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Abstract--Modernization of electricity networks is currently 

being carried out using the concept of the Smart Grid; hence, the 
active participation of end-user consumers and distributed 
generators will be allowed in order to increase system efficiency 
and renewable power accommodation. In this context, this paper 
proposes a comprehensive methodology to optimally control lead-
acid batteries operating under dynamic pricing schemes in both 
independent and aggregated ways, taking into account the effects 
of the charge controller operation, the variable efficiency of the 
power converter, and the maximum capacity of the electricity 
network. A genetic algorithm is used to solve the optimization 
problem in which the daily net cost is minimized. The 
effectiveness and computational efficiency of the proposed 
methodology is illustrated using real data from the Spanish 
electricity market during 2014 and 2015 in order to evaluate the 
effects of forecasting error of energy prices, observing an 
important reduction in the estimated benefit as a result of both 
factors: forecasting error and power system limitations. 
 

Index Terms—Smart Grid, lead-acid battery, electricity price 
forecasting, battery energy storage system, real-time pricing. 

I.  NOMENCLATURE 
) Index for AR parameters  = 1, … ,ܲ). 
ݍ) Index for MA parameters ݍ = 1, … ,ܳ). 
݆ Index for each element of HWEP (݆ = 1, … ,  .(ܬ
݅ Index for individuals of GA (݅ = 1,2, … ,  .(ܫ
ݐ) Index for day time ݐ = 1, … ,ܶ). 
݊ Index for BESS (݊ = 1, … ,ܰ). 
 . HWEP time series (€/kWh)ܪ
 .෩ Transformed HWEPܪ
 .ഥ Transformed and standardized HWEPܪ
 .௧ FEP daily series (€/kWh)ܧ
 .෨௧ Transformed FEPܧ
 .ത௧ Transformed and standardized FEPܧ
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μ௧ Hourly mean of transformed HWEP (€/kWh). 
ܨீ  CDF of a normalized Gaussian PDF. 
 .ு CDF of HWEPܨ
 .ଵ Inverse CDF of a normalized Gaussian PDFିܨீ
 .ுିଵ Inverse CDF of HWEPܨ
ீܦ
, DNC of individual ݅ for BESS ݊  at time ݐ (€). 
߶ Autoregressive parameters of ARMA model. 
 . Moving average parameters of ARMA modelߠ
ܵ Box-Pierce statistics 
α Significance level of statistical test 

߯ଶ(α) α quantile of chi-squared distribution.  
 .Number of lags of statistical analysis ܮ

ܥܱܵ  Minimum SOC of BESS system ݊ 
 .ݐ ௧ SOC of BESS ݊ at timeܥܱܵ
 .ݐ ௧ DOD of BESS ݊ at timeܦܱܦ
ଵܥ  Battery capacity of BESS ݊ in 10h (Ah/cell). 
ଵܥ̅  Normalized capacity in respect to a 100 Ah 

cell. 
ܸ
௧ Battery voltage of BESS ݊ at time ݐ (V/cell). 
ܸ Open circuit voltage at full SOC (2.1 V/cell). 
ܸ Variation of voltage with SOC (0.076 V/cell). 
തܸீ  Normalized gassing voltage (2.23 V/cell). 
ோܸ Regulation battery voltage (2.23 V/cell). 

߂ ோܸ Estimation error of BM (V/cell). 
߂ ܸி  Error of BM at left side of interval (V/cell). 
߂ ோܸு Error of BM at right side of interval (V/cell). 

ܸி  Voltage at left side of interval (V/cell). 
ோܸு  Voltage at right side of interval (V/cell). 
௧ܫ  Battery current of BESS ݊ at time ݐ (A/cell). 
ଵܫ  Battery current of BESS ݊ in 10h (A/cell). 
ெܫ  Maximum battery current of BESS ݊ (A/cell). 
ܫ ̅ீ  Normalized gassing current (20 mA/cell). 
௧,ீܫ
  Gassing current of BESS ݊ at time ݐ (A/cell). 
ிܫ  Current at left side of search interval (A/cell). 
ோுܫ  Current at right side of search interval (A/cell). 
 . Intermediate BM variables (A/cell)ܫ/ܫ
 .Value of a time step (1h) ݐ߂
തܶீ  Normalized gassing temperature (298 K). 
ܶ,௧
  Ambient temperature of BESS ݊ at time ݐ (K). 
 . Normalized battery capacity (1.001)ܥ
 . Normalized battery capacity (1.75)ܥ
 . Voltage factor of gassing process (11V-1)ܥ
 .Temperature factor of gassing (0.06V-1) ்ܥ
 . Parameter of converter (0.078815)ܯ
 . Parameter charge-transfer process (0.888)ܯ
 . Parameter charge-transfer process (0.0464)ܯ
ܴ Parameter of converter (0.015784). 
ܴ  Charging internal resistance (0.42 Ω Ah). 
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ܴ Discharging internal resistance (0.699 Ω Ah). 
ܰ௦ Number of cells in serial of BESS ݊. 
ܰ Number of cells in parallel of BESS ݊ . 
ܲ,௧
  Power from/to LAB ݊ at time ݐ (kW). 
ாܲ ,௧
  Power from/to BESS ݊ at time ݐ (kW). 
ܲ
 Rated power of converter of BESS ݊ (kW). 
 .݊  Converter efficiency of BESSߟ
ܲ ,௧
  Power of BESS aggregator ݊ at time ݐ (kW). 
ܲ
 Reduced power setting per cell (W/cell). 

ܲீ ,௧
, Power of individual ݅ for BESS ݊ at time ݐ 

(kW). 
തܲீ

,௧
  Optimal scheduling of BESS ݊  at time ݐ (kW). 
 .Population of GA ܤ
 .Population size of GA ܫ
 .Number of generation of GA ܩ
ܺ Crossover rate of GA (%). 
 .(%) Mutation rate of GA ܯ
ሬܾ⃗  Individual ݅ of GA. 
ܾ௧ Control action for individual ݅ at time ݐ. 
݂
 Fitness of individual ݅ for BESS ݊. 
ܵ Maximum capacity of SG (kW). 
߂ ܵ Overload of SG (kW). 

ܹ Weighting factor of BESS ݊. 
ெܲ
 Maximum power per cell of BESS ݊ (W/cell). 
ܲ
 Reduced power per cell of BESS ݊ (W/cell). 
݇ Iterations of BM (݇ = 1, …  .(ܭ,

II.  INTRODUCTION 
S a result of constant industrialization, technological 
development, and the economic growth or many 

countries, social awareness of environmental problems has 
increased the incorporation of renewable energies for power 
generation. However, technical limitations in transmission and 
distribution networks, the variability of renewable power 
sources such as wind and solar photovoltaic (PV) energies, 
people’s behaviors, and energy consumption patterns have 
made it difficult to integrate and accommodate these sources. 
In this scenario, the integration of storage technologies has 
emerged as an option to expedite energy consumption from 
renewable sources by increasing the flexibility of the power 
system. Topics related to the Battery Energy Storage System 
(BESS) operation need to be considered to guarantee the 
feasible integration of a BESS with renewable and 
conventional generation sources currently being operated; this 
includes the estimation of storage capacity and its 
corresponding duration—or, in other words, the estimation of 
the available power and discharge time—and the incorporation 
of the transmission and distribution capacity [1]. With the 
conceptual evolution of traditional distribution systems toward 
the Smart Grid (SG) and, consequently, the implementation of 
dynamic pricing schemes such as Time of Use (TOU) and 
Real Time (RT) programs, incorporating a BESS at the 
residential level would improve power system performance; 
however, some specific techno-economic conditions are still 
required. According to recent studies, under TOU [2] and RT 
[3] programs, the acquisition costs of a BESS have to be 
reduced, its lifetime in terms of the number of cycles should 
be increased, and the difference between the maximum and 

minimum daily electricity prices should be increased in order 
to compensate capital and operational costs. In this regard, 
governmental policies and incentives are very important. A 
representative example is the Self-Generation Incentive 
Program [4] administrated by the California Public Utilities 
Commission. This program aims to incentivize electricity 
production from wind turbines, fuel cells, combined heat and 
power generation systems, and advanced energy storage 
systems (ESSs).  

