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Abstract—The recent interest in the smart grid vision and the 
technological advancement in the communication and control 
infrastructure enable several smart applications at different 
levels of the power grid structure, while specific importance is 
given to the demand side. As a result, changes in load patterns 
due to demand response (DR) activities at end-user premises, 
such as smart households, constitute a vital point to take into 
account both in system planning and operation phases. In this 
study, the impact of price based DR strategies on smart 
household load pattern variations is assessed. The household load 
data sets are acquired using model of a smart household 
performing optimal appliance scheduling considering an hourly-
varying price tariff scheme. Then, an approach based on 
artificial neural network (ANN) and wavelet transform (WT) is 
employed for the forecasting of the response of residential loads 
to different price signals. From the literature perspective this 
study the contribution of this study is the consideration of the DR 
effect on load pattern forecasting, being a very useful tool for 
market participants such as aggregators in pool-based market 
structures, or for load serving entities to investigate potential 
change requirements in existing DR strategies, or to effectively 
plan new ones.  

Index Terms—Demand response, home energy management, 
electric vehicles, smart household, load forecasting, artificial 
neural networks, wavelet transform.  
 

NOMENCLATURE 
 
The main nomenclature used throughout the paper is stated 

below. Other symbols and abbreviations are defined where 
they first appear.  

 

A.  Indices 
 .period of the day index in time units [h or min]   ݐ
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B.  Parameters 
 
 .௝     approximate series at level jܣ
 .௠  energy requirement of smart-appliance ݉ [kWh]ܧܣ
 .ா௏    charging efficiency of the EVܧܥ
 .ா௏    charging rate of the EV [kW per time interval]ܴܥ
 .௝     detail series at level jܦ
 .ா௏    discharging efficiency of the EVܧܦ
ா௏ܴܦ    discharging rate of the EV [kW per time interval]. 
 ௠  period in which the operation of smart-applianceܨ

݉ should be finished. 
ܰ   maximum power that can be drawn from the grid 

[kW]. 
௧ܲ
௢௧௛௘௥     inelastic power demand of the household [kW]. 

ܴ ௠ܲ   rated power of smart-appliance ݉ [kWh]. 
ܵ௠  period in which the operation of smart-appliance 

݉ should be started. 
ா௏,௜௡௜ܧܱܵ   initial state-of-energy of the EV [kWh]. 
 ா௏,௠௔௫  maximum allowed state-of-energy of the EVܧܱܵ

[kWh]. 
ா௏,௠௜௡ܧܱܵ   minimum allowed state-of-energy of the EV 

[kWh]. 
ܶ௔     arrival time of the EV. 
ܶௗ     departure time of the EV. 
௠ܶ
ௗ௨௥    duration of operation of smart-appliance ݉. 

ܶ௙,௖     period at which EV should be fully charged. 
ܶ௙,ௗ   period at which EV should be fully discharged, if 

applicable.  
  .time step duration [h]    ߒ߂
௧ߣ
௕௨௬   price of energy bought from the grid [cents/kWh]. 

 
C.  Variables  
 
௠ܲ,௧
஺    power of smart-appliance ݉ during period ݐ 

[kW]. 
௧ܲ
ா௏,௖௛     EV charging power [kW]. 
௧ܲ
ா௏,ௗ௜௦    EV discharging power [kW]. 
௧ܲ
ா௏,௨௦௘ௗ   power used to satisfy household load from the EV 

[kW]. 
௧ܲ
௚௥௜ௗ     power supplied by the grid [kW]. 

 .௧ா௏    state-of-energy of the EV [kWh]ܧܱܵ
 ௠,௧   binary variable - 1 if smart-appliance ݉ is ONݑ

during period ݐ, else 0. 
 ௧ா௏  binary variable - 1 if EV is charging during periodݑ

t, 0 else. 
 ௠,௧   binary variable - 1 if smart-appliance ݉ startsݕ

during period ݐ, else 0. 
 ௛,௠,௧  binary variable - 1 if smart-appliance ݉ stopsݖ

during period ݐ, else 0. 
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II.  INTRODUCTION 
A.  Motivation and Background 

HERE is an increasing trend for smart grid applications in 
different parts of the world, also promoted by incentives 
given by the governments of leading countries. A central 

concept within the smart grid vision is to enable the active 
participation of demand side resources instead of simply 
considering them as passive power consumers [1],[2]. In this 
respect, demand response (DR) strategies are adopted in order 
to induce effective changes in the load demand instead of only 
adapting the generation side to load changes [3],[4]. 

Residential end-users are responsible for a significant 
portion of electrical energy consumption, reaching up to 40% 
[5], and therefore residential DR strategies are given specific 
importance. Smart households may act in order to lower their 
electricity bills or can be directly controlled by load serving 
entities (LSEs) in order to mitigate demand peaks. For the 
purpose of enabling smart end-user premises at household 
level, home energy management systems (HEMS) are 
employed to allow for the effective operation of such end-user 
points in coordination with LSEs under DR strategies [6]. 
HEMS receive relevant input information (such as pricing data 
that can be day-ahead, hour-ahead, peak power limits and 
warnings for planned contingencies) from LSEs and schedule 
the operation of all electrical loads of the household with a  
pre-defined aim under imposed constraints by means of LSE 
restrictions and consumer preferences.   

As regards the current state of HEMS adoption around the 
world, major differences can be noticed from region to region. 
The U.S. leads the adoption of HEMS. European utilities are 
also supporting relevant pilot projects [7]. Nevertheless, one 
may argue that since benefits for both the consumers and the 
utilities have already been recognized and because numerous 
major companies (including Siemens, Intel, etc.) have already 
rendered commercially available HEMS [8], their penetration 
rate in the near future is likely to increase. There are also 
several other indications that the residential end-users would 
be willing to adopt HEMS in the future.  

