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Abstract—There is a remarkable potential for implementing 
demand response (DR) strategies for several purposes such as 
peak load reduction, frequency regulation, etc. by using 
thermostatically-controllable appliances (TCAs). In this study, an 
end-user comfort violation minimization oriented DR strategy for 
residential heating, ventilation and air conditioning (HVAC) units 
is proposed. The proposed approach manipulates the temperature 
set-point of HVAC thermostats aiming to minimize the average 
discomfort among end-users enrolled in a DR program, while 
satisfying the DR event related requirements of the load serving 
entity. Besides, the fairness for the allocation of the comfort 
violation among enrolled end-users is also taken into account. 
Moreover, maintaining the load factor during the contracted DR 
period compared to a base case in order to reduce the load 
rebound effect due to shifting the use of HVAC units is also 
provided with the proposed strategy. Last but not least, the heat 
index considering the impact of humidity is utilized instead of 
using ambient dry-bulb temperature through a spatio-temporal 
forecasting approach.   

Index Terms—Demand response; direct load control; heating, 
ventilation and air conditioning (HVAC) units; thermostatically 
controllable appliances; weather forecasting. 

I.  NOMENCLATURE 
The main nomenclature used throughout the paper is listed 

in Tables I-IV.  

II.  INTRODUCTION 
A. Motivation and Background 

HE electric power demand may vary significantly during 
the day, season and year and this issue is one of the main 
concerns of System Operators. In this regard, the 

production facilities should be suitably dispatched in all time 
periods in order to satisfy the varying load demand.  

The demand side has been traditionally considered 
relatively inelastic and therefore, the generation side should be 
adapted in order to fully supply it. However, a series of drivers 
have motivated efforts aiming to enable the active participation 
of the demand side in the power system operational procedures. 

 The activities through which the activation of the demand 
side is attempted are commonly referred to as demand side 
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management (DSM). Among the different DSM solutions, 
demand response (DR) strategies are gaining more attention in 
power system operations recently, driven by the increasing 
interest in implementing the smart grid concept with several DR 
programs offered by load serving entities (LSEs) around the 
world.  

There are two main DR strategy types: direct load control 
(DLC) and indirect load control (via various price-based 
programs) [1]. Although price-based methods are considered to 
be less demanding in terms of the required communication and 
control infrastructure, DLC programs aiming at peak load 
shaving during critical periods or at providing regulation 
services (e.g. frequency regulation to handle renewable energy 
volatility) are tools that are already being actively and 
effectively used by LSEs [1]-[3].  

The participants in DR programs get paid for providing 
demand response capacity [4]. Thus, the DR capacity can be 
defined as “the potential for flexible response from end-use 
appliances across the commercial, industrial, and residential 
sectors” [5]. The demand response capacity can be acquired 
from many types of end-user appliances as well as end-user 
types.  

 
TABLE I. ABBREVIATIONS 

DCCM  direct compressor control mechanism. 
DLC  direct load control. 
DR demand response. 
DSM demand side management. 
EWH electric water heater. 
HI heat index. 
HVAC heating, ventilation and air conditioning 
LSE  load serving entity. 
TCA  thermostatically-controllable appliance. 
TSCM  thermostat set-point control mechanism. 
WBGT  Wet-bulb globe temperature. 

 
TABLE II. SETS 

ℎ set of households. 
 .set of time periods ݐ
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TABLE III. PARAMETERS 

 .,    element area for household ℎ [m2]ܣ
cୟ   thermal capacity of air [kJ/kg·℃]. 
 .coefficient of performance ܱܲܥ
 .[℃] ݐ ௧    heat index in periodܫܪ
݈, element thickness value for household ℎ [m]. 
 .ଵ, length of household ℎ [m]ܮ
 .ଶ, width of household ℎ [m]ܮ
 .ଷ,    height of household ℎ [m]ܮ
 .,   mass of air for household ℎ [kg]ܯ
݊ model order. 
ܰ sufficiently large positive constant. 
ܰ ratio between minimum and maximum comfort 

violation values for all households in order to 
ensure fairness for comfort violation. 

ܰ number of households enrolled to the DR program. 
ܲ ,   HVAC rated power of household ℎ [kW]. 
ௗܲ௦,௧  desired power reduction in period ݐ of the DR 

event [kW]. 
௧ܲ௧_,௧ reference total HVAC power consumption in 

period ݐ [kW]. 
ܴ, equivalent thermal resistance of household ℎ 

[h·oC/J]. 
 .ݐ ௧ relative humidity in periodܪܴ
ܶ,௧  ambient dry-bulb temperature in period ݐ [℃]. 
ௗܶ_௪ௗ, maximum allowed temperature set-point decrease 

from the desired comfort temperature level of 
household ℎ during the DR event [℃]. 

ௗܶ௦, desired comfort temperature level of household ℎ 
[℃]. 

ܶ
ௗ HVAC dead-band based operational deviation 

from the HVAC temperature set-point to the down 
side for HVAC of household ℎ [℃]. 

ܶ
௨ HVAC dead-band based operational deviation 

from the  
HVAC temperature set-point to the upper side for 
HVAC of household ℎ [℃]. 

ܶ_௪ௗ,  maximum allowed temperature set-point increase 
from the  

desired comfort temperature level of household ℎ 
during contracted DR period [℃]. 