The optimal operation of ESSs, considering an RT pricing 
tariff, becomes particularly relevant for the successful 
adoption and integration of these technologies; this problem 
has been analyzed from different perspectives by several 
authors, and the results obtained from their efforts can be 
found in the specialized literature.  

In [5], historical data on the electricity price forecasting of 
the Ontario market are carefully analyzed in terms of 
forecasting error and its impact on the profitability of a 
Compressed Air Energy Storage (CAES) system operating 
under dynamic pricing. This analysis is carried out by solving 
a Mixed-Integer Linear Programming (MILP) problem, in 
which the economic revenue obtained from the operation of 
the CAES system is maximized and consideration is given to 
its corresponding operational constraints. Then, in order to 
mitigate the negative effects of forecasting error, the objective 
function is calibrated by taking into account the magnitude of 
the prediction error that occurred during the last hours or days.  

In [6], a scheduling procedure to improve renewable power 
accommodation by simultaneously reducing power 
curtailment and forecasting error was presented and analyzed 
through mathematical simulations. The method consists of two 
main steps, a scheduling process on a daily basis and real-time 
control. During the scheduling process, an optimal day-ahead 
profile of the joint system (renewable generator and ESS) is 
determined by considering the energy actually stored on the 
ESS, renewable power, and load demand predictions. During 
the real-time control process, the power of the joint system is 
dispatched in order to follow the optimal generation profile 
determined in the scheduling procedure, taking into account 
all the operational constraints of the joint system. According 
to the obtained results, this control strategy offers an important 
reduction in forecasting error even when ESSs of moderate 
capacity are considered.  

In [7], a control strategy for the operation of an energy 
system provided with PV generation and a BESS installed at 
the residential level was presented considering three price 
periods (off-peak period, low-peak period, and high-peak 
period). This approach uses predictions of PV generation and 
load demand, which are incorporated into a hierarchical 
control system composed of two main levels, a global one and 
a local one. The global level optimally determines the 
condition (charging or discharging) of BESSs in the future 
based on cost minimization and peak shaving, while the local 
level reduces the impact of renewable power and load demand 
forecasting errors. In a similar way, a control algorithm that 
analyzes BESS management from an intra-daily perspective 
was developed in [8]. The control strategy aims to minimize 
the total electricity cost by solving the corresponding optimal 
storage control problem using a piecewise linear 
approximation of the objective function embedded in a Linear 

A 
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Programming (LP) problem. In order to guarantee the minimal 
storage requirements of the BESS under analysis, a 
reinforcement learning technique is incorporated.  

In [9], the concept of an aggregator for PV-BESSs installed 
at the residential level, including physical and communication 
infrastructures, was developed. The aggregator is assumed to 
have a centralized operation mode, where its optimal behavior 
is determined through the solution of a MILP problem carried 
out in two steps. In the first step, integer variables related to 
Electric Vehicle (EV) charging are found by using a 
continuous relaxation method; in the second step, the optimal 
values for the rest of the variables are determined by solving 
an LP problem. Besides this, the forecasting error of electricity 
prices, PV generation, and EV charging profile are handled by 
using Model Predictive Control (MPC).  

In [10], cooperative-driven, distributed MPC was proposed 
as a control method for BESSs in order to perform voltage 
regulation in distribution networks. This method is based on 
the solution of an optimization problem in which the 
variations on the control variables are minimized. According 
to the reported results from the analysis of a typical rural 
distribution network provided with renewable generation 
under over-voltage, low-voltage, and voltage-drop conditions, 
the presented approach offers similar results to those obtained 
from the implementation of the centralized MPC method.  

The researchers in [11] deeply analyzed the behavior of a 
typical energy system composed of a conventional generator, 
several base and flexible loads, several subsystems composed 
of renewable generators and ESSs, and several external 
electricity markets. Optimal operation is mathematically 
formulated in order to minimize the system cost on a long-
term basis through the manipulation of controllable energy 
sources, load demand, and ESSs, taking into account the 
uncertainty introduced by renewable power sources. This 
optimization problem is solved using the Lyapunov 
optimization technique combined with a relaxation procedure.  

Considering the energy policy in which residential 
consumers are only able to buy electricity from the SG, a 
BESS control strategy based on a Dynamic Programming 
(DP) approach was developed in [12]. The presented 
methodology considers specific discrete states for charging 
and discharging conditions; in order to avoid those solutions 
that could negatively influence a BESS’s lifetime, a backward 
tracing procedure is introduced. Finally, corrective control 
actions are taken during real-time operation so that the effects 
of forecasting error of electricity prices, load demand, and 
renewable generation are mitigated.  

In [13], the implementation of a DP approach in two 
temporal scales was proposed for the control of energy 
systems with a BESS, typical residential loads, and renewable 
power generation under dynamic pricing. The presented 
method consists of the application of a DP optimization 
method on the macro- and microscales. A macroscale DP 
method is applied by considering the forecasting information 
on a daily basis; hence, a first approximation of the optimal 
scheduling is obtained in terms of the State of Charge (SOC) 
of the BESS. Then, the microscale DP method is applied using 
forecasting information with a shorter prediction horizon 
(three-hour-ahead predictions) in order to guarantee the 
optimal behavior expressed in terms of the SOC obtained in 

the previous step; in this way, the impact of the forecasting 
error can be mitigated. 

In [14], a strategy based on a DP approach for the control of 
a Lead-Acid Battery (LAB) was developed; the DP approach 
was applied by considering discrete states of the SOC with the 
objective of maximizing the economic benefits from the daily 
operation of the BESS, taking into account the Battery Wear 
Cost (BWC), full filling of certain operational constraints 
related to SOC limits, and charging and discharging rates. 
Lifetime reduction of the BESS related to operation at partial 
SOC is incorporated as an increment in system costs; this is 
known as the Cost of Lifetime Losses estimation. 

Assuming that residential consumers are only able to buy 
electricity from the SG, the rated power of the BESS is 
applied during charging and discharging periods of equal 
duration, as well as the representation of the SOC by a number 
of limited discrete states; in [15], a control strategy was 
developed for the optimal operation of a BESS on semi-daily 
and daily bases, defined according to the Moving Average of 
RT pricing forecasting.  

In [16], the operation of BESSs installed over distribution 
networks was analyzed and their capabilities to mitigate 
voltage fluctuations were studied through numerical 
simulations. Assuming that the Distribution Network Operator 
(DNO) is able to give subsidies to commercial customers to 
promote the local installation of ESSs, the storage capacity at 
the customer level is determined by taking into account the 
aforementioned subsidies and high-voltage distribution 
network constraints, specifically those related to voltage 
variations. This approach allows us to consider the viewpoint 
of the DNO and commercial customers at the same time.  

In [17], a methodology based on the implementation of 
hyper-heuristic algorithms was proposed. Considering the 
maximum possible power to be supplied, 26 heuristic levels—
from no discharging condition to totally discharging 
condition—were defined; then, the corresponding fitness 
function and heuristic operators were applied in order to 
determine a profitable discharging scheduling for the ESS 
under analysis. The proposed methodology was illustrated by 
considering a Vented LAB, whose dynamic behavior 
regarding the capacity as a function of discharge time and 
charging power limitations were incorporated by using 
general-purpose information normalized with respect to the 
capacity in 240h. 

In [18], an optimization algorithm for the optimal operation 
of ESSs based on power-to-heat conversion was presented. 
The fundamental idea consists of charging ESSs during low-
price periods, taking into account the amount of energy stored 
and the maximum charging power allowed at each time step. 
Initially, a mathematical formulation neglecting energy losses 
is developed; then, two optimization models considering 
energy losses as a constant and variable value are derived.  

In [19], a management model for BESSs integrated in a 
smart community was analyzed by developing an auction 
process by which each owner of a BESS, customers, and 
building managers are related to each other through a market 
environment. The storage capacity and its corresponding 
auction price are optimally determined by means of a 
noncooperative Stackelberg game established between the 
owners of BESSs and building managers acting as auctioneers. 
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In this way, the incentive compatibility and individual 
rationality are compensated at the equilibrium point of the 
Stackelberg game.  