Currently, the main barrier to the widespread adoption of 
such systems is their cost. However, in the longer-term, the 
investment costs can be met by the benefits for the consumer. 
Typically hourly prices are lower than flat rates. Furthermore, 
subsides and other incentives may be offered by utilities since 
shifting electricity eases the stress on the power distribution 
system (improving reliability, limiting ageing of equipment, 
etc.) [9]. A further crucial concern is the preservation of the 
comfort level of the end-users. However, several appliances 
(such as washing machines, dishwashers and electric vehicles 
(EVs)) can be operated in such a way that the demand is 
reduced during relatively high price periods without 
compromising end-user’s comfort. For such smart households 
and other end-user premises, price elasticity of the electrical 
demand is strongly related to real-time pricing, indicating the 
relative change in demand that would result from a change in 
the electricity price [10].  

Modeling the reaction of a consumer to price variations 
through elasticity involves the determination of the so-called 
elasticity matrix that is created by analyzing the behavior of 
the consumer, as well as the possible facilities the consumer 
may own, such as energy storage systems (ESSs), distributed 

generation (DG) and EVs or the actual ability of shifting the 
power requirements [11]. This matrix-based consideration of 
elasticity is basically employed as a feedback term when used 
in electricity price adjustment procedure [11]. This process 
requires the exact knowledge of the elasticity coefficients, 
something that is not easily defined a priori. Especially for the 
smart household structure that can include several 
thermostatically and non-thermostatically controllable 
appliances with different characteristics, it can even be less 
efficient and may not be effective to provide elasticity 
matrices that would also need relevant updates. Thus, to 
overcome the necessity of exact knowledge of elasticity 
coefficients and the mentioned assumption based comparison, 
load forecasting tools that will also consider price elasticity of 
the load variations can be developed, serving also as a tool for 
aggregators to provide a more effective planning of their 
actions in day-ahead markets.  
B.  Literature Overview 

A broad literature has been dedicated to the implementation 
of various load forecasting strategies from different points of 
view. Borges et al. [12] employed an autoregressive (AR) 
model for the forecasting of individual substation loads and 
then aggregated the obtained forecasts with bottom-up and 
top-down methodologies. However, the detailed dynamics of 
different types of individual end-users (residential, industrial 
and commercial) were not considered in [12], a fact that 
prevents the possibility of implying different pricing schemes 
to different end-user types due to their usage habits and the 
possibility to respond to DR strategies. Ozturk et al. [13] 
provided a two-side interactive DR operation and re-
structuring between utility and a residential end-user, in which 
the utility forecasts the behavior of residential load to re-
structure its pricing strategy in order to alleviate peaks in the 
normal load pattern. However, the methodology in [13] is 
based on firstly forecasting the normal load pattern and then 
providing a DR strategy to reshape this pattern. Byun et al. 
[14] employed a load forecasting strategy as a part of their 
smart energy distribution and management system to derive 
load patterns and update through end-user usage data, but 
neglected the direct impacts of imposed pricing schemes on 
load pattern variations. Chaouch [15] applied a methodology 
to forecast intra-day household load pattern by using historical 
data based on usage habits, but has also neglected the use of 
pricing-load pattern data pairs that can be significantly useful 
for aggregators to determine the way in which end-users react 
to pricing schemes aiming to effectively schedule their short 
and mid-term activities. Behnke et al. [16] utilized an artificial 
neural network (ANN)-based load forecasting model as a part 
of a smart micro-grid energy management system. 
Nevertheless, they have only considered historical data based 
forecasted load as a basis for considering the possible 
deviations caused by DR actions. Ghelardoni et al. [17] 
proposed a long-term energy load forecasting methodology 
that was presented as a useful tool for smart grid applications 
to better observe the load usage statistics. As a general 
informative study, Hernandez et al. [18] provided a detailed 
survey on load forecasting techniques. 

These papers together with other studies not referred here 
have provided valuable contributions to the application of 
smart grid concepts through forecasting techniques. However, 

T
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none of these studies has considered the load pattern 
forecasting of a residential end-user committed to price-based 
DR strategies aiming to investigate the impacts of different 
pricing signals on the expected end-user load. Indeed, this is a 
novel point of the present study and the basis of a useful tool, 
especially for aggregators and system operators in order to 
achieve both economic and technical benefits.  

As a supporting document describing why and how the 
lack of such price-elastic demand forecasting tools is affecting 
the loads and Independent System Operators (ISOs), [19] 
analyzed the California ISO (CAISO) market using real data. 
The analysis provided in [19] concluded that price spikes can 
occur in day-ahead and real-time markets for demand bids 
with high-level of elasticity due to several factors. One major 
factor is that the accuracy of a load forecasting realized by an 
ISO can decrease due to not considering significant changes in 
demand induced by changes in prices. Thus, the authors of 
[19] recommended the development of load forecasting tools 
that also consider the impact of price elasticity on demand. 
This issue is also analyzed in [20] and [21]. In this study, price 
elasticity of demand is explicitly taken into account in the 
forecasting procedure. In this way, a tool apt to be used by 
operators of systems offering extensive residential DR 
programs can be developed as suggested in [19]-[21].   
C.  Contributions 

In this study a HEMS model is used to construct price-load 
pairs which are applied to a hybrid wavelet transform (WT)-
ANN load forecasting approach. The contribution of this study 
is two-fold: 
 The proposed study provides a direct mapping between 

input price patterns and output DR driven load patterns. 
This scheme will allow the LSEs to further improve their 
planning by changing the pricing scheme, or by imposing 
further limitations of peak power if the expected load 
pattern is observed to need restrictions.  

