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Abstract—The deployment of large scale photovoltaic (PV)
power generation has been witnessed in several countries world-
wide with different installed capacities. Accordingly, codes and
regulations to ensure secure and economical operation have been
revised to address the challenges related with PV integration into
electrical networks. This paper presents an H∞ mixed sensitivity
robust control design for enhancing the overall damping of low
frequency oscillations. The presented architecture will implement
the output signal of the power oscillator damper (POD) at the
control loop of the PV-based solar power plant. The effectiveness
of the proposed approach is tested using the New-England, 10-
machines test system.

Index Terms—H∞ robust control techniques, low frequency
power system oscillations, power oscillator damper (POD), PV
power generation

I. INTRODUCTION

THE small signal stability of a power system refers to
its ability to maintain synchronism when it is subjected

to a small disturbance. Consequently, the set of differential
and algebraic equations (DAE) which describe the dynamic
response of a power system can be linearized about an
operating condition. In this context, the small-signal instability
in practical power systems is associated with the insufficient
damping of rotor oscillations which can grow in magnitude
if sufficient damping torque is not provided [1]. Furthermore,
the high penetration levels of renewable power generation can
result in stressed operating conditions and thus reduce the
overall damping of these oscillations if proper control schemes
are not employed.

Two types of low-frequency power system oscillations
are observed in large-interconnected power systems; local
and inter-area modes. Local modes are triggered when syn-
chronous machines oscillate against each other in one area at
a frequency within the range of 1-2 Hz. On the other hand, the
inter-area mode of oscillations can be observed over a large
section of the network and involves one or group of generators
swinging against a group of distinct generators. The frequency

of such oscillations lies approximately within the range of 0.3-
1 Hz [2]. To this end, the power system stabilizer (PSS) is
developed to provide additional damping torque such that the
oscillatory response is enhanced [3]. However, the design of
PSSs is based on local measured signals and thus have limited
impact on the damping of inter-area modes unless coordinated
control is deployed [4].

Different supplementary control configurations and tech-
niques are employed in the literature to improve the overall
damping of power systems oscillations [5]–[12]. For example,
a supplementary POD is designed to improve the damping of
inter-area oscillations for large-scale PV using the minimax
linear quadratic Gaussian-based control technique [5], [12].
The proposed approach is found to provide a robust damping
performance over wide range of operating conditions and
communication latency. However, limited damping levels can
be obtained using this control technique since the cost function
does not facilitate direct placement of the closed-loop poles
to achieve the desired performance. A proportional integral
derivative (PID) controller is implemented at the static var
compensator (SVC) with integrated PV system to enhance
transient stability [10].

Furthermore, a quasi-oppositional differential search algo-
rithm is utilized to design the SVC-PID damping controller.
Although the effectiveness of this approach is shown for
the single machine infinite bus (SMIB) system, it is not
tested on a practical multi-machine power system. On the
other hand, a stability improvement approach is proposed
for large-scale hybrid wind-photovoltaic (PV) power gener-
ation using an energy-storage unit based on supercapacitor
(SC) [13]. The SC-based energy storage is connected to a
common DC link through a bidirectional DC/DC converter
to mitigate the power fluctuations due to the intermittent
nature of solar irradiance and wind speed. Moreover, a PID-
based supplementary damping controller is designed for the
bidirectional DC/DC converter to improve the damping of low-
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frequency oscillations. Nevertheless, the practical limitations
of the proposed configuration are not discussed as the large-
scale 375 MW hybrid wind-PV farm is connected across a
common DC-link.
The main contribution of this paper is to design a supple-
mentary damping controller using reactive power modulation
of the VSI of the PV power generation to enhance the
overall damping of low-frequency power system oscillations.
The control design is performed using H∞ mixed sensitivity
robust control techniques which allow the placement of the
closed loop poles inside a pre-defined region for improved
stability characteristics. The rest of the paper is organized
as follows.The differential and algebraic equations (DAE)
model of a power system is introduced in section II. Section
III describes the mixed-sensitivity H∞ robust control design
in the LMI framework. In section IV, the effectiveness of
the proposed approach is tested using the New-England, 10-
machines system. Finally, conclusions are reported in section
V.