A control strategy based on the theory of pseudo-SOC was 
developed in [20] to incorporate ancillary services provided by 
distributed generators; the algorithm takes information from 
the operation of the energy system, such as an SOC, as well as 
the amount of PV generation, in order to estimate the real-time 
operating conditions in terms of voltage and determine the 
optimal operating strategy of the BESS. 

In [21], several resources, strategies, and operational 
problems such as renewable power generation, peak-load 
shaving, power-curve smoothing, and voltage regulation have 
been integrated in a control technique based on minimizing 
total costs, by which the costs related to the peak-load shaving 
activity are weighted according to the amount of power 
flowing through the distribution transformer. Using this 
formulation, the corresponding optimization problem is solved 
by means of a sequential quadratic programming approach. 

Among ESS technologies, advanced LABs (specifically 
Valve-Regulated LABs) have been installed and analyzed in 
terms of their technical design and performance in order to 
gain experience and knowledge of their operational problems, 
such as thermal management issues and cell behavior [22]. 
According to the Global Energy Storage Database [23], 
BESSs based on LABs are currently being investigated to 
improve the accommodation of renewable generation, manage 
and reduce electricity bills, shift energy time, enhance power 
supply and spinning reserve, regulate frequency, improve 
system reliability and the power quality of commercial 
consumers, and enhance power-system ramping capabilities, 
as well as renewables’ capacity firming. The typical rated 
power of these installations is between 2 kW and 36 MW. 
They are currently being operated in several countries, 
including Australia, Cape Verde, Germany, India, Ireland, 
Japan, Kenya, South Korea, Madagascar, New Zealand, South 
Africa, Taiwan, the United Kingdom, and the United States, 
among others, and administrated by cooperatives and 
independent investors, as well as by federal and municipal 
institutions. 

Although many of the existing methodologies for the 
optimal control of a LAB, when it is operating under dynamic 
pricing, offer reasonable solutions from a mathematical 
perspective, many of them are not capable of incorporating the 
nonlinear behavior of the LAB, such as the gassing 
phenomena of electrochemical processes, the voltage 
regulation of the charge controller, and the variable efficiency 
of the bidirectional converter. On the one hand, during the 
charging process of a typical LAB, the charge controller 
reduces the corresponding current in order to mitigate the 
effects of the gassing phenomenon by maintaining the battery 
voltage at a constant value (frequently 2.23 V/cell); as a 
consequence, the amount of power purchased from the grid is 
gradually reduced in a nonlinear way. On the other hand, the 
efficiency of the power converter has nonlinear behavior: 
When a low amount of power (compared to its rated capacity) 
is transmitted through the converter, the conversion efficiency 
is very low; however, this efficiency increases with the 
transmitted power. This fact could influence the power trading 
between a LAB and the SG and, consequently, the economic 

performance of the system. 
In this paper the optimal operation of LABs, including all 

these issues, is analyzed from the perspective of an 
independent BESS and an aggregator of it. As an optimization 
tool, an integer-coded Genetic Algorithm (GA) is used, 
considering charging, discharging, and no-power transactions 
between the BESS and the SG. This tool is used to analyze the 
influence of the electricity price forecasting error and the 
limitations of the SG (in terms of the maximum power 
allowed to be taken from or supplied to the SG by the BESS 
aggregator) on the economic benefit obtained from the optimal 
BESS operation. The rest of the paper is organized as follows: 
Section III describes the proposed approach, including the 
electricity price forecasting process, LAB model, and 
optimization technique. Section IV presents the case study 
analyzed in order to illustrate the proposed approach. Finally, 
the main conclusions are presented and discussed in section V. 

III.  PROPOSED APPROACH   
In Fig. 1, the general structure of an independent BESS 

connected to the SG under an RT pricing environment is 
described. The SG is represented by the power system with 
two main communication channels: one to the power flow 
(Power in Fig. 1) in a bidirectional way and another one to the 
data flow (Data in Fig. 1) specifically for the transmission of 
electricity prices in real time. A Smart Meter (SM) has the role 
of interfacing between the Battery Management System 
(BMS) and the SG. The SM receives electricity prices and 
measures the power transaction from or to the SG and 
communicates this information to the BMS; then, all the 
collected data related to electricity prices are used to create a 
database of Historical Wholesale Electricity Price (HWEP) 
required to carry out the Forecasting Electricity Price  (FEP) 
on a daily basis. Besides storing the HWEP database, the BMS 
is continuously monitoring the operating conditions of the 
LAB in terms of battery voltage, current, and SOC 
(Voltage/Current/State of Charge in Fig. 1), and it is able to 
store the parameters of the LAB model, which is very 
important information to be jointly used with the FEP to 
determine the optimal LAB scheduling through an 
optimization analysis (using an integer-coded GA). This 
optimization analysis is supposed to be implemented in the 
BMS; hence, this unit could be conceptually understood as an 
embedded system, which receives the FEP and the operating 
conditions of the LAB in order to estimate its optimal 
management during the following day. The optimal LAB 
schedule consists of when the BESS should be charged or 
discharged, including the corresponding charging and 
discharging power, in order to maximize the economic benefit 
obtained from the power transaction between the SG and the 
BESS; this schedule is implemented by sending a control 
signal from the BMS to the Charge Controller 
(Charging/Discharging in Fig. 1). In brief, in the process 
required to determine and execute the optimal schedule for the 
BESS, it is necessary to carry out three main procedures: 
electricity price forecasting, optimization analysis and LAB 
simulation, and scheduling implementation. In the following 
subsections, these procedures are carefully described and 
discussed. 
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Fig. 1.  General description of an independent BESS connected to SG.  

A.  Day-Ahead Electricity Price Forecasting 
In order to determine the optimal scheduling of the BESS 

that would maximize the economic benefit of the power 
transaction between the BESS and the SG, an FEP is 
absolutely required. In this paper, a time-series analysis based 
on an Autoregressive Moving Average (ARMA) model has 
been used.  

The ARMA model is implemented in the BMS and requires 
the estimation of autoregressive and moving-average 
coefficients. To carry out this task, the HWEP time series 
needs to be manipulated to have the characteristics of a 
normalized Gaussian probability distribution function (PDF). 
This transformation process [24] is briefly described in (1), 
where each element of the HWEP (ܪ  ⦡ ݆ = 1, … ,  is (ܬ
evaluated on its own discrete Cumulative Distribution 
Function (CDF) (ܨு), resulting in a new time series with a 
uniform PDF. This time series is consequently evaluated (in 
an inverse way) on the CDF of a discrete normalized Gaussian 
PDF (ீିܨଵ), which is obtained from the discretization 
methodology presented in [25].  

This procedure results in the time series (ܪ෩ ⦡ ݆ = 1, … ,  ,(ܬ
which has a diurnal non-stationarity that is directly related to 
the pattern of electricity usage. This is removed by subtracting 
the hourly mean (μ௧ ⦡ ݐ = 1, … ,24), as shown in (2). Then, 
the ARMA model of (3) [26] is fitted by means of the 
Bayesian Information Criterion (BIC) [27] or the Akaike 
Information Criterion (AIC) [28] and is statistically verified 
through the Ljung-Box method [29], which compares the 
value of a chi-square distribution (߯ଶ) with the significance 
level ߙ and the ܮ − ܲ − ܳ degree of freedom with the value of 
statistic (ܵ).  

 
෩ܪ = ଵିܨீ ቀܨு൫ܪ൯ቁ  ⦡ ݆ = 1, … ,  (1)                ;ܬ

 
ഥܪ = ෩ܪ − μ௧ ⦡ ݆ = 1, … , ݐ ⦡ ܬ = 1, … ,ܶ;         (2) 

 

ഥܪ = ߶ܪഥି



ୀଵ

+ߠɛି

ொ

ୀଵ

⦡ ݆ = 1, … ,  (3)      .ܬ

 
Day-ahead forecasting is carried out by evaluating the 

ARMA model previously estimated, as shown in (4), and by 
completing the transformation process as presented in (5)  
and (6). 