 There are two major problems in defining the price 
elasticity of a smart household that are bypassed by 
applying the proposed methodology: 1) the concept of 
price elasticity requires the knowledge of a set of “basis” 
or “expected” prices and consumption according to which 
the calculations should be performed, and 2) physical 
constraints such as the availability of the EV, user comfort 
preferences etc. complicate the calculation of cross 
elasticity.  

D.  Organization 
The remainder of the paper is organized as follows: 

Section III discusses the approaches targeting at forecasting 
the demand of an aggregated group of consumers or an 
individual consumer. Section IV describes the MILP model of 
the HEMS and the WT-ANN forecasting approach for the load 
pattern elasticity assessment driven by DR. Section V 
describes the results obtained for different test cases. Finally, 
in Section VI, conclusions are drawn.  

 
III.  FORECASTING THE LOAD OF AN AGGREGATION VERSUS A 

SINGLE CONSUMER 
Extensive literature has been devoted to the forecasting of 

load demand. Two main categories of studies may be 
identified in terms of the approach that is followed: either 

forecasting is performed considering an aggregation of 
consumers, or for an individual consumer, even at the level of 
a specific appliance. Regarding the first category, there has 
been a great deal of studies that assess the applicability of 
different approaches such as time series models, ANN and 
Fuzzy Logic (FL) on load forecasting at distribution 
transformer, region and country level. The adequate accuracy 
of these approaches is a result of the relatively regular 
behavior of an aggregation of a wide range of loads. On the 
contrary, a limited –yet increasing– number of studies with 
respect to individual consumer demand forecasting have been 
published so far, mainly due to two reasons: (i) lack of high-
resolution data for these small-scale units and, (ii) dynamic 
and stochastic load profiles affected greatly by consumer 
habits and usage patterns, appliance specifications, seasonal 
changes, etc. The main difference between forecasting the 
load of a group of consumers and the load demand of a single 
end-user is that the former can be accurately predicted based 
only on historical data. Nevertheless, despite these differences 
and the complexity involved in forecasting individual load 
profiles, both points of view are areas of intense research.  

 
IV.  METHODOLOGY 

A.  HEMS Model for Smart Household Operation 
The HEMS model that is employed in this study is a 

variant of the model that has been presented in [22]. Firstly, 
the HEMS model is presented in order to explain how the 
training pairs required for the forecasting approach are 
obtained. The HEMS regulates the operation of the smart 
household considering prices and other signals from the LSE, 
load consumption of smart appliances, etc., together with 
different consumer preferences. It should be noted that for the 
sake of simplicity the possibility of selling energy back to the 
grid is not considered in this study.  

The objective is to minimize the total daily cost of 
electricity consumption. The price variables given in (1) are 
time dependent, a fact that implies time varying prices for 
bought energy, where the optimization variable is the total 
power bought from the grid at time t ( ௧ܲ

௚௥௜ௗ).  
ܥܶ ݁ݖ݅݉݅݊݅ܯ = ෍ ௧ܲ

௚௥௜ௗ ∙ ߒ߂ ∙ ௧ߣ
௕௨௬

௧

 (1) 

 

The constraints presented hereafter comprise the basic 
body of the HEMS operation. Any time granularity can be 
used simply by selecting the appropriate ߒ߂. For instance, for 
a 15-minute interval 0.25 = ߒ߂ h.  
Power Balance 

Equation (2) states that the total load consisting of the 
inelastic residential load ( ௧ܲ

௢௧௛௘௥), the charging needs of  
the EV ( ௧ܲ

ா௏,௖௛) and the smart-appliances ( ௠ܲ,௧
஺ ) is either 

satisfied by the grid ( ௧ܲ
௚௥௜ௗ) or by the procurement of energy 

from the EV ( ௧ܲ
ா௏,௨௦௘ௗ). 

௧ܲ
௚௥௜ௗ + ௧ܲ

ா௏,௨௦௘ௗ = ௧ܲ
௢௧௛௘௥ + ௧ܲ

ா௏,௖௛ +෍ ௠ܲ,௧
஺  ,  (2) ݐ∀

EV Modeling 

Equation (3) enforces the fact that the actual power 
provided by the EV discharge ( ௧ܲ

ா௏,ௗ௜௦ ∙  ா௏) is equal to theܧܦ
power to be used to cover a portion of the household needs 



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2585122, IEEE
Transactions on Industrial Informatics

 

 

4

( ௧ܲ
ா௏,௨௦௘ௗ). Constraints (4) and (5) impose a limit on the 

charging ( ௧ܲ
ா௏,௖௛) and discharging ( ௧ܲ

ா௏,ௗ௜௦) power of the EV. 
The idle EV state can be described by any of these constraints 
by the time the respective power variable is allowed to have 
zero value. Equations (6)-(10) describe the state-of-energy 
(SOE) of the EV. Constraint (6) forces the SOE at every 
interval (ܱܵܧ௧ா௏) to have the value that it had at the previous 
interval (ܱܵܧ௧ିଵா௏ ), plus the actual amount of energy that is 
transferred to the EV battery if it is charging at that interval, 
minus the energy that is subtracted if the EV battery is 
discharging during that interval. At the arrival time of the EV 
to the household, the SOE of the EV coincides with the initial 
SOE of the EV (ܱܵܧா௏,௜௡௜), as described by (7). Constraint (8) 
limits the SOE of the EV battery to be less than its capacity 
 Similarly, constraint (9) prevents the deep .(ா௏,௠௔௫ܧܱܵ)
discharge of the EV battery by imposing a least SOE limit 
 Equations (10) and (11) represent the option of .(ா௏,௠௜௡ܧܱܵ)
having the EV battery fully charged or discharged at the least 
SOE at pre-selected time intervals. Finally, Eq. (12) ensures 
that all the variables related to EV modeling are zero apart 
from the time interval between arrival time of the EV to the 
household (ܶ௔) and departure time of the EV from the 
household (ܶௗ). 
 