  .ଵ starting period of the contracted DR periodݐ
 .ଶ  ending period of contracted DR periodݐ
 .ଷ starting period of the actual DR eventݐ
 .ସ  ending period of the actual DR eventݐ
ܸ volume of household ℎ [m3]. 
∆ܶ time granularity [h]. 
 . air density [kg/m3]ߜ
 , element thermal coefficient for household ℎߪ

[J/h·m·oC]. 
 . roof angle of household ℎ [deg]ߚ

 

However, the telemetry requirements have limited the DLC 
based DR programs to be almost exclusively addressed to large 
industrial and commercial customers. As the required 
communication and control infrastructure is expected to be 
enabled by smart grid deployment for all types of end-users, 
residential or small industrial customers also have been in the 
center of the design of such programs [1], [6].  

TABLE IV. VARIABLES 

℃]  comfort violation of household ℎ݅ݒ_݉ܿ ∙ h]. 
௫݅ݒ_݉ܿ  maximum comfort violation value for all 

households [℃ ∙ h]. 
݅ݒ_݉ܿ  minimum comfort violation value for all 

households [℃ ∙ h]. 
 ,,௧ actual power consumption of the HVAC unit of

household ℎ in period ݐ [kW]. 
ௗܶ௪, ,௧ decrease in the ambient dry-bulb temperature from 

desired comfort temperature for household ℎ in 
period ݐ [℃]. 

ܶ, ,௧ ambient dry-bulb temperature of household ℎ in 
period ݐ [℃]. 

௦ܶ௧, ,௧  thermostat temperature set-point of household ℎ in 
period ݐ by LSE [℃]. 

௨ܶ,,௧ increase in the ambient dry-bulb temperature from 
desired comfort temperature for household ℎ in 
period ݐ [℃]. 

 ,,௧ binary variable for the status of the HVAC unit ofݑ
household ℎ in period ݐ (1=ON, 0=OFF) 

 ଵ,,௧ binary variable – 1 if the ambient dry-bulbݑ
temperature of household ℎ in period ݐ is above 
desired comfort temperature, else 0. 

 
This would give access to a large portion of the total 

demand, given that 20-40% of the electricity in developed 
countries is consumed by residential end-users [7]. For 
instance, in the Electricity Reliability Council of Texas 
(ERCOT) jurisdiction area, the residential demand was around 
6 GWh, which stands for 20% of the overall electricity 
consumption in March 2010. However, the hot weather in 
August 2010 induced a residential load of 35.3 GWh that was 
52% of total load [8].  

Among many appliances within residential end-user areas, 
thermostatically-controllable appliances (TCAs) including 
Heating, Ventilation and Air Conditioning (HVAC) units, 
electric water heaters (EWHs), refrigerators, etc. represent a 
considerable potential for DLC based DR programs due to their 
rapid response and the fact that thermal inertia allows for a 
sustained interruption of their service without compromising 
the comfort of the end-user [6], [9]. HVAC units are considered 
as the most suitable candidates among TCAs in order to 
implement DR solutions, mainly due to their larger energy 
consumption throughout the day, especially in the summertime 
during which LSEs face a greater challenge in comparison with 
other periods of the year [10]. 

 
B. Literature Overview 

A considerable number of studies in the literature were 
dedicated to the use of different kinds of TCAs in order to 
obtain demand side flexibility during critical periods. Heffner 
et al. [11] considered the DR potential of residential EWHs on 
a pilot test study, examining both the end-user premises and the 
substation levels. Kondoh et al. [1] also investigated the 
potential of EWHs providing regulation services through a 
DLC approach using bi-directional signals for power decrease 
and increase requirements. EWHs load based balancing 
services through bi-directional LSE signals are also discussed 
in [12]. Furthermore, the provision of load shifting and 
renewable energy based volatility suppression was studied in 
[13]. 
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Angeli and Kountouriotis [14] studied the potential of 
refrigerators providing frequency regulation services. 
Frequency regulation by refrigerators for a power system with 
high wind power penetration was analyzed by Aunedi et al. both 
from the environmental and the economic benefit perspectives 
[2]. Garcia et al. [7] assayed the aggregation of HVAC loads 
considering three different techniques to model the HVAC 
dynamics. Frequency regulation and peak load reduction 
services provision by HVAC were discussed in [15]. 
Furthermore, the potential of HVAC offering load balancing 
services through bi-directional LSE signals for power reduction 
or increase requirements was analyzed by Lu and Zhang in [16] 
and Zhang and Lu in [17]. HVAC response capability to 
mitigate the renewable energy volatility was the scope of the 
studies conducted by Bashash and Fathy in [18] and Zheng and 
Cai in [19]. The use of building scale HVAC units for regulation 
services regarding high frequency power mismatches was 
discussed by Hao et al. [20] and Goddard et al. [21]. 
Additionally, the impacts of uncertainty regarding HVAC 
physical parameters were analyzed in [10]. The study presented 
in [22] compared two methods, namely the thermostat set-point 
control mechanism (TSCM) and the direct compressor control 
mechanism (DCCM) for HVAC load aggregation. Stochastic 
switching based control of a population of HVAC loads was 
also proposed in [23]. The idea of maintaining fairness for the 
enrolled consumers while exercising DLC was introduced by 
Koutitas [24]. However, [24] defined fairness from the 
perspective of the economic benefits of the different end-users, 
while the fairness in violating the consumer comfort constraints 
was neglected. A generic study regardless of TCA type to 
aggregate a population of TCAs for load balancing services was 
conducted by Soudjani and Abate [25]. Besides, the verified 
TCA models were presented by Shao et al. in [26]. 