 

ത௧ܧ = ߶ܧത௧ି



ୀଵ

+ ߠɛ௧ି

ொ

ୀଵ

ݐ ⦡ = 1, … , ܶ;       (4) 

 
෨௧ܧ = ത௧ܧ + μ௧ ⦡ ݐ = 1, … ,ܶ;                     (5) 

 
௧ܧ = ுିଵܨ ቀீܨ ൫ܧ෨௧൯ቁ ݐ ⦡  = 1, … ,ܶ.              (6) 

 
In brief, the entire process for day-ahead price forecasting 

starts by creating the discretized CDF of the HWEP and the 
Gaussian CDF; then, each element of the HWEP time series is 
evaluated on its own CDF, and it is evaluated again on the 
inverse Gaussian CDF. When all elements have been 
evaluated, the hourly average profile is subtracted; thus, a 
normalized time series is obtained. The next step consists of 
determining the order and coefficients of the ARMA model. 
Once this step has been concluded, the estimated model is 
sequentially evaluated from 1=ݐ until ݐ=ܶ, the hourly average 
profile is added, and the obtained result is transformed from a 
discretized Gaussian PDF to the PDF of the HWEP by 
evaluating each of these values (those ܶ values resulting from 
the evaluation of the ARMA model previously performed) on 
the discretized Gaussian CDF and again on the inverse CDF of 
the HWEP.  

B.  Lead-Acid Battery Model and Simulation 
The general-purpose LAB model presented in [30] is used 

in this work due to its ability to represent physic-chemical 
processes. As the model developed in this work could be used 
to optimize the operation of a LAB aggregator, the 
mathematical model is expressed in terms of an independent 
BESS (݊). Current-voltage characteristics are shown in (7) and 
(8) for charging and discharging conditions, respectively. This 
is a modified version of the Shepherd model, which takes into 
account changes of open-circuit voltage with the SOC, ohmic 
losses related to grid resistance, active mass resistance, the 
resistance of the electrolyte, and the battery overvoltage. 

 

௧ܸ
 = ܸ − ( ܸ)ܦܱܦ௧ + ܴ ቆ

௧ܫ

ଵܥ
ቇ+                 

ܴܯ ቆ
௧ܫ

ଵܥ
ቇቆ

௧ܥܱܵ

ܥ ௧ܥܱܵ−
ቇ                         

௧ܫ ⦡ > ݐ ⦡ 0 = 1, … ,ܶ;                    (7) 
 

௧ܸ
 = ܸ − ( ܸ)ܦܱܦ௧ + ܴ ቆ

௧ܫ

ଵܥ
ቇ+                

ܴܯ ቆ
௧ܫ

ଵܥ
ቇቆ

௧ܦܱܦ

ܥ ௧ܦܱܦ−
ቇ                        

௧ܫ ⦡ ≤ ݐ ⦡ 0 = 1, … ,ܶ.                   (8) 
 
The relationship between the gassing current and the SOC 

during charging conditions is shown in (9) and (10), 
developed from the Butler-Volmer characteristic. In (9), the 
reader can note how the model considers only those current 
values whose associated energy is effectively stored on the 
LAB by subtracting the current related to the gassing process 
௧,ீܫ)
 ) from the external charging current (ܫ௧).    
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௧ܥܱܵ = ௧ିଵܥܱܵ + න
ఛܫ − ܫீ ,ఛ



ଵܥ
௧


ݐ ⦡ ߬݀ = 1, … ,ܶ;    (9) 

 
௧,ீܫ
 = ଵܥ̅) ܫ)( ̅ீ ]ܥ൫ݔ݁( ௧ܸ

 − തܸீ] + ൣ்ܥ ܶ,௧
 − തܶீ൧൯   

ݐ ⦡ = 1, … , ܶ.                              (10) 
 

Otherwise, in (10), the reader can note how the gassing 
current increases exponentially with the cell voltage and 
temperature, which justify the exponential reduction of the 
coulombic efficiency at high SOC values. During discharging 
conditions, the SOC could be estimated by applying (9), 
neglecting the effects of the gassing phenomena expressed in 
(10) [31]. In addition, it is important to consider each SOC 
value between its minimum value and 1 (ܱܵܥ௧ ∈
ܥܱܵ]

 , 1]; ݊ = 1, . . . ,ܰ; ݐ = 1, … ,ܶ); the charge controller 
technically carries this out to protect the battery cell against 
over-discharging conditions. To guarantee the safe operation 
of the BESS, the charging (ܫ௧ > 0) and discharging (ܫ௧ < 0) 
currents are limited to determined values suggested by the 
battery manufacturer; this idea is presented in the constraint 
(11),  
 

ெܫ− ≤ ௧ܫ ≤ ெܫ ݐ ⦡  = 1, … ,ܶ.                (11) 
 
During charging conditions, the battery current is defined in 

the interval (0, ெܫ ], so that the current value at which the 
battery voltage is close to its corresponding regulation value 
( ோܸ) (which is established to protect the battery cell against 
over-charging conditions) is obtained from the application of 
the bisection method (BM) [32], according to Algorithm I. 

During discharging conditions, the battery current is defined 
in the interval [−ܫெ , 0) so that it can be estimated from the 
energy stored in the battery, which is available to be 
discharged in a single time step (ݐ߂); this is expressed in (12): 

   

௧ܫ = −݉݅݊ ቊ
௧ܥܱܵ) − ܥܱܵ ଵܥ(

ݐ߂ ெܫ   ,  ቋ                    

ݐ ⦡ = 1, … ,ܶ.                                  (12) 
 
Finally, those situations with no power transaction between 

the LAB and SG are simulated by assigning ܫ௧=0. Figs. 2 and 
3 illustrate the results obtained from the simulation of a 
battery cell of 300 Ah (ܥଵଵ =300 Ah) when the battery current 
is limited to 10A (ܫெଵ =10 A) and 30A (ܫெଵ =30 A), respectively.  

It is possible to observe how the charging current is 
exponentially reduced to maintain the battery voltage at the 
corresponding regulation value, which directly influences the 
power taken from the grid. In addition, the reader can observe 
how the maximum power to be taken from the grid can be 
reduced by using only the variable ܫெ , according to Fig. 3, 
from 60W to 20W; this fact is used to limit the amount of 
power to be taken by or injected into the SG to preserve its 
safe operation. Once a battery cell has been analyzed, all 
variables are scaled to consider the total capacity of the battery 
bank as presented in (13):   

 
ܲ ,௧
 = ( ௧ܸ

ܫ௧) ௦ܰ
ܰ .                            (13) 

 
 

ALGORITHM I 
ESTIMATION OF BATTERY CHARGING CURRENT 

Step 1: Set an estimation error of BM (߂ ோܸ). 
 

Step 2: Set the maximum number of iterations (ܭ) at a value 
higher than ݈ܫ)݃ெ ߂/ ோܸ) ⁄(2)݈݃ . 

 
Step 3: Set ܫி ⟵ 0 and ܫோு⟵ܫெ . 

 
Step 4: Set ݇ ⟵ 1. 

 
Step 4.1: Set ܫ ⟵  ி; calculate ܸி from the evaluationܫ

of ܫ on (7), (9), and (10); and the corresponding error is 
estimated as ߂ ܸி = ோܸ − ܸி . 

 
Step 4.2: Set ܫ ⟵ ிܫ) +  ோு)/2; calculate ோܸு from theܫ

evaluation of ܫ on (7), (9), and (10); and the corresponding 
error is calculated as ߂ ோܸு = ோܸ − ோܸு . 

 
Step 4.3: If {(߂ ܸி)(߂ ோܸு) > 0}, then ܫி ⟵  , elseܫ

ோுܫ ⟵  .ܫ
 

Step 5: If {݇ < ݇ then ,{ܭ ⟵ ݇ + 1; go to Step 4.1 or stop. 
 
Then, the variable efficiency of the bidirectional converter is 
incorporated using (14) and (15).  
 