௧ܲ
ா௏,௨௦௘ௗ = ௧ܲ

ா௏,ௗ௜௦ ∙ ா௏ܧܦ , ݐ∀ ∈ [ܶ௔, ܶௗ] (3) 

௧ܲ
ா௏,௖௛ ≤ ா௏ܴܥ ∙ ௧ா௏ݑ , ݐ∀ ∈ [ܶ௔, ܶௗ] (4) 

௧ܲ
ா௏,ௗ௜௦  ≤ ா௏ܴܦ ∙ (1 − ,(௧ா௏ݑ ݐ∀ ∈ [ܶ௔, ܶௗ] (5) 

  
௧ா௏ܧܱܵ = ௧ିଵா௏ܧܱܵ + ா௏ܧܥ ∙ ௧ܲ

ா௏,௖௛ߒ߂ − ௧ܲ
ா௏,ௗ௜௦ߒ߂,    

ݐ∀ ∈ [ܶ௔ , ܶௗ] 
(6) 

௧ா௏ܧܱܵ = ா௏,௜௡௜ܧܱܵ , ݐ ݂݅ = ܶ௔ (7) 
௧ா௏ܧܱܵ ≤ ா௏,௠௔௫ܧܱܵ ݐ∀    , ∈ [ܶ௔ , ܶௗ] (8) 
௧ா௏ܧܱܵ ≥ ா௏,௠௜௡ܧܱܵ ݐ∀    , ∈ [ܶ௔ , ܶௗ] (9) 

௧ா௏ܧܱܵ = ா௏,௠௔௫ܧܱܵ , ݐ ∀ ≥ ܶ௙,௖ ∈ [ܶ௔, ܶௗ] (10) 
௧ா௏ܧܱܵ = ா௏,௠௜௡ܧܱܵ , ݐ ݂݅ = ܶ௙,ௗ ∈ [ܶ௔, ܶௗ] (11) 

௧ா௏ܧܱܵ = ௧ܲ
ா௏,௨௦௘ௗ = ௧ܲ

ா௏,ௗ௜௦= ௧ܲ
ா௏,௖௛=0,    ∀ݐ ∉

[ܶ௔, ܶௗ] 
(12) 

Smart Appliances 
In this paper, smart-appliances are considered as appliances 

that need to be supplied with a fixed power for a specific 
amount of time. The total operation is considered flexible by 
means of shifting the time at which they start their operation. 
Constraints (13)-(19) hold only if the smart appliances 
participate in the coordination scheme; else, they are treated as 
inelastic load. The presented formulation can be easily 
extended to include also appliances that can interrupt their 
operation and continue at a later time.  

෍ ௠ܲ,௧
஺

ி೘

௧ୀௌ೘

=  (13) ݐ∀    , ௠ܧܣ

௠ܲ,௧
஺ = ܴ ௠ܲ ∙  (14) ݐ∀    , ௠,௧ݑ

௠,௧ݕ = ௠,(௧ାݖ ೘்
೏ೠೝ) ,    ∀(15)  ݐ 

෍ݕ௠,௧
௧∈்

=  (16) ݐ∀    , 1

෍ݖ௠,௧
௧∈்

=  (17) ݐ∀    , 1

௠,௧ݕ + ௠,௧ݖ ≤  (18) ݐ∀    , 1

௠,௧ݕ − ௠,௧ݖ = ௠,௧ݑ −  (19) ݐ∀    , ௠,(௧ିଵ)ݑ
Power Transaction Restrictions 

Equation (20) implements the logic of power exchange.  
ܰ is a positive integer value that imposes a limitation on the 
power that can be drawn from the grid. This limitation may 
represent a restriction imposed by the aggregator or the 
responsible entity for the end-user electrification in order to 
face the situation where in its control area exist multiple 
households that own HEMS. The implementation of a time-
varying peak power drawn from the grid limit as a different 
DR strategy can be easily adapted on this formulation, by 
replacing the ܰ by a time-dependent parameter.  

௧ܲ
௚௥௜ௗ ≤  (20) ݐ∀    ,ܰ

Different consumer options and behavioral details can be 
expressed by fixing the charging and discharging variables of 
the EV to be zero in the appropriate time intervals. 

B.  Forecasting Model 
B.1. Proposed Structure 

The uncertainty in the generation and consumption values 
in power systems brings about severe problems in maintaining 
the reliability of system operations, such as frequency 
regulation and scheduling. In order to alleviate these impacts, 
forecasting systems are presented as the most realistic and 
cost-effective strategy among the other possible solutions. The 
efficiency of the forecasting systems depends mainly on the 
accuracy of the predictions. In the literature, particular interest 
has been demonstrated in addressing the challenging question 
of how to produce better forecasts required to maintaining the 
reliability of the system operations. Conventional statistical 
models have been widely used in the literature, but ANN-
based approaches have dominated the studies in the last 
decades due to their capability of identifying the relation 
between the input and output data in time series. The main 
interest has recently been focused on advanced combined 
models, which exploit the unique advantages of single models 
in order to decrease the prediction error [23]. For this purpose, 
a combined forecasting model based on WT and ANN is 
employed in this study. 

Most of the statistical forecasting methods presented in the 
literature have a similar structure in terms of their use of input 
data, i.e., 1) they use a large amount of historic data and, 2) 
they update the datasets with recent measurements. These 
approaches generally follow a recursive approach in the 
prediction process. The input data set is completely updated 
once the real measurements are obtained. Then, the recursive 
process continues for another given time step. However, this 
method causes the final prediction error to increase gradually, 
aggregating the error value obtained at each step.  