 
C. Content and Contributions 

In this study, a day-ahead residential HVAC load 
aggregation scheduling, considering the minimization of the 
average consumer comfort violation among the enrolled end-
users is presented. One of the major barriers to the wider 
implementation of residential DR is the insufficient social 
acceptance of them, which has a direct connection to the 
unwillingness of the end-user to incur a compromise of its 
comfort level during a DR event. Therefore, the end-user 
comfort violation is a major issue that can affect the wider 
penetration of such strategies.  

Nowadays, there is an increasing trend in the relevant 
industry for enabling “behavioral DR” [27]. This concept aims 
to clearly show to the end-users willing to participate in DR 
programs what their gains are, in order to motivate them to 
become part of such programs. Typically, simple interfaces 
embedded in smart phone applications or personal computers 
present the daily economic savings, the contribution to 
environmental sustainability, etc. Embedding the proposed 
strategy in this framework will use a similar infrastructure to 
engage people in participating in DR programs. Through their 
smart devices, the occupants will be able to monitor how their 
comfort violation is minimized through comparisons with a 
reference case and by providing brief explanations on how they 
should perceive the results.  

Thus, through simple and effective interfaces, suitably 
designed to be used by non-experts, and with dynamic 
information updates by the load serving entities, the occupants 
can be more easily aware of their benefits by participating in 
such DR programs. 

The contribution of this study is three-fold: 
 Implementation of a consumer comfort violation 

minimization oriented approach that has not been 
considered in the relevant literature, aiming to increase 
the social acceptance of DR in residential premises. 

 Consideration of the fairness in the allocation of comfort 
violation among the enrolled consumers and the 
constraint of the load factor during contracted DR period 
in order to improve the end-users’ satisfaction and reduce 
load rebound effect. 

 Consideration of the impact of humidity on ambient dry-
bulb temperature, which provides a more realistic 
estimation in comparison with the utilization of the 
ambient dry-bulb temperature in the model, where the 
weather forecasts are performed using a spatio-temporal 
approach. 

 
D. Organization of the paper 

The remainder of the paper is organized as follows: Section 
III describes the employed methodology. Afterwards, Section 
IV presents and discusses the results of the numerical 
simulations. Finally, conclusions are drawn in Section V. 

III.  METHODOLOGY 

A.  HVAC Load Aggregation Model 
The objective function to be minimized is the average 

comfort violation of each household which is related to the 
increase or decrease in the ambient dry-bulb temperature with 
respect to the end-user’s predefined value, which is measured 
in ℃ ∙ h. For example 10 ℃ ∙ h may stand for a 
decrease/increase of 1℃ for 10 hours or 2℃ for 5 hours, etc. 
The objective function is expressed by (1).  

݉݅݊
൫ ௨ܶ ,,௧ + ௗܶ௪,,௧൯∆ܶ

ܰ

௧ୀ௧మ

௧ୀ௧భ୦

 (1)

The division by N୦ in (1) is performed in order to obtain the 
average comfort violation among the enrolled end-users. 
Normally for the proposed methodology it can be eliminated 
without changing the optimal solution. However in order to 
compare individual comfort violation value of each end-user 
with the average comfort violation among the enrolled end-
users, this division term is needed. Also, if  N୦ is defined as a 
time dependent parameter, then a varying number of 
households can be considered in different periods. 

The ambient dry-bulb temperature depends on several 
factors such as the thermal properties of air, the heat exchange 
between the house and the ambient, as well as the 
thermodynamic properties of the building structure. In this 
study, a model based on the equivalent thermal resistance of the 
building is developed and is represented by (2). Naturally, this 
model is based on differential equations that under several 
plausible assumptions may be linearized [28], [29].  
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ܶ, ,௧ = ቆ1−
ߒ߂

1000 ∙ ,ܴܿ,ܯ
ቇ ∙ ܶ, ,௧ିଵ

+
ߒ߂

1000 ∙ ,ܴܿ,ܯ
௧ିଵܫܪ∙

− ݑ ,,௧ିଵ
ܱܥ ܲ ∙ ܲ , ∙ ߒ߂

0.000277 ∙ ,ܿܯ
ݐ∀,  > 1 

(2)

It should be noted that (2) considers only the cooling 
operation of the HVAC. A similar expression can be trivially 
derived for the heating mode of the HVAC as well. Here, the 
calculations regarding the equivalent thermal resistance of the 
houses as well as the mass of air inside the building structure 
may be performed using equations (3)-(5), considering for 
simplicity a rectangular geometry and an inclination of the roof 
of [30] °ߚ. 

ܴ, =
1
ܰ

݈݅,ℎ
ߪ ,݅ℎ݅,ℎ݅

 (3)

ܸ = ଵ,ܮ ∙ ଶ,ܮ ∙ ଷ,ܮ + (ߚ) ݊ܽݐ ∙ ଵ,ܮ ∙ ଶ, (4)ܮ

,ܯ = ܸ ∙ ߜ  (5)

In each time interval ݐ the ambient dry-bulb temperature of 
household ℎ is decomposed as in (6). 

ܶ,,௧ = ௗܶ௦, + ௨ܶ,,௧ − ௗܶ௪,,௧ (6) ݐ∀,

The desired temperature is determined by the end-user. This 
value can be either specified in the DR enrollment contract or it 
can be dynamically set before each DR event. Alternatively, a 
range of temperatures can be provided. This requirement can be 
trivially considered by altering (1) and (6). 