ߟ = ܲ ,௧


ܴ( ܲ
) + (1 + (ܯ ܲ,௧

 ;                   (14) 

 

ாܲ ,௧
 = ±

ห ܲ ,௧
 ห − ܴ( ܲ

)
(1 + (ܯ .                      (15) 

 
Power from/to LAB ( ாܲ ,௧

 ) is estimated by (15) only when the 
power from/to LAB ( ܲ,௧

 ) is higher than factor (ܴ ܲ
) and 

when ܲ ,௧
  is lower than the rated power of the bidirectional 

converter ( ܲ
). In other cases, ாܲ,௧

  is assumed to be zero. 
Corresponding parameters for modeling efficiency variations 
have been obtained using information taken from [33]. 
 

 

 
Fig. 2.  Controlled voltage and current of a typical battery cell.  
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Fig. 3.  Controlled power of a typical battery cell.  

 

C.  Optimization of Day-Ahead Operation 
As stated before, an integer-coded GA has been used in this 

paper to determine the optimal operation of a LAB enrolled in 
an RT pricing program on a daily basis. In the implementation 
used in this work, each individual is represented by an integer 
vector with ܶ=24 elements, such as this: ሬܾ⃗ =(ܾଵ  ܾଶ  ···  ܾ௧  ···
 ்ܾ ) with ݅=1,…, ܫ.  

Each element (ܾ௧) corresponds to the operative condition of 
the LAB; if ܾ௧=1, the charging of the LAB is carried out; 
otherwise, if ܾ௧=−1, the discharging of the LAB is done; and 
finally, if ܾ௧=0, there is no power transaction between the 
BESS and SG; it is the equivalent of disconnecting the BESS 
from the SG; in this way, the population of the GA is 
presented in (16) and (17): 

 

ܤ =

⎣
⎢
⎢
⎢
⎢
⎡ሬܾ⃗ ଵ
⋮
ሬܾ⃗ 
⋮
ሬܾ⃗ ூ⎦
⎥
⎥
⎥
⎥
⎤

;                                        (16) 

 
ሬܾ⃗  = [ܾଵ … ܾ௧ … ்ܾ ] ⦡ ݅ = 1, … ,  (17)     .ܫ

 
In Fig. 4, it is shown how a determined individual ( ሬܾ⃗ ) is 

included in the population (ܤ), which is expressed as a matrix. 
The optimization algorithm aims to minimize the Daily Net 
Cost (DNC). For a determined individual ( ሬܾ⃗ ) in the 
population, DNC is estimated according to (18):   

 

,ீܦ
 = (ܧ௧)൫ܲீ ,௧

,൯
்

௧ୀଵ

 ⦡ ݅ = 1, … ,  (18)            .ܫ

 
The variable ܲீ ,௧

, is related to vector ሬܾ⃗  through the 
simulation process of III-B. In other words, the values of ܲீ ,௧

,  
are obtained from the simulation process of (7)-(12) and 
Algorithm I, and they are equal to the power from/to LAB 
(ܲீ ,௧

,= ாܲ ,௧
 ݐ⦡  = 1, … ,ܶ). 

This means these factors are not represented in our daily-
based optimization model. Once the population size (ܫ), the 

number of generations (ܩ), the crossover rate (ܺ), and the 
mutation rate (ܯ) have been defined, the algorithm could be 
implemented by following the steps of Algorithm II. 

In this work, the number of possible combinations of 
individuals is 324 =2.82·1011. Evaluating all of them would 
take years of computing, which is obviously inadmissible. 
Therefore, it is impossible to know if the best solution found 
by the GA is really the true optimal solution. However, we can 
be confident that the optimal solution, or a near-optimal 
solution, will be found. 

The three steps described in Algorithm I are sequentially 
repeated until the maximum number of generations (ܫ) is 
reached; after the analysis of all of the generations, the 
individual with the highest fitness value is chosen as the 
solution to define the near-optimal schedule of BESS ݊ ( തܲீ ,௧

 ). 
The fitness function of (19) establishes a linear relationship 
among all individuals due to the fact that it is defined by the 
position of the individual in the sorted list instead of the value 
of the objective function (DNC), which could have important 
differences between them. 

The simulation process and evaluation of a determined 
individual ( ሬܾ⃗ ) could be understood easily by analyzing Fig. 4. 
As can be observed, at 1=ݐh, ሬܾ⃗ =−1 and the LAB should be 
discharged so that the battery voltage is estimated by using 
(8), the SOC is estimated by using (9) with ீܫ,௧

 → 0, and the 
discharging current is estimated according to (12). Now, at 
time ݐ, ሬܾ⃗ =1 and the LAB should be charged; hence, the 
battery voltage is estimated by using (7), the SOC is estimated 
by using (9) and (10), and the charging current is estimated by 
using Algorithm I. Finally, at ݐ=ܶ, ሬܾ⃗ =0, and there is no power 
transaction between the BESS and SG. Then, the battery 
voltage is estimated through (8), and ܱܵܥ௧ = ௧ିଵܥܱܵ . Once 
the BESS power has been calculated from the simulation 
process previously described, the DNC could be estimated 
easily for the individual under analysis by means of (18).  

 
 

 
 
Fig. 4.  A typical individual in the GA population.  
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ALGORITHM II 
IMPLEMENTATION OF GA FOR BESS SCHEDULING 

Step 1: The initial population is randomly generated by 
considering only −1, 0, and 1. To improve the algorithm’s 
efficiency, an additional individual is created and inserted 
into the population (B in Fig. 4 and (16)). This individual is 
designed by taking into account the hourly profile of the 
FEP; if the price at determined hour ݐ is lower than the daily 
average, the charging operation is suggested by assigning 1 
to the element of this individual (ܾ௧=1); otherwise, if the 
price is higher than the daily average, −1 is assigned 
(ܾ௧=−1); finally, if the price is equal to the daily average, no 
control action is considered, by assigning 0 to the 
corresponding element (ܾ௧=0). Besides of those individuals 
randomly generated this additional individual is added 
improving the general performance of the algorithm. 
 
Step 2: The DNC is evaluated for each individual in the 
population using (18), which depends on the FEP and the 
scheduled power of the LAB at each time step. Once the  
DNC of each individual has been calculated, all of them are 
sorted in a list according to their DNCs (ீܦ,

  ⦡ ݅ = 1, … ,  ,(ܫ
from the smallest to the largest value; finally, according to 
this order, the fitness of each individual is assigned by  
using (19): 
 

݂
 =

ܫ) + 1)− ݅
∑ ܫ) + 1 − ݅)

 ⦡ ݅ = 1,2, … , .ܫ (19) 

 
Step 3: Reproduction, crossing, and mutation operators are 
applied; hence, the population of the next generation is 
defined. Frequently, high values of the crossover rate are 
used (ܺ → 1), while very low values of the mutation rate are 
typically used (ܯ → 0).  

 

Regarding the BESS aggregator, Fig. 5 presents its general 
structure. As can be observed, the aggregator is composed of 
several BESSs similar to that previously shown in Fig. 1, 
which operates in a decentralized way; the BMS of each BESS 
݊ optimizes its own operation using an FEP provided by the 
aggregator, which is responsible for guaranteeing that the total 
power from or to the aggregated BESS ( ܲ,௧) is within the 
corresponding limit defined by the Distribution Network 
Operator (DNO); it is then designated as (ܵ).  

In this way, the optimal scheduling of each BESS is added 
as presented in (20); then, the excess power required or 
supplied by the BESS aggregator (ܵ߂) is estimated according 
to (21), where the limit imposed by the SG is included.  
 

 തܲீ
,௧


ே

ୀଵ

= ܲ,௧ ⦡ ݐ = 1, … , ܶ;                        (20) 

 
ܵ߂ = ൛หݔܽ݉ ܲ,௧ห⦡ ݐ = 1, … ,ܶൟ − ܵ;                (21) 

 
To remove this excess in the power transaction, two 

mechanisms have been evaluated: Power Reduction by 
Capacity (PRC) and Uniform Power Reduction (UPR).  

In the PRC strategy, it is assumed that the reduction of the 
BESS-aggregator power is carried out according to the 
capacity of each BESS; in other words, if a reduction in the 
power transaction between the BESS aggregator and SG is 
required, those BESSs with higher capacities reduce their 
power to be charged or discharged at higher magnitudes than 
the other BESSs of lower capacities.  