II. THE MATHEMATICAL MODEL OF A POWER SYSTEM
WITH PV POWER GENERATION

The set of differential and algebraic equations (DAE) gener-
ally describe the dynamics the synchronous generators and its
control systems, loads, the PV power plant in addition to the
transmission network. In this paper, a fourth order model is
used to describe the dynamics of synchronous generators [14].
In addition, they are equipped with static automatic voltage
regulators (AVRs) as described in [15]. Moreover, a power
system stabilizer (PSS) with two lead-lag compensators and
washout filter is installed at some of the generators.
Fig.1 shows the single-diode equivalent circuit model of a PV
cell [16]. This model can be extended to represented a PV
array as per the method presented in [16]. As a result, the
output current IPV (A) of a PV array can be expressed as

IPV = NmpIph −NmpI0
{
exp

[
q (VPV +RsaIPV )

kATNsNms

]
− 1

}
− (VPV +RsaIPV )

Rpa
(1)

The detailed expressions are presented for the PV and reverse
saturation currents (Iph) and (I0) [16]. The PV array is
connected to the DC link through the DC/DC boost converter
as shown in Fig.2. The mathematical equations which describe
the dynamic average-value model of the DC/DC boost con-
verter can be written as

Cp
dVPV
dt

= IPV − ILP (2)

Lp
dILP
dt

= VPV − (1−DP )VDC −RP ILP (3)

IPVDC = (1−DP )ILP (4)

The DC/AC inverter is connected through an LC filter to
Bus 13 which is considered as the point of common coupling

PVV

PVI
sR

pRjDphI

Fig. 1. Schematic diagram of single-diode equivalent-circuit model of the PV
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Fig. 2. Schematic diagram of the PV array and DC/DC boost converter

(PCC). The p.u. differential equations of the LC filter in a
dq-reference frame can be written as

(LI/ωb)
didI
dt

= −RI idI + ωeLI iqI + vdI − vdPCC (5)

(LI/ωb)
diqI
dt

= −RI iqI − ωeLI idI + vqI − vqPCC (6)

Fig. 3 shows the control block diagram of the DC/AC inverter.
The main objective of the controller is to maintain a constant
voltage (VDC) across the DC-link at its reference value (V refDC ).
It can also be noticed that the supplementary POD controller
is implemented at the reactive power modulation of the VSI of
the PV power plant. The measured input signal (Ymeas) should
have high observability to inter-area modes of oscillations.
The designed POD controller provides additional damping by
producing a supplementary signal (Vs) as shown in Fig.3.
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Fig. 3. Control block diagram of the VSI

III. MIXED-SENSITIVITY H∞ ROBUST CONTROL DESIGN
USING LINEAR MATRIX INEQUALITY (LMI) APPROACH

The linear model of a power system can be obtained
by linearizing the nonlinear DAE model via Taylor series
expansion about an equilibrium point [1]. The generalized
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form of the state-space realization of the power system can
be written as follows

∆ẋ = A∆x+B∆u (7)
∆y = C∆x+D∆u (8)

where x,y and u are the state, algebraic and control input
variables. The detailed linearized representation is not included
in this paper due to space limitations. However, interested
readers can find the complete derivation of the linear model
in [14].
The linear model expressed in equations (7-8) is used to assess
the small-signal stability of a power system by computing the
eigenvalues of the system state matrix [1]. In addition, the
overall damping of local and inter-area modes of oscillations
can be found from the complex eigenvalues which occur in
conjugate pairs. On the other hand, the derived model is
employed to design the supplementary controller to enhance
the overall damping of low-frequency inter-area oscillations
as shown in Fig.3. The designed controller has to meet cer-
tain performance objectives such as disturbance rejection and
measurement noise attenuation while maintaining the control
efforts within the maximum limits of the VSI of the PV power
plant. These control objectives are specified as constraints
on the closed loop transfer functions such as the sensitivity
S and/or complementary sensitivity functions T which are
defined as follows

S = (I +GK)−1 (9)
T = GK(I +GK)−1 = I − S (10)

where G and K correspond to the open loop transfer function
of the power system and the supplementary POD controller.

The output sensitivity function S should be made small
for specific ranges of frequencies in order to mitigate the
impact of the disturbance d on the output y. In this context,
frequency-dependent singular values can be used to directly
reflect this objective. For example, disturbance rejection and
good command tracking requires that σ̄(S) ≤ 1 over the low
frequency range.