In order to prevent ௨ܶ ,,௧ and ௗܶ௪,,௧ from receiving 
values simultaneously, the binary variable ݑଵ is employed as in 
(7) and (8), in which ܰ is a sufficiently large constant. 

௨ܶ,,௧ ≤ ܰ ∙ ଵ,,௧ݑ (7) ݐ∀,

ௗܶ௪,,௧ ≤ ܰ ∙ ൫1 − (8) ݐ∀,ଵ,,௧൯ݑ

In this study, the TSCM will be followed considering that 
the LSE will directly manipulate the thermostat temperature 
set-point ௦ܶ௧ ,,௧. This is considered to be more suitable in the 
literature for peak load reduction, while DCCM in which LSE 
directly turns the HVAC “on” or “off” is considered to be more 
suitable for fast regulation services [22].  

The temperature set-point ܶ ௦௧ ,,௧ can be changed during the 
DR horizon within the upper and lower limits by LSE in order 
not to exceed the contracted allowed minimum comfort 
violation limits of the end-user as expressed by (9).  

ௗܶ௦, − ௗܶೌೢ , ≤ ௦ܶ௧,,௧ ≤ ௗܶ௦, + ܶೌೢ , , 

ݐ∀   ∈ ଵݐ] , [ଶݐ
(9)

The decision variable for the operation of the proposed 
methodology is Tୱୣ୲,୦,୲.  

Thus, ௦ܶ௧,,௧ manipulation between the given limits will 
also allow the LSE to investigate different strategies such as 
cooling down the household below the comfort temperature 
within the contracted DR horizon (e.g. 12 pm-6pm) but before 
actual DR event (e.g.2-4 pm). This will give LSE considerable 
flexibility. But these strategies can also be strictly categorized 
(like pre-cooling strategy, temperature increment strategy, etc.) 
to force LSE to select one of the possible strategies for each 
household.  

The ambient dry-bulb temperature limits are defined  
by (10). 

௦ܶ௧ ,,௧ − ܶ
ௗ ≤ ܶ,,௧ ≤ ௦ܶ௧ ,,௧ + ܶ

௨ , (10) ݐ∀

The power consumption of HVAC of each household ℎ at 
each time ݐ follows (11). 

,,௧ = ܲ, ∙ (11) ݐ∀,,,௧ݑ

The total desired load reduction from the HVAC units of the 
households enrolled in the DR program during a DR event is 
obtained by (12). 

ௗܲ௦,௧ ≤ ௧ܲ௧_ ,௧ −,,௧


ݐ∀, ∈ ଷݐ] , ସ] (12)ݐ

The total HVAC consumption during the actual DR event, 
between ݐଷ and ݐସ, should be reduced at least by the level of 
ௗܲ௦,௧ with respect to ௧ܲ௧_,௧. A similar approach can be 

applied to consider also load increase requirements in certain 
periods. 

The comfort violation per household is calculated using (13) 
considering both the upward and downward deviations with 
respect to the desired temperature: 

݅ݒ_݉ܿ = ൫ ௨ܶ ,,௧ + ௗܶ௪,,௧൯∆ܶ
௧ୀ௧మ

௧ୀ௧భ

ݐ∀, ∈ ଵݐ] , ଶ] (13)ݐ

Although the main objective is to minimize the average 
comfort violation among enrolled consumers, it is also 
necessary to ensure the fairness of the allocation of this comfort 
violation among the consumers.  

Therefore (14)-(15) are used to obtain a fair allocation 
constrained by a percentage between the minimum and 
maximum values of the comfort violation: 

݅ݒ_݉ܿ ≤ ݅ݒ_݉ܿ ≤ ௫݅ݒ_݉ܿ ݐ∀, ∈ ଵݐ] , ଶ] (14)ݐ

௫݅ݒ_݉ܿ ≤ ܰ ∙ ݐ∀,݅ݒ_݉ܿ ∈ ଵݐ] , ଶ] (15)ݐ

Constraints (14)-(15) ensure that the maximum comfort 
violation among the enrolled consumers will not exceed ܰ 
times the minimum comfort violation value. It should be noted 
that specifying a smaller Nୡ୭୫ value will lead to a more fair 
distribution of the comfort violation among the enrolled end-
users but will also increase the chance of facing infeasibility. 
On the other hand, larger Nୡ୭୫ value will lead to an undesired 
unfair operation of the proposed methodology. 

It is very likely that reducing the power consumption in 
some specific periods will lead to a load recovery or load 
rebound effect that is caused by the aggregation of total HVAC 
load before or after the actual DR event.  
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This effect will lead to a sharp peak just after or before the 
actual DR event that is undesired by the LSE and should be 
prevented. In this regard, an additional constraint is also 
inserted to maintain the load factor of the case of DR event 
equal or greater than the load factor of ௧ܲ௧_ ,௧. Here the 
mentioned load factor related constraint is decomposed into two 
constraints as follows: 

,,௧


≤ ൫ݔܽ݉ ௧ܲ௧_ ,௧൯,∀ݐ ∈ ଵݐ] , ଶ] (16)ݐ

,,௧൭݃ݒܽ


൱ ≥ ൫݃ݒܽ ௧ܲ௧_,௧൯,∀ݐ ∈ ଵݐ] , ଶ] (17)ݐ

where ݉ܽݔ and ܽ݃ݒ notations represent the maximum and 
average values of the relevant variables and parameters within 
the defined time horizon. Constraints (16) and (17) limit the 
load factor to be equal to or greater than the reference condition. 
Since the load factor is defined as the ratio of average power to 
the maximum power within a predefined time horizon, (16) 
tends to increase the nominator of load factor formulation while 
(17) tends to decrease the denominator compared to the 
reference case. Thus, (16) and (17) constrain the load factor in 
the DR program at least to be equal to the reference case. 