This idea is mathematically expressed in (22), where the 
weighting factor ( ܹ ⦡ ݊ = 1, … ,ܰ) reflects the reduction 
degree of each BESS. The power reduction of each BESS ݊ is 
effectively applied by setting the maximum current (ܫெ ) to a 
convenient value.  

 

ܹ = ଵܥ ௦ܰ


ܰ
 ൭ܥଵ ܰ௦ ܰ


ே

ୀଵ

൱൘ ⦡ ݊ = 1,2, … ,ܰ.   (22) 

 
With respect to the UPR strategy, it is assumed that the 

reduction of the BESS-aggregator power is uniformly carried 
out by all BESSs integrated in the aggregator; in this way, the 
power reduction and consequently its effects are equally 
distributed over the enrolled BESSs.  

This idea is implemented by assigning the value of each 
weighting factor ( ܹ ⦡ ݊ = 1, … ,ܰ) according to (23): 

 
ܹ = 1 ܰ⁄ ⦡ ݊ = 1,2, … ,ܰ.                 (23) 

 
Once the actual condition of the BESS aggregator has been 

defined through variable (ܵ߂), excess operating power is 
eliminated by applying Algorithm III combined with (22) or 
(23) depending on the strategy to be used (PRC or UPR, 
respectively). Both approaches take advantage of the 
communication infrastructure of the SG to accommodate the 
BESS aggregator power with regard to the technical 
capabilities of the distribution system. 

As in Algorithm III (specifically in (24) and (26)), the 
maximum charging power is required. It is calculated by using 
the regulation voltage (with a typical value equal to 2.23 
V/cell) because this is the maximum operational voltage at 
which the charge controller would operate the LAB bank; that 
is the reason ோܸ=2.23 V/cell is included in these equations. 

 

 
 
Fig. 5.  General architecture of a BESS aggregator.  
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ALGORITHM III 
REDUCTION ON POWER SCHEDULING OF BESS AGGREGATOR 

Step 1: If {ܵ߂ > 0}, go to step 2, or, otherwise, stop. 
 

Step 2: Calculate the maximum charging power allowed for 
each BESS; this is estimated by using (24): 

 

ெܲ
 = ெܫ) ோܸ) ௦ܰ


ܰ
 ⦡ ݊ = 1,2, … ,ܰ. (24) 

 
Step 3: Estimate the reduction in the maximum charging or 
discharging power allowed for each BESS by means of (25): 

 

ܲ
 = (1− ܹ) ெܲ

 ⦡ ݊ = 1,2, … ,ܰ. (25) 
 

Step 4: Calculate the new limit of the maximum charging or 
discharging current of each BESS using (26):  

 

ெܫ = ܲ
 ൫ ோܸ ௦ܰ


ܰ
൯⁄  ⦡ ݊ = 1,2, … ,ܰ. (26) 

 
Step 5: Using the value of ܫெ  previously assigned in Step 4, 
evaluate the performance of each BESS and the power 
transaction between the BESS aggregator and SG ( ܲ,௧ ⦡ ݐ =
1, … ,ܶ); estimate ܵ߂ according to (21); and go to Step 1. 

IV.  CASE STUDY 
The comprehensive methodology developed in this work for 

the optimal management of the BESS is illustrated in this 
section by analyzing the independent and aggregated operation 
using data of the Spanish electricity market of the years 2013-
2016 [35]. This is done to evaluate the influence of forecasting 
error and power-system limitations over a representative time 
period. Sub-section IV-A describes the results obtained from 
the FEP process, and IV-B and IV-C evaluate the capabilities 
of the proposed method for controlling an independent BESS 
and a BESS aggregator. Finally, in IV-D, the impact of 
forecasting error and the SG capacity are statistically 
analyzed. All numerical experiments have been implemented 
in MATLAB® in a computer with i7-3630QM CPU at 2.40 
GHz, 8GB of RAM, and a 64-bit operating system.  

A.  Electricity Price Forecasting using Spanish Market Data 
The FEP was performed by applying the process described 

in III-A based on time-series analysis. Two HWEP databases 
were used; the first database corresponds to the time period of 
January 1 to February 7, 2016, measured on an hourly basis. 
This time series was used to carry out the corresponding FEP 
for February 8, 2016, using the discrete functions of ܨு and ீܨ  
with 150 intervals. Thus, the resulting information served as 
an input to the optimization analysis under independent and 
aggregated modes for this day. The second database 
corresponds to the time period of December 1, 2013, to 
December 31, 2015; this database was used to analyze the 
influence of forecasting error and the SG capacity on the 
performance of BESS operation from a statistical perspective. 

Regarding the ARMA model, a maximum of 30 
coefficients was considered for autoregressive and moving-
average parameters, selecting the maximum number of 
parameters between those suggested by the BIC and AIC 
criteria. As described earlier, the first database was used to 
perform time-series analysis for February 8, 2016; thus, the 
ARMA coefficients selected (ܲ=5 and ܳ=2) are shown in 
Tables I and II. With respect to statistical checking, 

߯ଶ(α=0.05)=106.394 and ܵ=34.036 with 84 degrees of 
freedom (ܮ − ܲ − ܳ=84) were calculated. Fig. 6 shows the 
obtained FEP presenting the actual and forecasted profiles.  

Respecting the analysis of the second HWEP database, a 
time series of December 2013 was used for the prediction of 
January 2014; more precisely, the data of December 2013 
were analyzed to estimate the order of the corresponding 
ARMA model; then, price forecasting over each day of 
January was carried out, updating the values of the ARMA 
model coefficients. This process was sequentially repeated 
over the years of 2014 and 2015, so the error related to the 
FEP was statistically investigated.  

The results related to the ARMA model’s coefficients of 
the second HWEP database are shown in Table III, while a 
histogram of forecasting error is presented in Fig. 7, where the 
mean and standard deviation are estimated as 0.9711 €/MWh 
and 9.5224 €/MWh, respectively. The incorporation of these 
data in optimal BESS operation is carefully described in 
subsections IV-B, IV-C, and IV-D. 

B.  Operation of an Independent BESS 
This sub-section illustrates the operation of an independent 

BESS with the structure shown in Fig. 1 (ܰ=1) conformed by 
2V-cells of ܥଵଵ =1000 Ah with ܱܵܥ

ଵ =0.3, an initial SOC 
equal to 0.3 (ܱܵܥଵ=0.3), 200 serial-connected cells ( ௦ܰ

ଵ=200), 
and one string (ܰଵ=1). The maximum charging or discharging 
current per cell was adjusted to 100 A/cell (ܫெଵ ଵଵܫ= ). The 
actual electricity price and the FEP of February 8, 2016, as 
previously described, were jointly used with an integer-coded 
GA with 200 individuals (200=ܫ), 100 generations (100=ܩ), a 
crossover rate equal to 90% (ܺ=90%), and a mutation rate of 
 The ambient temperature was assumed to be .(%1=ܯ) 1%
constant, equal to 298K ( ܶ,௧

 =298K ⦡ ݐ = 1, … ,24), which 
means its effects on the LAB are not considered.  

 
TABLE I 

AUTOREGRESSIVE PARAMETERS 
߶ଵ  ߶ଶ ߶ଷ ߶ସ ߶ହ 
2.7199 -2.7750 1.1257 -0.0962 0.0155 

 
TABLE II 

MOVING AVERAGE PARAMETERS 
 ଶߠ ଵߠ

-1.6858 0.9397 
 

 
Fig. 6.  Actual and predicted electricity prices (2/8/2016). 
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TABLE III 
ARMA MODELS FOR PRICE FORECASTING DURING 2014 AND 2015. 