In contrast with the mentioned conventional methods used 
for updating the input dataset, a totally different approach that 
is based on “one-time training” is employed in this study. 
Thus, the time-consuming training stage repeated for each new 
data is avoided in the model. This feature is of great 
importance for the approaches including a data decomposition 
method, since these methods have a slow response to new 
data. Furthermore, to reduce the duration of the training stage, 
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a data refinement process is implemented in this study. With 
this objective, all the available training data are applied to a 
data selection model that basically performs a partial 
correlation analysis between the test set and input set, and 
selects only the most informative data to be used in training 
stage. The mentioned process facilitates and speeds up the 
training phase considerably without causing any accuracy 
decrease in the test set.  

In order for this tool to be practically adopted by an LSE, 
the required data should be readily accessible. The proposed 
approach requires the daily price and load variation during the 
training phase, while during the deployment phase only the 
daily price variations are required. Regarding the electricity 
prices, the day-ahead hourly-varying prices are announced 
several hours before the beginning of the settlement day. An 
LSE or an aggregator is a market participant and as a result is 
de facto aware of the market prices.  

Nowadays in several markets there are entities that offer 
the opportunity to residential consumers to enroll to time-
varying pricing programs. In current practice there are two 
ways of pricing the consumer under such programs: 1) the 
end-user is aware the “previous” day of the day-ahead prices 
and is priced according to them, e.g. in MISO, and 2) the end-
user is aware of the day-ahead prices but is priced based on 
the real-time prices that are not known a priori, e.g. in PJM. 
The proposed approach addresses the first case. Furthermore, 
because of the fact that these programs have been 
commercialized and aim to stimulate end-user awareness, the 
relevant pricing data are easily accessible and as a result this 
study utilizes real pricing data. Practical evidence, i.e. the 
increasing adoption of smart meters, also suggests that 
aggregators will be able to access data concerning both prices 
(since they are market participants) and individual power 
consumption profiles directly through the advanced metering 
infrastructure installed at residential-end user premises. 
However, despite the availability of relevant enabling 
technologies, for a series of reasons that were previously 
discussed, the so-called “smart households” that employ 
automated decision making systems (HEMS) to control loads 
such as EVs and “smart” appliances are not yet popular [9]. 
As a result, relevant data are scarce. For this reason, the load 
profile for the residential consumer is generated employing the 
HEMS that was presented in Section III.A, assuming that the 
end-user is rational (i.e. aims to minimize the electricity 
procurement cost). Thus, it should be clearly stated that the 
HEMS model is not a key-element of the proposed approach; 
it is a tool to provide the relevant training and testing pairs to 
analyze the proposed methodology. 

The proposed power prediction model consists of four 
stages, as shown in Fig. 1. In the first stage, price values are 
normalized for the purpose of deriving time-independent 
values. The most relevant data are selected by a correlation 
analysis to increase prediction accuracy, as well as to decrease 
computational time. Afterwards, WT is employed to 
decompose the power series into a number of more regular 
subseries in the training stage, the future values of which are 
separately forecasted using an ANN model. Finally, the 
predictions of the subseries are aggregated to reach the power 
forecasts of the original values.  

It is rendered clear that the approaches including a 

decomposition method are more appropriate to reveal the 
relation between two data sets in comparison with the single 
prediction models. Another important point is that the 
decomposition process enables to predict each subset, i.e., 
approximation and detail levels, with a different configuration 
of an ANN model. In other words the numbers of layers and 
neurons, type of activation functions and size of training data 
sets can be determined separately with respect to the data and 
the results obtained in the training stage. The different stages 
are explained in the following sections.  
Normalization 

The input signal for the normalization stage is the daily  
24-h price series in cents per kWh. The normalization stage 
consists of three parallel operations that include normalization 
by division to minimum, average and maximum values of the 
mentioned 24-h daily price series. The main aim of the 
normalization is firstly to merge prices of different days in the 
same logic as the HEMS structure mainly decides the 
household operation considering the value of the price of an 
hour relevant to other prices in different hours. For example, 4 
cents/kWh can be the average value of a sample day, while the 
same value can be the maximum price in another day. Thus, if 
we consider directly the price series without normalization, 
then the forecasting strategy will try to allocate the same 
output to these 4 cents/kWh input despite the fact that a 
HEMS would generally allocate more power in the case of 
being the average rather than the maximum price. The reason 
for normalizing by division to all minimum, average and 
maximum is to further capture the position of the data 
considering all major aspects of a 24-h data series. Therefore, 
three normalized time series are used as an input in the 
correlation analysis-based data selection stage.  

 
Fig. 1. Flowchart of the proposed DR based load pattern forecasting strategy. 



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2585122, IEEE
Transactions on Industrial Informatics

 

 

6

Data Selection 
The performance is generally proportional to the amount of 

training data in forecasting methods. However, a large set of 
ineffective data might cause a highly complex input-output 
mapping function in the training stage, which results in 
prediction performance degradation and computational burden 
increase in the forecasting stage. Therefore, an input data 
selection method is used in this paper to filter out the 
irrelevant data before training. In order to determine the most 
informative inputs, a correlation analysis between the 
normalized price values for the target days and candidate price 
inputs in the training set is applied. When the correlation value 
of an input candidate day is greater than a certain threshold, 
which means that it has a more similar profile with the price 
values of the target day than most of the other candidates, the 
data of this day are considered as a relevant feature. 
Otherwise, these daily data are filtered out. 
WT Model 