B.  Perceived Temperature Forecast 
Residential HVAC units are generally controlled by setting 

a desired temperature value and the operation of the unit is 
interrupted once the set value is reached. However, the 
temperature measured by the thermostats of HVAC or an 
ordinary thermometer is mostly different from the temperature 
which affects the end-users due to three main reasons: (i) 
relative humidity, which causes air temperature to be felt 
warmer than its actual value since high humidity reduces the 
evaporation of perspiration from the body and thereby, results 
in a feeling of being overheated, (ii) wind speed, which 
generally makes oneself to feel colder and, (iii) direct insolation 
which causes us to feel increased temperature if we are exposed 
to it, compared to shaded areas. Other factors influencing how 
an individual feels temperature are subjective, i.e., they vary 
from person to person.  

The air temperature given by the standard thermometers is 
the measure of the temperature recorded in an area protected 
from exogenous weather variables such as humidity, sunshine 
and wind.  Therefore, it cannot indicate the temperature that 
end-users feel. Hence, new temperature definitions were 
recommended to determine the temperature more accurately. 
For example, Wet Bulb Globe Temperature (WBGT) defines 
the perception of temperature depending on solar radiation, 
humidity, temperature and wind speed. However, WBGT is not 
frequently used in the literature of ambient dry-bulb 
temperature forecasting due to its location-specific structure. 
Besides, in the residential buildings, the humidity can be 
indicated as the only factor that affects the measured 
temperature due to the very limited effects of wind speed and 
radiation on the temperature that an individual feels because of 
walls, windows, etc. Therefore, another metric, called Heat 
Index (HI), which measures the effect of humidity on the 
ambient dry-bulb temperature is more widely used to describe 
the perception of temperature for indoor conditions. 
Considering the significant effect of humidity on the perceived 

temperature and therefore, on the control of HVAC units, the 
HI is used in this study in order to estimate the human-perceived 
equivalent temperature. 

In order to calculate the required HI values, first, the 
ambient dry-bulb temperature data are forecasted and the HI are 
then calculated with a temperature-to-HI formulation. 

B.1. Forecasting Model 
 The efficiency of the proposed day-ahead planning 

approach is mainly based on the accurate hourly temperature 
information of the following day. Therefore, a spatio-temporal 
approach, which accounts for the temperature data collected 
from both the site of interest and other weather stations on its 
surrounding area, is used for the daily forecasts of temperature. 
It is assumed that the promising results accomplished with 
spatio-temporal methods in the recent studies on wind 
forecasting [31]-[35] and solar forecasting [36]-[39], which are 
due to their efficiency in exploiting all the available data and to 
their relatively lower computational cost, these methods might 
be also used effectively for the forecasts of other meteorological 
quantities including temperature. 

In order to alleviate the requirement of a time-consuming 
data selection process, the proposed algorithm uses all the 
available temperature data from 43 meteorological stations in 
the training stage but in forecasting stage only the data that have 
the potential to benefit the predictions are included [40]. The 
contribution of the data from different meteorological stations 
to the output of target station is determined considering the 
correlations between the target station and its neighbor stations 
for each prediction horizon (i.e. 24 h). The proposed approach 
can be defined as follows (18)-(22). 

࢟ = ࢞ଵܣ + ࢞ଶܣ +⋯+ ࡷ࢞ܣ = ܣ࢞



ୀଵ

 (18)

where 

࢟ =

⎣
⎢
⎢
⎢
⎡ ାଵݕ

∗

∗ାଶݕ

⋮
∗ାெݕ ⎦

⎥
⎥
⎥
⎤
 (19) 

ܣ = [ ெܶ
ଵ ⋯ ெܶ

ு ] (20) 

 

࢞ =

⎣
⎢
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⎢
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ଵ

⋮
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⋮
⋮
ଵுݔ
⋮
⎦ுݔ
⎥
⎥
⎥
⎥
⎥
⎥
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 (21) 

 

The matrix ெܶ
  is an M x n Toeplitz matrix given by (22). 

ࡹࢀ = ൮

ݕ
ାଵݕ

…
⋱

ଵݕ
⋮

⋮ ⋱ ⋮
ାெିଵݕ ⋯ ெݕ

൲ (22) 
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In (18)-(22), ࢟ denotes the output vector (i.e., temperature 
values of target house in this study) and ࢞ is a coefficient matrix 
associated with the i-th time lag, in which the vector elements 
are calculated with the least-squares method. Also, ݊ is the 
model order and ݊ +  .represents the training data size ܯ
Besides, ݕ௧ is the temperature value at the h-th house at sample 
time t (t = 1,2,…,M+n), ݕ∗  is the target variable and H is the 
number of houses (h = 1,2,…,H). 

B.2. Heat Index 
The HI equation (18), which is obtained by multiple 

regression analysis, is used in this study [41].    