Year Month ܲ ܳ ܮ − ܲ − ܳ ܵ ߯ଶ(α=0.05) 
2013 Dec 10 9 204 218.592 238.322 

2014 

Jan 15 3 205 220.3015 239.4034 
Feb 5 9 188 189.1803 220.9908 
Mar 14 4 205 200.9628 239.4034 
Apr 18 20 178 201.69 210.1298 
May 18 14 191 216.7428 224.2446 
June 9 20 187 177.649 219.9058 
July 14 12 197 230.7463 243.5138 
Aug 9 15 199 216.2852 232.9118 
Sept 7 8 201 256.5014 235.0765 
Oct 10 6 207 248.3143 241.5657 
Nov 3 6 207 198.8872 241.5657 
Dec 3 16 204 206.8395 238.322 

2015 

Jan 12 2 209 248.929 243.7272 
Feb 6 2 194 252.4932 227.4964 
Mar 18 4 201 202.6716 235.0765 
Apr 6 4 206 178.048 240.4847 
May 17 13 193 198.7169 226.4127 
June 7 6 203 233.7341 237.2404 
July 6 16 201 251.1403 235.0765 
Aug 17 9 197 188.617 230.7463 
Sept 17 4 195 130.6394 228.5799 
Oct 5 4 214 249.264 249.1275 
Nov 10 20 186 170.1237 218.8205 

 

 
Fig. 7.  Histogram of electricity-price forecasting error. 
 

Fig. 8 shows the convergence of the GA completed in 
49.127 seconds. Otherwise, the behavior of the LAB during 
charging conditions was estimated by the BM considering 
߂ ோܸ=10-10.  

As can be observed, the objective function (DNC) takes 
negative values due to the fact that BESS discharging (selling 
energy to SG) has been modeled with a negative sign (sign of 
the LAB discharging current and power); during the hourly 
operation, the amount of energy expected to be sold is higher 
than the amount expected to be bought from the SG.  

The optimal LAB operation in terms of power transaction, 
battery voltage, and SOC is shown in Figs. 9 and 10, where, 
initially, BESS is charged during low-price periods in the 
early morning, is modestly discharged during late-morning 
hours, has a resting period during midday hours, is modestly 
charged during the afternoon, has a another resting period 
after this, and is heavily discharged at high-price periods 
during the night hours, following the trend of the FEP. 

 
Fig. 8.  Convergence of GA (2/8/2016). 

 
Fig. 9.  Optimal scheduling of BESS (2/8/2016). 

 
Fig. 10.  Voltage of BESS (2/8/2016). 
 

As the limit of the distribution system is not being taken 
into account in this section (unconstrained operation), a non-
strategy for BESS power reduction is applied. The forecasted 
DNC is estimated as -5.301830 € (obtained from the 
implementation of the proposed GA shown in Fig. 8), while 
the actual DNC is -4.192483 € (obtained from the application 
of the management strategy suggested by the GA over the 
actual price signal, i.e., evaluating (18) using the actual prices 
instead of the forecasted ones). This result shows a reduction 
in the expected revenue from the power transaction between 
the LAB and SG of €1.109, which is around 21% and is 
directly related to the forecasting error of electricity prices. 
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C.  Operation of a BESS Aggregator 

In this sub-section, a BESS aggregator with 15 systems, and 
with the architecture presented in Fig. 5 (ܰ=15), is analyzed 
by considering the price forecasting calculated in IV-A (the 
FEP of Fig. 6) and the optimization parameters used in IV-B. 
The data for each system are presented in Table IV with 
ܥܱܵ =0.3 ⦡ ݊ = 1, … ,15, while the maximum capacity of 
the SG imposed by the DNO is considered to be 1000 kW 
(ܵ=1000).  

 
TABLE IV 

CHARACTERISTICS OF BESSS INTEGRATED TO THE AGGREGATOR 
ଵܥ     ݊       ܰ ௦

      ܰ
  ܲ

 BESS (kWh) 
1 1000 150 15 502 4500 
2 300 50 10 34 300 
3 500 15 5 9 75 
4 250 75 15 63 562.5 
5 1500 100 20 669 6000 
6 550 30 25 92 825 
7 230 60 50 154 1380 
8 110 55 18 25 217.8 
9 750 15 5 13 112.5 
10 300 10 16 11 96 
11 270 100 14 85 756 
12 450 5 10 6 45 
13 140 15 40 19 168 
14 550 35 35 151 1347.5 
15 850 10 35 67 595 

 

Using this information, the strategies of PRC and UPR are 
analyzed and discussed.  

Regarding the PRC strategy, from the application of the 
proposed algorithm described in III-C (Algorithm III with 
ܹ ⦡ ݊ = 1, … ,ܰ defined according to (22)), the scheduling 

shown in Fig. 11 was reached; it is possible to observe how 
the proposed methodology produces a feasible schedule from 
the perspective of the DNO. To obtain these results, an 
iterative process of reduction in the maximum battery current 
ெܫ)  ⦡ ݊ = 1, … ,15) was carried out as presented in Fig. 12 and 
Table VI (second column). The entire procedure took only 
three iterations; on the one hand, the proposed methodology is 
computationally efficient due to the fact that those BESSs with 
high contributions to the SG overload experience a higher 
reduction in their maximum power transaction, which speeds 
up the convergence of the approach; on the other hand, it is 
computationally fast because the GA is computed on the BMS 
of each BESS in a decentralized manner.  

Initially, a 10h-current per cell was assumed to be a 
maximum limit (ܫெ=ܫଵ ଵܥ= /10); the overload of the SG is 
shown in Table VI in the first row and second column; to 
remove this unacceptable condition, ܫெ  was sequentially 
reduced until the values shown in Table VIII (the second 
column) and the white bars of Fig. 12 where reached.  

Table V presents the estimation of the revenue and a 
comparison between the constrained and unconstrained 
conditions, observing a considerable reduction in the 
economic benefit due to SG limitations and forecasting error. 
As the calculation process is carried out in a decentralized 
way, the computational time per iteration is similar to that 
obtained during the independent BESS operation (reported in 
IV-B). 

 
Fig. 11.  Optimal operation of BESS aggregator (2/8/2016) (PRC). 
 

 
Fig. 12.  Maximum current per cell for each BESS (2/8/2016) (PRC). 
 
 

TABLE V 
ECONOMIC PERFORMANCE OF BESS AGGREGATOR (PRC STRATEGY) 

Solution 
Daily Net Cost (€) 

Forecasted Actual 
Constrained -138.124144 -109.811260 

Unconstrained -217.344787 -165.666463 
 
 

With respect to the UPR strategy, from the application of 
the proposed algorithm described in III-C (Algorithm III with 
ܹ ⦡ ݊ = 1, … ,ܰ defined according to (23)), the scheduling 

shown in Fig. 13 was reached; it is possible to observe how 
the proposed methodology produces a feasible schedule from 
the perspective of the DNO. To obtain these results, an 
iterative process of reduction in the maximum battery current 
ெܫ)  ⦡ ݊ = 1, … ,15) was carried out as presented in Fig. 14 and 
Table VIII. The entire procedure took only eight iterations. 

As previously explained, a 10h-current per cell was 
assumed to be a maximum limit; the overload of the SG is 
shown in Table VI in the first row and third column. To 
remove this unacceptable condition, ܫெ  was sequentially 
reduced until the values shown in Table VIII (the third 
column) and the gray bars of Fig. 14 where reached.  

Table VII presents the estimation of the revenue and a 
comparison between the constrained and unconstrained 
conditions, observing a considerable reduction in the 
economic benefit due to SG limitations and forecasting error. 
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The PRC and UPR strategies could be compared by 
analyzing the obtained results; from the comparison between 
the results presented in tables V and VII, an improvement of 
8.3% of the UPR over the PRC using the FEP and 7.4% using 
actual prices could be observed. This fact can be observed 
qualitatively in figs. 11 and 13, where the amount of power 
charged and discharged to the SG have important differences, 
being higher when the UPR strategy is applied.  

However, another relevant result arises when Figs. 12 and 
14 are compared, and Table VI is analyzed because the PRC 
strategy has higher computational efficiency, as it is able to 
remove the overload of the SG more quickly (in fewer 
iterations) than the UPR strategy. This characteristic could be 
particularly useful for managing charging or discharging 
power during emergency conditions or when the operating 
conditions of the SG are under risk.  

 

 
Fig. 13.  Optimal operation of BESS aggregator (2/8/2016) (UPR). 

 
Fig. 14.  Maximum current per cell for each BESS (2/8/2016) (UPR). 
 