Among the various data decomposition methods (WT, 
Empirical Model Decomposition, blind source separation 
techniques, etc.), WT is considered to be the most widely 
accepted model for forecasting applications due to its ability 
of time-frequency analysis. WT decomposes time series into a 
set of subseries at different frequency levels, as displayed in 
Fig. 1. These subseries present a relatively more stationary 
behavior than the original series. These series can then be 
forecasted with a lower error. In this study, a three-level 
wavelet decomposition, which generates one approximation, 
A3, and three detail components, D1, D2 and D3 at the end, is 
used with Daubechies wavelet of order 4 by carrying out a 
detailed analysis on the effects of these parameters on the 
model performance.  
ANN Model  

In this work, the future values of the subseries obtained by 
the means of WT are predicted with a multilayer feedforward 
back propagation (FFBP) network. Several tests on the 
training data are conducted to select the number of layers and 
neurons for each case. Lastly, the total power prediction is 
calculated while aggregating the predicted values of the 
subseries. It should be noted that hours of the day are also 
applied to the ANN models as an input in addition to the 
normalized and refined price values. High correlation between 
the power consumption values and time during a day helps to 
improve prediction performance.  

B.2. Benchmark Models 
In order to evaluate the accuracy of the realized predictions, 

three benchmark methods are also used in this study, namely, 
a Linear Model, an ANN model and a combination of these 
two models. In the first model, a linear equation is obtained by 
relating normalized price values and power data in the training 
set, which is also the underlying idea of all conventional time 
series models such as AR and Autoregressive Moving 
Average (ARMA). Price test data are then used to calculate 
target power values. The second model has been widely 
implemented in the literature of load forecasting providing 
reasonable accuracy. Among the different network types, a 
multilayer FFBP network is employed in the study because of 
its relatively simple structure. In order to improve model 

performance, the network specifications such as the type of 
training algorithm, number of layers and hidden neurons and 
type of transfer function are determined with a preliminary 
study in the training set. Briefly, a three-layer network, i.e., 
one input layer, one hidden layer and one output layer is 
adopted, and the number of input and output layers is chosen 
as that of input vector (i.e., four) and that of the next power 
forecast (i.e., one), respectively. Regarding the number of 
hidden layer neurons, an analysis is carried out considering 
model complexity and results obtained in the training stage, 
resulting in a different value for each model configuration.  
 It has been seen from the results of both benchmark models 
that Linear Model is more effective for the forecast of the 
periods in which the input-output mapping function exhibits a 
relatively more stable behavior. Similarly, the non-uniform 
periods are modeled with a higher precision using the ANN 
model. Based on these conclusions, the Linear Model and 
ANN model are combined by assigning a weight coefficient to 
each model for the hours of the day using (21): 

(ݔ)ܲ = ෍ߚ௜݌௜(ݔ)
்

௜ୀଵ

 (21) 

where P(x) is the final prediction, pi(x) is an hourly prediction 
and βi is weight of i-th model, respectively.  

In this study a random set of days is chosen for the model 
training and weights are calculated using the minimum square 
error (MSE) pseudoinverse technique, so that a coefficient is 
assigned to models depending on prior knowledge of 
prediction accuracy in the given hour. 

 
V.  TESTS AND RESULTS 

To test the proposed methodology, the dynamic pricing-
load demand training pairs are firstly obtained for the load 
forecasting strategy using a MILP model of HEMS coded in 
GAMS v.24.1.3 and the solver CPLEX v.12. The household 
load demand is provided considering power values of real 
household appliances obtained from [24]. The relevant 
appliance data are presented in Table I. It should be noted that 
the washing machine and the dishwasher are considered to be 
optimally operated by the HEMS based on user preferences. 

Two types of consumers and two case studies for each of 
them are considered. The first type of consumer (Consumer 1) 
represents a four-member family house where there is a non-
working person that consumes energy during the day. The 
second type of consumer (Consumer 2) represents a single-
person household that is working during the daytime. It should 
be noted that both types of consumers are assumed to possess 
an EV. The case studies for both consumers are divided 
according to the possibility of V2H operation. The considered 
inflexible load variations for Consumer 1 and Consumer 2, 
apart from the washing machine, dishwasher and EV loads, 
are presented in Fig. 2. In order to obtain the mentioned price-
load pattern pairs, 1096 days of pricing data (starting from 
January 1, 2011) acquired from [25] are fed into the HEMS 
model and four cases are discerned: 

 Consumer 1-Case 1: Consumer 1 with EV just as a load. 
 Consumer 1-Case 2: Consumer 1 with EV capable of V2H. 
 Consumer 2-Case 1: Consumer 2 with EV just as a load. 
 Consumer 2-Case 2: Consumer 2 with EV capable of V2H. 



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2585122, IEEE
Transactions on Industrial Informatics

 

 

7

TABLE I 
HOUSEHOLD APPLIANCE DATA 

Appliance Power [kW] Appliance Power [kW] 
Oven 2.4 TV 0.083 
Cooker Hood 0.225 Desktop Computer 0.15 
Microwave 1.2 Air Conditioner 1.14 
Refrigerator 1.666 Hair Straightener 0.055 
Iron 2.4 Printer 0.011 
Toaster 0.8 Lighting 0.1 
Kettle 2 Other (Fixed) 0.05 
Hairdryer 1.8 Washing Machine 1.4 
Telephone 0.005 Dishwasher 1.32 

 

 
Fig. 2. Inflexible load variations for Consumer 1 and Consumer 2. 
 

 
Fig. 3. Price variations for both randomly selected test days. 
 

For each case, 1096 price-load pattern pairs are used as 
training data for the proposed load forecasting strategy. The 
prediction model performance is tested under different 
conditions of randomly selected days and the relevant results 
are discussed below. The mentioned randomly selected days 
are April 10 and July 4 of 2014 and the relevant pricing data 
[25] that will be given as input to the trained combined load 
forecasting model is given in Fig. 3. 