௧ܫܪ = −42.379 + ൫2.04901523 × ܶ,௧൯
+ (10.14333127 × (௧ܪܴ
− ൫0.22475541 × ܶ,௧ × ௧൯ܪܴ
− ൫6.83783 × 10ିଷ × ܶ ,௧

ଶ൯
− (5.481717 × 10ିଶ × ௧ܪܴ

ଶ)
+ ൫1.22874 × 10ିଷ × ܶ ,௧

ଶ

× ௧൯ܪܴ
+ ൫8.5282 × 10ିସ × ܶ,௧
× ௧ଶ൯ܪܴ
− ൫1.99 × 10ି × ܶ,௧

ଶ

×  ௧ଶ൯ܪܴ

(23) 

with Ta,t being ambient dry-bulb temperature and RHt being 
relative humidity at time ݐ. The HI cannot be measured by using 
an instrument. Instead, various equations are provided in the 
literature in order to approximate this value using the ambient 
dry-bulb temperature, which is easily measured with common 
thermometers, and humidity. Note that since this “perceived 
temperature” also depends on the subjective parameters such as 
the state of human body and the heat resistance of clothes, a 
mean value is generally used instead of extreme values. 

IV.  TESTS AND RESULTS 

A.  Input Data 

Hourly temperature and relative humidity data from 
Meteorological Terminal Aviation Routine (METAR) weather 
reports of 43 weather stations located in USA are used [42]. A 
time period spanning from June 2, 2013 to June 23, 2013, which 
presents high and unsteady temperature characteristics, is 
considered in the simulations. The data is divided into two 
subsets: (i) a two-week training set from June 2 to June 15 and, 
(ii) an one-week test set from June 16 to June 23. 

The forecasts of the perceived temperature are carried out 
with a two-stage process. In the first stage, daily ambient dry-
bulb temperature is forecasted with the proposed spatio-
temporal method and the temperature forecasts obtained are 
converted to the perceived temperature forecasts in the second 
stage by using the HI equation given in (18). For the ambient 
dry-bulb temperature forecasts, first, the data from all the 43 
weather stations are applied to the forecasting model, as an 
alternative approach to the use of various methods for the 
purpose of determining the best subset of weather stations 
[43,44].  

A coefficient vector x, as shown in (20), is then calculated 
in the training phase. Lastly, the forecasted values are 
calculated using the x vector and the matrix A that includes the 
recent measurements. The x vector is recalculated every 
prediction horizon. Also, a recursive approach is followed in 
the forecasts, i.e., the temperature forecasts at time t are 
included in the matrix ܣ for the forecasting of the temperature 
value at time t+1 and so on. Once the forecasts are completed 
for the corresponding time horizon, the matrix ܣ is updated with 
the new values measured during the previous prediction horizon 
and a new prediction process begins for the next horizon. This 
algorithm helps the model always present the latest temperature 
trend, resulting in a higher accuracy. Fig. 1 presents the results 
of the ambient dry-bulb temperature forecasting compared to 
the real values, where it may be noticed that the two time series 
present sufficient similarity.  

With the objective of better measuring the effectiveness of 
the proposed daily forecasting approach, various performance 
metrics for this method as well as three different time series 
methods are shown in Table V. The metrics given in Table V, 
namely, Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE) and Normalized Root Mean Squared Error 
(NRMSE), are negatively oriented error metrics, which means 
that the lower these metrics are, the higher the forecast accuracy 
is. Basically, a permanent deviation between the measurements 
and forecasts indicates a higher MAE while large error values 
observed generally in peak times cause a higher RMSE value. 
NRMSE provides a scale-independent error measure that 
allows comparing the forecasting accuracy obtained in the case 
of different data sets. 

 

 
Figure 1. The comparison of real and forecasted values for ambient dry-bulb 
temperature. 

TABLE V. COMPARISON OF STATISTICAL ERROR MEASURES FOR 
DIFFERENT APPROACHES  

Forecasting Model MAE 
[°C] 

RMSE 
[°C] 

NRMSE 
[%] 

Persistence 2.15 2.71 22.17 
Autoregressive 1.42 1.79 14.70 
WT-ANN 1.21 1.45 11.85 
Proposed model 1.04 1.14 9.33 

As it can be seen in Table V, the persistence model, which 
simply uses the last measured value as forecast during the 
prediction time, gives relatively poor forecasts. Despite its 
inefficiency in such a long prediction horizon, the results of this 
model are included in the comparisons since it is the most 
commonly used benchmark method in the literature of 
forecasting for a wide range of prediction horizons [45].  
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More reasonable forecasts are achieved by including a 
number of recent data in addition to the last measured value in 
the Autoregressive (AR) model. Furthermore, a compound 
model that integrates Artificial Neural Networks (ANN) and 
Wavelet Transform (WT) is employed for the comparisons due 
especially to its high efficiency on the modelling of the daily 
cycles embedded in time series [46]. Compared to the error 
metrics of benchmark models given in Table V, its significantly 
lower metrics show the effectiveness of the proposed model for 
daily temperature forecasts.      

The impact of the humidity on the perceived temperature is 
not negligible as mentioned before. Thus, the ambient dry-bulb 
temperature forecasts, together with the humidity data, are 
applied to ambient dry-bulb temperature-to-HI formulation 
given in (18) in order to calculate the anticipated perceived 
temperature. The comparison of the ambient dry-bulb 
temperature and the HI is presented in Fig. 2. As it may be 
noticed, there are significant differences between the HI and the 
ambient dry-bulb temperature, which can affect the day ahead 
planning significantly and it is therefore more valid to use the 
actual HI the households will face. As the HI index is 
considered to imply the relevant changes in outdoor dry-bulb 
temperature regarding the humidity and all the enrolled 
households are considered to be imposed to similar outdoor 
conditions, the individual household indoor temperature 
variations regarding outdoor temperature changes are just 
affected by the physical household parameters. 