Appropriatly selected weigting functions can better reflect
the control performance objectives. For example, the designed
controller should minimize the maximum gain of the weighed
closed loop transfer functions W1S and W2KS over all
frequencies. The maximum gain of a transfer function over
all frequencies is known as the H∞ norm. Consequently, the
suboptimal control problem may be formulated as finding all
the stabilizing controllers K such as that H∞ norm of the
weighted mixed sensitivity transfer functions is less than or
equal γ, where γ is the bound on the H∞ norm [17]. This
can be written as: ∥∥∥∥ W1S

W2KS

∥∥∥∥
∞
≤ γ (11)

where the controller K can also be expressed in state space
representation as:

ẋk = Akxk +Bky (12)
u = Ckxk +Dky (13)
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Fig. 4. Revised New England 39-bus system

As mentioned previously, an internally stabilizing controller is
to be computed to minimize the weighted closed loop transfer
functions as expressed in (11). The solution to this probelm
can be found by solving two algebraic riccati equations either
analytically as described in [17] or numerically using the LMI
approach. The later one is used to synthesis the controller since
it facilitates the placement of the closed loop poles in a pre-
defined LMI region. The control design objective described
previously is met if there exists an X = XT > 0 such that( ATclX +X +Acl Bcl XCTcl

BTcl −I DT
cl

CclX Dcl −γ2I

)
< 0 (14)

with ‖Tzw‖∞ < γ. The LMI formulation facilitates also the
placement of closed loop poles inside a pre-defined region
which is assumed to be a conic sector. A minimum damping
ratio of ζ = cos( θ2 ) is guaranteed for all the poles which lie
inside this region if and only if there exists X = XT > 0
such that the following matrix inequality is satisfied [18]

(
sinθ(AclX +XATcl) cosθ(AclX −XATcl)
cosθ(XATcl −AclX) sinθ(XATcl +AclX)

)
< 0 (15)

IV. CASE STUDY: THE NEW-ENGLAND 39-BUS SYSTEM

Fig.4 presents the revised 10 machines, 39-bus New Eng-
land system with large scale PV power generation. The syn-
chronous generators G1,2,3,9 are only equipped with PSS. The
parameters of this system are directly taken from [15]. A 150
MW solar PV power plant is installed at bus 16 and is formed
by aggregating 300 × 0.5 MW PV arrays which parameters
are given in [9].

A. Modal Analysis and Damping Control Design

The nonlinear model of the previously described system is
built in MATLAB/Simullink. The modal analysis is carried
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TABLE I
OSCILLATION MODES AND DAMPING RATIOS WITH PV AT SOLAR

IRRADIANCE OF 1000 W/m2

Mode Eigenvalues without PV Eigenvalues with PV without POD Eigenvalues with PV with POD

1st
−1.8445 ± j9.9134

(ζ = 18.29%,f = 1.58Hz)
−1.8407 ± j9.9064

(ζ = 18.27%,f = 1.58Hz)
−1.8086 ± j8.5014

(ζ = 20.81%,f = 1.35Hz)

2nd
−0.4444 ± j8.8254

(ζ = 5.03%,f = 1.40Hz)
−0.4450 ± j8.8238

(ζ = 5.04%,f = 1.40Hz)
−0.6273 ± j8.8210

(ζ = 7.09%,f = 1.40Hz)

3rd
−0.6972 ± j8.7909

(ζ = 7.91%,f = 1.40Hz)
−0.6996 ± j8.7949

(ζ = 8.82%,f = 1.40Hz)
−0.3099 ± j8.6230

(ζ = 3.59%,f = 1.37Hz)

4th
−1.6164 ± j8.5534

(ζ = 18.57%,f = 1.36Hz)
−1.6709 ± j8.4435

(ζ = 19.41%,f = 1.34Hz)
−0.4399 ± j8.8234

(ζ = 4.98%,f = 1.40Hz)

5th
−2.1418 ± j7.2821

(ζ = 28.22%,f = 1.16Hz)
−2.1410 ± j7.2713

(ζ = 28.45%,f = 1.16Hz)
−1.6945 ± j7.8972

(ζ = 20.98%,f = 1.26Hz)

6th
−1.1574 ± j7.3081

(ζ = 15.64%,f = 1.16Hz)
−1.0386 ± j7.1894

(ζ = 14.30%,f = 1.14Hz)
−0.3625 ± j7.1210

(ζ = 5.08%,f = 1.13Hz)

7th
−0.5267 ± j6.9417

(ζ = 7.56%,f = 1.10Hz)
−0.5209 ± j6.8755

(ζ = 7.56%,f = 1.09Hz)
−1.2207 ± j7.1226

(ζ = 16.89%,f = 1.13Hz)

8th
−0.5015 ± j6.3303

(ζ = 7.90%,f = 1.01Hz)
−0.5119 ± j6.3146

(ζ = 8.08%,f = 1.01Hz)
−0.5259 ± j6.0069

(ζ = 8.72%,f = 0.96Hz)