Initially the normalized data are refined according to their 
information values. After the feature selection process, the 
decomposed series are extracted by WT method. The WT 
method decomposes the power series that correspond to the 
price data determined, considering the relevant threshold, into 
four subsets. Then, the predictions of each subset are carried 
out with the proposed ANN structure for the different 
consumer types and cases. The results for the four different 
case studies during two different randomly selected test days 
are presented in Figs. 4-11. As seen, for each consumer, case 
and price variation, the WT-ANN strategy ensures quite 
reasonable results, capturing the main dynamics of DR-driven 
load pattern, even extreme variations within the load shape. 

In order to investigate how uncertainty associated with 
different parameters (e.g. charging requirement and maximum 
charging horizon of EV related to EV arrival time and initial 
SOE) affect the prediction results, six sub-cases are also 
provided for each case study and for every consumer type 
defined previously, as presented in Table II. It should be noted 
that, for the sake of simplicity, it is assumed that the departure 

time of the EV is 6am in all scenarios.  
The associated Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) values are listed in Table III for 
the proposed and benchmark models and for all the cases 
related to each consumer type defined in this study. Note that 
the average of four error values (i.e., two consumers and two 
cases) is provided for each day and each error metric in order 
to decrease data complexity. The MAE gives the mean 
deviation between the real and predicted data, while the 
RMSE is dominated by larger error terms due to the squares of 
differences. In addition to these negatively oriented error 
metrics, the Normalized RMSE (NRMSE), which is the 
RMSE normalized by the range of real data, is computed to 
provide a scale-independent error metric. Here it should be 
noted that “base” notation in Table III refers to the initial cases 
depicted in Figs. 4-11, while notations from “a” to “f” refer to 
the sub-cases defined in Table II. Besides, it should also be 
stated that forecasting accuracy results presented for sub-cases 
“a” to “f” are obtained through replacing the relevant new 
training pairs related to each case conditions in the training set 
with the base case data. 

As it can be seen in Table III, the ANN method outperforms 
the linear model in both days, while the combined Linear-
ANN model gives the best predictions among the benchmark 
models. 

The reported error measures indicate that the performance 
of the WT-ANN approach is superior with respect to the 
benchmark methods. Thus, it can be stated that data 
decomposition significantly enhances the prediction accuracy 
of the ANN model. It should be noted that the data 
decomposition enables forecasting each decomposed level 
with different model specifications depending on the 
characteristics of the data. For instance, it has been seen from 
the simulation studies that WT helps to predict the high up and 
down ramps in the load demand by removing them from the 
original signal and predicting the decomposed time series 
separately with different ANN parameters. Thus, an improved 
performance is accomplished especially for the approximation 
component that constitutes the largest part of the load 
characteristics.  

Compared to the approximation level, the forecasting 
accuracy of three detail levels is relatively lower due to the 
high frequency of these components that represent the sudden 
changes in residential load demands. Nevertheless, the 
aggregation of the forecasts of all the levels results in 
improved accuracy since the magnitude of the detail levels and 
thereof, the errors obtained for these components are too small 
to affect the amount of total load forecasts. Relatively to the 
NRMSE value of linear, ANN and Linear-ANN models, the 
WT-ANN approach provides an average reduction of 60.15%, 
48.01% and 44.46% for all cases, respectively.  

Note that the improvements in the predictions of the WT-
ANN model also stem from the benefits of optimum 
information and data decomposition. In order to investigate 
the effectiveness of the proposed approach over a much larger 
data set, forecasts are also carried out for 30 random days and 
the error metrics calculated are listed in Table IV. Similar to 
the results given in Table III, the WT-ANN method clearly 
outperforms the benchmark methods, a fact that further 
confirms the contribution of the ideas presented in this paper 
to the accuracy of the residential demand forecasting. 
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Fig. 4. Real and forecasted values (Consumer 1-Case 1, April 10, 2014). 
 

 
Fig. 5. Real and forecasted values (Consumer 1-Case 1, July 4, 2014). 
 

 
Fig. 6. Real and forecasted values (Consumer 1-Case 2, April 10, 2014). 
 

 
Fig. 7. Real and forecasted values (Consumer 1-Case 2, July 4, 2014). 

 
Regarding the runtime efficiency of the proposed model, it 

can be roughly said that the computational time of the WT-
ANN method is relatively higher than the benchmark methods, 
since including a data decomposition method generally 
improves forecasts at the expense of increasing the runtime. In 
order to decrease the runtime of the WT-ANN model, as 
mentioned before, one-time training and data selection is used 
in the study. These two features facilitate and considerably 
speed up the training phase without causing any accuracy 
decrease in the test set.  Thanks to the mentioned advantages 
of the proposed method, a reasonable computational time 
compared to the average time of the other short-term 
forecasting models in the literature, which is about 14 s in the 
MATLAB environment on a standard computer, has been 
achieved for 24-h-ahead forecasts.  

 
Fig. 8. Real and forecasted values (Consumer 2-Case 1, April 10, 2014). 
 

 
Fig. 9. Real and forecasted values (Consumer 2-Case 1, July 4, 2014). 
 

 
Fig. 10. Real and forecasted values (Consumer 2-Case 2, April 10, 2014). 
 

 
Fig. 11. Real and forecasted values (Consumer 2-Case 2, July 4, 2014). 