For the sake of simplicity and clarity while discussing the 
results, 40 identical households (such as a site of flats 
constructed by the same company identically in a field) with the 
structural parameters shown in Table VI are considered. As 
stated in [47], a specification of household types can be realized 
between relatively uninsulated (Type 1) to well-insulated (Type 
7) household structures and some specific physical parameters 
for house types 1 to 7 are given in the relevant literature [48]. 
However, dealing with the uncertainty of such parameters can 
be realized via various estimation techniques etc.  

 Generally, the density of the air and its thermal capacity 
depend on its thermodynamic properties (temperature, pressure, 
etc.). In this study, they are considered constant  
and utilized standard values δୟ୧୰ = 1.225 kg/m3 and  
cୟ = 1.01 kJ/kg℃. Furthermore, all the households are 
assumed to have identical HVAC units with a rated power of 
3kW and the coefficient-of-performance (COP) of 2. Besides, 
the HI variation during the considered period is shown in Fig. 3 
(June 16, 2013). Moreover, the temperature based parameters 
for households are also presented in Table VII. It should be 
noted that the same value is assigned to all end-users in terms 
of desired temperature for the sake of simplicity and of showing 
comparatively how the temperature varies among the enrolled 
end-users starting from the same point and for the same 
necessities imposed by the end-users. However, the desired 
temperature can also be diversified by the proposed 
methodology as Tୢୣୱ,୦ is a parameter related to each end-user’s 
preferences. However, as the proposed methodology is not 
mainly targeting the Tୢୣୱ,୦ setting -in fact T୳୮,୦,୲ and Tୢ ୭୵୬,୦,୲ 
variables specifying how much T୧୬,୦,୲ diverges from the desired 
comfort settings are the primary factors affecting the comfort 
violation-, the performance is not largely dependent on the 
defined  Tୢ ୣୱ,୦ value. 

The time granularity used in the optimization is  
5 min (0.0833h). The Mixed-Integer Linear Programming 
(MILP) model has been coded in GAMS 24.0.2 and has been 
solved by the commercial solver CPLEX 12. For the DR 
contract, the households are assumed to accept being involved 
in DR events during summer times between 12pm-6pm. 

Besides, it is also assumed for the considered sample day 
that a peak-reduction DR event is activated between 2pm-4pm. 
It should also be noted that the initial ambient dry-bulb 
temperature values of households are randomly allocated 
between 19.10C and 20.90C. 

B.  Simulation and Results 
The model is initially run by defining ܶ ௦௧,,௧ = ௗܶ௦,, while 

implementing no constraint for the desired power reduction in 
order to obtain the reference HVAC power consumption pattern 
( ௧ܲ௧_ ,௧) as shown in Figs. 4-6.  

 

 
Figure 2. The comparison of forecasted temperature and HI. 

 
Figure 3. The HI variation during the DR event. 

TABLE VI. STRUCTURAL PARAMETERS OF THE HOUSEHOLDS 

Parameter Value Units Parameter Value Units 
House length (ܮଵ) 30 m Area of 

windows 1 m2 

House width (ܮଶ) 10 m Wall thermal 
coefficient 136.8 J/h∙m∙ ℃ 

House height (ܮଷ) 
4 m 

Window 
thermal 
coefficient 

2808 J/h∙m∙ ℃ 

Roof angle (ߚ) 40 ݀݁݃ Thickness of 
windows 

0.05 m 

Number of 
windows 

6 - Thickness of 
walls 

0.15 m 

TABLE VII. TEMPERATURE-BASED PARAMETERS OF THE HOUSEHOLDS 

Parameter Value Units 
ௗܶ௦, 20 0C 

ௗܶ_௪ௗ ,  4 0C 
ܶ_௪ௗ, 4 0C 
ܶ
ௗ 1 0C 
ܶ
௨ 1 0C 
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Subsequently, the proposed strategy is evaluated in order to 
assess its impacts on consumer satisfaction in terms of the 
average comfort maximization while taking into account the 
constraint of ௗܲ௦,௧. It should be noted that during the actual DR 
event between 2pm and 4pm, if the ௧ܲ௧_,௧ is zero then the 
constraint for ௗܲ௦,௧  is not implemented for these intra-hour 
periods, since no actual reduction from zero is possible. 

The desired load reduction when the reference HVAC 
power is non-zero during an actual DR event is assumed to be 
20 kW from the total of the 40 households. Three case studies 
are provided as follows: 
 Case 1: Consideration of only the average comfort 

violation neglecting constraints (14)-(17). 
 Case 2: Consideration of the fair allocation of comfort 

violation among enrolled end-users neglecting the load 
factor constraints (16)-(17). 

 Case 3: Consideration of both the fair allocation of 
comfort violation and load factor constraints. 

The power consumption during the contracted DR period 
and the reference power for all case studies are depicted in Figs. 
4-6.  

 

 
Figure 4. The power consumption by HVAC during the DR event for Case-1. 

 

 

Figure 5. The power consumption by HVAC during the DR event for Case-2. 

 

 

Figure 6. The power consumption by HVAC during the DR event for Case-3. 

