of photovoltaic power 
proposed by the optimal frequency domain decomposition and 
deep learning improves the forecasting accuracy. 

In the future, the research on utilizing this proposed ultra-
short-term solar PV power forecasting model to electric 
vehicle charging demand management [21, 22], demand 
response [23-25], energy storage management [26, 27], load 
pattern [28-30], aggregator aggregated capacity forecasting 
and energy trading in nanogrid [31-34] will be conducted. 
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Fig. 12. Final forecasting results at different scales 
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