9th
−0.3275 ± j3.9344

(ζ = 8.30%,f = 0.63Hz)
−0.2735 ± j3.9202

(ζ = 6.96%,f = 0.62Hz)
−1.2562 ± j4.9437

(ζ = 24.63%,f = 0.79Hz)

10th
−1.1416 ± j4.0432

(ζ = 27.17%,f = 0.64Hz)
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Fig. 5. The Original and reduced order model

out after linearising the nonlinear model about the nominal
operating condition. The order of the obtained linear model
is 114. Table I lists the eigenvalues of the linear model,
that corresponds to all oscillatory modes along with their
damping ratios (ζ) and frequencies with and without the PV
power generation. It is noticed that the damping ratio of the
9th mode which corresponds to an inter-area one is below
10% if PV power generation is not integrated. This scenario
is worsened when the PV power plant is installed at bus
16 as the damping ratio decreases to 6.96%. As a result, a
supplementary damping controller is required to enhance the
damping of this mode as will be shown in the next section.

The order of the supplementary damping controller which is
found using H∞ norm minimization techniques equals the or-
der of the open-loop system and the weighting functions. As a
result, it is mandatory to reduce the order of the original model
to simplify the design procedure and to avoid complexity in the
synthesized controller. In this context, balanced truncation is
employed to reduce the order of the original model. The main
objective is to maintain a good approximation in the frequency
rang e (0.1-3) Hz. A tenth-order model is found to exhibit a
good approximate to the original model as shown in Fig. 5. A
conic sector with inner angle θ = 2cos−1(0.2) = 156.9261◦

and apex at the origin is used for pole placement. In addition,
the weighting functions W1 and W2 are found to satisfy the
desired control objectives

W1 =
0.6095s2 + 15.11s+ 93.67

s2 + 5.074s+ 6.437
,W2 = 0.1 (16)

The built-in MATLAB function hinfmix is used to solve
the general H∞ weighted function mixed-sensitivity problem
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Fig. 6. The frequency response of the designed POD controller

using the LMI framework. The achieved H∞-norm of the
synthesized controller is found to be 8.08. Fig. 6 shows the
frequency response of the designed POD controller which is
also expressed in 17.

KPV
POD =

N(s)

D(s)
(17)

where

N(s) = −48034(s+ 17.59)(s+ 4.18)(s2 + 2.47s+ 2.32)

× (s− 5.35)(s2 + 1.21s+ 11.55)(s2 + 3.07s+ 38.29)

× (s2 + 33.65s+ 388.5)

D(s) = (s+ 1055)(s+ 83.7)(s+ 17.53)(s+ 4.1)(s+ 2.55)

× (s+ 2.52)(s2 + 1.43s+ 1.01)(s2 + 4.07s+ 63.93)

× (s2 + 14.42s+ 224.6)

Table I presents the eigenvalues, damping ratios and fre-
quencies which correspond to low-frequency power system
oscillations for the closed-loop system with the designed POD
controller. It can be clearly noticed that the overall damping
of inter-area modes are considerably enhanced. For example,
the damping ratio of the 9th mode has increased from 8.30%
to 27.17%. Furthermore, this is evident from the dynamic
response of the test system which is shown in Figs.7,8,9
and 10. A three-phase-to-ground fault is applied at bus 28
at t = 1s and is naturally cleared after 100 ms. When the
supplementary POD controller is implemented at the reactive
power modulation of the PV-VSI, the overall damping of
the system is considerably enhanced as the oscillations decay
before 10 s.

V. CONCLUSION

The presence of poorly damped low-frequency power sys-
tem oscillations constrain the amount of power transfer across
the transmission network. In this paper, a supplementary
damping control is designed for large-scale PV power plant
using the weighted function mixed-sensitivity H∞ robust
control technique. The presented modal analysis and time-
domain simulation successfully demonstrate the ability of PV
power plant to enhance the overall damping of power system
oscillations.

628

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on November 11,2020 at 12:38:16 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20

Time [sec]

-5

0

5

10

1[d
eg

]

Without POD
With POD

0 10 20

Time [sec]

25

30

35

40

45

2[d
eg

]

Without POD
With POD

0 10 20

Time [sec]

45

50

55

60

3[d
eg

]

Without POD
With POD

0 10 20

Time [sec]

40

50

60

70

80

4[d
eg

]

Without POD
With POD

Fig. 7. Relative rotor angle positions of generators G1−4
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