Firstly, it is evident that the proposed limitation on 
satisfying at least the level of desired reduction during the actual 
DR event between 2pm and 4pm is satisfied by the proposed 
approach in each case. Besides, implementing such strategies is 
known to be accompanied by the load-rebound effect due to 
shifting consumption before or after the DR event. This issue 
can be observed in Figs. 4 and 5 for Case-1 and Case-2 where 
the constraints related to load factor are neglected. The 
temperature set-points of HVAC units are set to higher values 
than the corresponding the ambient dry-bulb temperature just 
before the actual DR event by the employed strategy in order to 
cool down the households that will be called during the actual 
event. Then when the actual DR event period ends, the 
households thermostat temperature set-points are set to values 
around the desired level in order to minimize the comfort 
violation that provides an additional peak load demand after the 
DR event.  

In order to tackle with this problematic issue for LSEs, 
constraining the load factor reduces these additional peaks 
before or after the actual DR event within the contracted DR 
period as seen in Fig. 6. 

Implementing a generic strategy without focusing on end-
user comfort, only with the limitation of satisfying a load 
reduction target, is likely to cause more discomfort for end-
users. The results regarding the ambient dry-bulb temperature 
of households for all cases can be seen in Figs. 7-9. 

 
Figure 7. The ambient dry-bulb temperature variation of households for Case-1. 

 
Figure 8. The ambient dry-bulb temperature variation of households for Case-2. 

 

 
Figure 9. The ambient dry-bulb temperature variation of households for Case-3. 
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It can be noticed that most households follow a similar 
pattern of temperature, while the proposed approach allocated 
their HVAC operation considering load reduction targets during 
the DR event periods.  

As the proposed study aims to minimize the comfort 
violation of end-users, the results related to each consumer in 
terms of the proposed comfort violation index are presented in 
Fig. 10. Besides, the relevant results together with the load 
factor values for each case are summarized in Table VIII.  
 

 
Figure 10. The comfort violation index value of end-users for all cases. 

TABLE VIII. GENERAL OVERVIEW OF THE OBTAINED RESULTS  

Case Minimum 
Com. Vio. 

[℃ ∙  [ࢎ

Maximum 
Com. Vio. 

[℃ ∙  [ࢎ

Average 
Com. Vio. 

[℃ ∙  [ࢎ

Load 
Factor 

Base 
Case 1.5132 1.6636 1.5718 0.3698 

Case-1 2.0773 3.7758 2.8562 0.1438 
Case-2 2.6127 3.3956 2.8724 0.1465 
Case-3 2.8802 3.7011 3.2263 0.3792 

It should be noted that for Case-2 and Case-3, ܰ 
parameter is set to 1.3 in order to limit the maximum comfort 
violation among the enrolled end-users in the DR event to be 
less than 30% more of minimum comfort violation. This extra 
constraint on fairness slightly increases the average comfort 
violation while providing a more homogenous distribution of 
the comfort violation among the end-users when the results 
given in Fig. 10 and Table VIII are examined for Case-1 and 
Case-2. In order to sustain the load factor more than the base 
case, Case-3 can be expected to cause more comfort violation 
among the end-users. This issue can be observed from the 
results in Fig. 10 and Table VIII. Together with sustaining the 
ratio of 1.3 times between maximum and minimum comfort 
violations, the average comfort violation increases significantly 
in Case-3 on behalf of providing a higher load factor. This 
clearly indicates that it is a trade-off for the LSE to find the right 
balance between minimizing the comfort violation and 
sustaining an acceptable level of load factor during the DR 
events. 

V.  CONCLUSIONS 
In this study, an end-user average comfort violation 

minimization oriented HVAC load aggregation strategy was 
proposed based on MILP. The aim of the proposed approach 
was to minimize the average deviation of household 
temperature values of a group of contracted residential  
end-users during a DR event, while satisfying load reduction 
targets of the LSE. A TSCM approach was employed to 
manipulate the end-users’ HVAC temperature settings in order 
to aggregate the mentioned reduction of the total HVAC load. 
Besides, the fairness among the end-users in terms of comfort 
violation allocation was considered together with constraining 
load factor during contracted DR period in order to reduce 
possible load rebound effect. Moreover, the HI was utilized 
instead of the ambient dry-bulb temperature, also supported by 
a spatio-temporal forecasting method. Based on the simulations 
conducted, the strategy proved to have a decrement in violation 
of end-user comfort level while effectively satisfying the 
requirement of LSE in terms of load demand reduction. 
Besides, the constraints related to comfort violation fairness and 
load factor improved the fair distribution among contracted 
end-users and load rebound effect as shown in relevant 
comparisons. There are numerous areas to which this study can 
be extended. Although this study aims at residential end-users 
and specifically HVAC units, the proposed formulation is 
extendible to a variety of appliance types by additional 
specifications on comfort violation because of the participation 
in DR programs. Thus, the diversification of demand response 
capacity offered by each end-user type and more specifically by 
each end-user appliance can be considered in a future study 
aiming at more different DR enabling appliance scheduling. 
Investigating the relationship between HVAC power 
consumption and humidity especially for indoor dynamics by 
specifically focusing on this issue can be also considered in a 
future study. Other future studies could also consider a DCCM 
approach using decentralized solutions by TCL aggregators 
instead of a centralized solution, the implementation of a 
stochastic approach considering the uncertainty related to the 
acceptance of the contracted end-users to participate in the 
actual DR event, the definition of an economic incentive index 
related to the each end-user’s comfort violation, and finally 
considering end-users with multiple TCLs and other appliances 
convenient for DR purpose (e.g. electric vehicles).  
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