 
TABLE II  

SUBCASES TO INVESTIGATE THE EFFECTS OF UNCERTAINTY RELATED TO 
DIFFERENT MODEL PARAMETERS ON FORECASTING ACCURACY 

Subcase notation EV arrival time Initial SOE 
a 10 pm 8kWh 
b 5 pm 8 kWh 
c 3 pm 8 kWh 
d 10 pm 5kWh 
e 5 pm 5 kWh 
f 3 pm 5 kWh 

 

VI.  CONCLUSIONS 

In this study a combined WT-ANN based load forecasting 
strategy to provide assessment of DR driven load pattern 
elasticity of smart households was proposed.  
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TABLE III  
COMPARISON OF AVERAGE ERROR MEASURES OF DIFFERENT APPROACHES 

FOR DIFFERENT CASES FOR TWO REPRESENTATIVE DAYS 

Model Case Day MAE 
[kW] 

RMSE 
[kW] 

NRMSE 
[%] 

Linear 
Model 

 

Base April 10 1.3278 1.7928 25.02 
July 4 1.3224 1.7611 27.02 

a April 10 1.3405 1.7959 25.18 
July 4 1.3334 1.7494 27.34 

b April 10 1.3368 1.7953 25.18 
July 4 1.3300 1.7486 27.32 

c April 10 1.3366 1.7953 25.18 
July 4 1.3302 1.7486 27.32 

d April 10 1.3790 1.8064 25.33 
July 4 1.3765 1.7629 27.55 

e April 10 1.3772 1.8058 25.32 
July 4 1.3750 1.7623 27.54 

f April 10 1.3761 1.8054 25.32 
July 4 1.3743 1.7620 27.53 

ANN 
Model 

 

Base April 10 0.7876 1.1623 16.22 
July 4 0.7585 1.1341 17.42 

a April 10 0.9934 1.2719 18.05 
July 4 0.9961 1.2736 19.95 

b April 10 0.9928 1.2963 18.43 
July 4 1.0707 1.4086 22.15 

c April 10 0.9623 1.2866 18.28 
July 4 1.1016 1.4143 22.30 

d April 10 1.1271 1.4514 20.69 
July 4 1.0277 1.2929 20.38 

e 
April 10 1.0588 1.3842 19.69 
July 4 1.0333 1.3167 20.77 

f April 10 1.3219 1.4042 20.03 
July 4 1.0660 1.3684 21.57 

Linear-
ANN 
Model 

 

Base April 10 0.7782 1.1462 15.99 
July 4 0.7517 1.1211 17.21 

a April 10 0.8280 1.1882 16.66 
July 4 0.8291 1.2273 19.18 

b April 10 0.8441 1.1906 16.84 
July 4 0.8489 1.2795 20.11 

c April 10 0.9410 1.2813 18.22 
July 4 0.8430 1.2359 19.33 

d April 10 0.9343 1.3599 19.26 
July 4 0.9293 1.2447 19.58 

e April 10 0.9832 1.3400 19.13 
July 4 0.9248 1.2478 19.64 

f April 10 1.1893 1.3628 19.41 
July 4 1.1250 1.2751 20.07 

Proposed 
Model 

 

Base April 10 0.3994 0.6419 8.96 
July 4 0.3588 0.6158 9.47 

a April 10 0.4903 0.6657 9.35 
July 4 0.4697 0.6250 9.88 

b April 10 0.5575 0.7291 10.92 
July 4 0.4942 0.6296 9.92 

c April 10 0.6721 0.8426 12.09 
July 4 0.5704 0.7768 12.40 

d April 10 0.5469 0.7041 9.94 
July 4 0.4692 0.6229 9.76 

e April 10 0.6158 0.7445 10.58 
July 4 0.4959 0.6350 9.93 

f April 10 0.6186 0.7756 11.08 
July 4 0.4807 0.6374 10.11 

 

The presented approach is new compared to other load 
forecasting approaches using historical data to forecast hour or  
day-ahead variations, as the employed methodology 
considered daily data as a whole package and was capable of 
providing forecasts for any future data instead of just steps 
ahead. Moreover, consideration of the impacts of pricing 
based DR on load pattern variation of smart end-user premises 
is a new contribution to the literature and can be extended as a 
new tool for system operators to analyze the results of their 
DR strategies during planning phase, in order to decide if 
further revisions or actions are required.  

TABLE IV  
COMPARISON OF AVERAGE ERROR MEASURES OF DIFFERENT APPROACHES 

FOR DIFFERENT CASES FOR 30 RANDOM DAYS 

Model Case MAE 
[kW] 

RMSE 
[kW] 

NRMSE 
[%] 

Linear 
Model 

 

Base 1.3880 1.8992 28.58 
a 1.3150 1.8155 28.53 
b 1.4092 1.9238 28.64 
c 1.4494 1.9623 28.71 
d 1.3932 1.8725 30.61 
e 1.4717 1.9641 30.36 
f 1.5184 2.0074 30.18 

ANN 
Model 

 

Base 0.9185 1.1271 17.08 
a 0.9245 1.1242 17.88 
b 0.9376 1.1594 17.32 
c 0.9705 1.1948 17.53 
d 0.9191 1.1100 18.40 
e 0.9690 1.1980 18.52 
f 0.9996 1.2326 18.48 

Linear-ANN 
Model 

 

Base 0.8680 1.0903 16.55 
a 0.8712 1.0857 17.26 
b 0.8879 1.1230 16.81 
c 0.9222 1.1592 17.03 
d 0.8688 1.0726 17.76 
e 0.9215 1.1624 18.12 
f 0.9535 1.1977 18.04 

Proposed 
Model 

 

Base 0.5361 0.6522 9.90 
a 0.5391 0.6508 10.35 
b 0.5457 0.6683 10.00 
c 0.5621 0.6861 10.08 
d 0.5364 0.6436 10.66 
e 0.5614 0.6876 10.72 
f 0.5767 0.7049 10.62 

 

The performance of the proposed methodology was 
compared with different approaches and the superiority of the 
developed structure was demonstrated through performance 
metrics. The uncertainty in the end-users’ behavior and the 
development of appropriate methods in order to handle it will 
be the direction of future studies to be pursued by the authors. 
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