TABLE VI 
CONVERGENCE OF THE PROPOSED METHODOLOGY 

  (UPR)ܵ߂  (PRC)ܵ߂ ݇ 
1 700.981549652121 700.9815 
2 322.248988901942 579.4792 
3 58.0583356121276 488.557 
4 -------- 403.5581 
5 -------- 290.3378 
6 -------- 208.3285 
7 -------- 122.3642 
8 -------- 50.25158 

 

TABLE VII 
ECONOMIC PERFORMANCE OF BESS AGGREGATOR (UPR STRATEGY) 

Solution 
Daily Net Cost (€) 

Forecasted Actual 
Constrained -156.208573 -122.114593 

Unconstrained -217.344787 -165.666463 
 

TABLE VIII 
MAXIMUM CURRENT PER CELL FOR EACH BESS AND STRATEGY  

ெܫ ݊  (PRC) ܫெ  (UPR) 
1 39.704433 57.58299 
2 28.437849 17.274897 
3 49.340390 28.791495 
4 22.596897 14.395748 
5 40.559986 86.374485 
6 47.366544 31.670645 
7 17.835719 13.244088 
8 10.582127 6.334129 
9 73.519157 43.187243 
10 29.494046 17.274897 
11 23.551881 15.547407 
12 44.643180 25.912346 
13 13.588557 8.061619 
14 42.917748 31.670645 
15 76.374089 48.945542 

D.  Joint Effects of Forecasting Error and System Capacity 
In this sub-section, the effects of price forecasting error and 

SG limitations, in terms of the maximum power to be sold or 
bought by an independent or aggregated BESS, are 
statistically analyzed. 

Our analysis is carried out by evaluating the performance of 
the independent BESS previously described in IV-B (2V-cells 
of ܥଵଵ =1000 Ah, ܱܵܥ

ଵ =0.3, ܰ௦ଵ=200, ܰ
ଵ=1) over the years 

of 2014 and 2015, considering different values of the 
maximum charging or discharging current, specifically 
ெଵܫ ଵଵܫ)0.2}= ), ଵଵܫ)0.4 ), ଵଵܫ)0.6 ), ଵଵܫ)0.8 ), ଵଵܫ }. The FEP and 
actual values used in this analysis were those previously 
estimated and described in IV-A (specifically, those estimated 
by using the second HWEP database of the period of 
December 2013 to December 2015).  

As stated before in IV-C, a determined BESS (݊) integrated 
with a determined aggregator reduces its charging or 
discharging power to guarantee the successful operation of the 
BESS aggregator from the point of view of the DNO; 
depending on the operating conditions and the SG 
characteristics, this reduction could be considerable or not. To 
evaluate the perspective of each BESS incorporated in the 
aggregator (with high and low reduction of the charging or 
discharging power), an independent BESS constrained to 
different values of ܫெଵ  (specifically between 20% and 100% of 
ଵଵܫ ) has been investigated. 

The most important results related to this experiment are the 
predicted economic benefit (obtained by evaluating the 
scheduling obtained from the GA using the FEP), the actual 
estimated benefit (obtained by evaluating the near-optimal 
solution suggested by the GA on the actual electricity prices), 
and the corresponding estimation error (estimated as the 
subtraction between the forecasted and actual benefit).  

The corresponding results obtained from the estimation of 
all of these variables are presented as histograms of frequency 
in Figs. 15-17, while the mean and standard deviation values 
are shown in Tables IX, X, and XI. In Fig. 15, all forecasted 
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DNCs are negative to maximize the economic benefit. 
However, according to the results shown in Fig. 16, when 
actual values are evaluated, some positive values arise as a 
consequence of the forecasting error, which represents a total 
loss of revenue due to the difference between the FEP and the 
actual values. Similarly, some values of the DNC highly 
influenced by forecasting error appear as negative estimation 
errors in Fig. 17 due to the fact that in some days, the revenue 
estimated using the FEP was higher than that obtained when 
the actual values were finally evaluated. 

In addition, the reduction of the economic benefit could be 
observed in the first rows of Tables IX and X, in which the 
mean values of the forecasted DNC are higher than those of 
the actual DNC due to the fact that we always expect a higher 
economic benefit than that which occurs when the actual 
values arise. This fact directly influences the planning problem 
and the expected revenue during the lifetime of the system and 
should be considered during the planning evaluation process. 

Regarding the SG limits, it is possible to observe how, as 
the maximum battery current is reduced (to accommodate the 
BESS power into the SG), the economic benefit and its 
variability are considerably reduced. In a general sense, those 
BESSs with low reductions of their charging or discharging 
capabilities are going to observe reductions of their economic 
benefits mainly influenced by forecasting error. On the 
contrary, those BESSs with high reductions of their 
capabilities are going to observe reductions of their economic 
benefits mainly influenced by the SG power limits. 

 
Fig. 15.  Histogram of forecasted daily net cost. 

 

 
Fig. 16.  Histogram of actual daily net cost. 

 
Fig. 17.  Histogram of estimation error on daily net cost. 
 

TABLE IX 
MEAN AND STANDARD DEVIATION OF FORECASTED DNC 

ெଵܫ ଵܫ (ଵܫ)0.8 (ଵܫ)0.6 (ଵܫ)0.4 (ଵܫ)0.2   
Mean -1.041 -1.96896 -2.75785 -3.35447 -3.6694 
Dev. 0.553846 1.118292 1.683701 2.192115 2.511537 
 

TABLE X 
MEAN AND STANDARD DEVIATION OF ACTUAL DNC 

ெଵܫ ଵܫ (ଵܫ)0.8 (ଵܫ)0.6 (ଵܫ)0.4 (ଵܫ)0.2   
Mean -0.8469 -1.5945 -2.1973 -2.62869 -2.8732 
Dev. 0.559271 1.123313 1.682101 2.133537 2.441735 
 

TABLE XI 
MEAN AND STANDARD DEVIATION OF ESTIMATION ERROR ON DNC 

ெଵܫ ଵܫ (ଵܫ)0.8 (ଵܫ)0.6 (ଵܫ)0.4 (ଵܫ)0.2   
Mean -0.1941 -0.37446 -0.56055 -0.72578 -0.7962 
Dev. 0.519521 1.011225 1.497099 1.887078 2.084716 

V.  CONCLUSIONS 
In this paper, a comprehensive methodology for the optimal 

management of the LAB, operating both independently and as 
an aggregated system in the RT pricing environments, has 
been developed and illustrated through some representative 
examples. The proposed methodology is based on solving the 
optimization problem using an integer-coded GA that is 
formulated to minimize the DNC, thereby allowing the 
incorporation of the non-linear characteristics of the LAB, 
which are related to voltage-current behavior and gassing 
phenomena, charge regulation, and the non-linear efficiency of 
a bidirectional conversion system. Moreover, the technical 
limitations of the SG imposed by the DNO, which are related 
to the maximum system capacity, have been taken into 
account. Hence, the proposed methodology works in a 
decentralized manner, demonstrating excellent computational 
efficiency and the ability to provide a feasible and reliable 
solution from the perspective of the DNO, thus guaranteeing 
the safe incorporation of the BESS on a massive scale, which 
is of major importance. Using a representative amount of data 
from the Spanish electricity market, the effects of forecasting 
error and the SG limitations on the performance of a BESS 
aggregator have been evaluated, concluding that the economic 
benefit of those BESSs with relatively low reductions of their 
power-transaction capabilities is mainly influenced by 
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forecasting error, while the economic benefit of those BESSs 
with relatively high reductions of their power-transaction 
capabilities is mainly influenced by the loadability of the SG. 
In a general sense, the obtained results reveal the importance 
of considering the specific type of BESS to be installed (in our 
case, the LAB), all of its associated components (charge 
controller and power converter) and the optimization 
technique used to analyze its behavior, the specific 
competition rules among the BESSs integrated in the 
aggregator (power reduction by capacity or uniform power 
reduction), and the mathematical tool used to carry out the 
FEP (the ARMA model) and its associated error, in the 
optimal operation of BESSs from an economic perspective. 
Investments in the expansion and planning of distribution 
systems directly improve the economic performance of the 
BESSs integrated with it. Hence, governmental incentives to 
promote the massive deployment of BESSs should be 
accompanied by important investments in distribution-system 
expansion. 
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