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Abstract—In this paper, the optimal operation of a neigh-
borhood of smart households in terms of minimizing the
total energy procurement cost is analyzed. Each household
may comprise several assets such as electric vehicles, control-
lable appliances, energy storage and distributed generation.
Bi-directional power flow is considered both at household
and neighborhood level. Apart from the distributed genera-
tion unit, technological options such as vehicle-to-home and
vehicle-to-grid are available to provide energy to cover self-
consumption needs and to inject excessive energy back to the
grid, respectively. The energy transactions are priced based on
the net-metering principles considering a dynamic pricing tar-
iff scheme. Furthermore, in order to prevent power peaks that
could be harmful for the transformer, a limit is imposed to the
total power that may be drawn by the households. Finally, in
order to resolve potential competitive behavior, especially dur-
ing relatively low price periods, a simple strategy in order to
promote the fair usage of distribution transformer capacity is
proposed.

Index Terms—Coordination, energy management system, elec-
tric vehicle, energy storage system, net metering, photovoltaic,
dynamic pricing, smart household, smart neighborhood.

NOMENCLATURE

Sets and Indices

h(H) index (set) of households.
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m(M) index (set) of controllable appliances.
p(P) index (set) of operating phases of controllable

appliances.
t(T) index (set) of time periods.

Parameters

CEESS
h charging efficiency of the ESS of household h.

CEEV
h charging efficiency of the EV of household h.

CPt critical period indicator.

DEESS
h discharging efficiency of the ESS of house-

hold h.

DEEV
h discharging efficiency of the EV of house-

hold h.
Lh,t inflexible load of household h in period t [kW].
Nh,m number of times the controllable appliance m

of household h must be operated during the
optimization horizon.

P ph
h,m,p power consumed by controllable appliance m

of household h while in phase p [kW].
PPV,pro

h,t available power of the PV system of house-
hold h in period t [kW].

RESS,ch
h charging rate of ESS of household h [kW].

RESS,dis
h discharging rate of ESS of household h [kW].

REV,ch
h charging rate of EV of household h [kW].

REV,dis
h discharging rate of EV of household h [kW].

SOEESS,ini
h initial SOE of the ESS of household h [kWh].

SOEESS,max
h maximum SOE of the ESS of household h

[kWh].
SOEESS,min

h minimum SOE of the ESS of household h
[kWh].

SOEEV,ini
h,t initial SOE of the EV of household h [kWh].

SOEEV,max
h maximum SOE of the EV of household h

[kWh].
SOEEV,min

h minimum SOE of the EV of household h
[kWh].

Ta
h arrival period of the EV of household h.

Td
h departure period of the EV of household h.

Tdur
h,m,p duration of phase p of controllable appliance m

of household h [number of �T-hour periods].
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TRlim
t power limit of the transformer in period t

[kW].
UDCt uniformly distributed capacity of the trans-

former in period t [kW].
λ

buy
t price at which energy is bought [AC/MWh]

λsell
t price at which energy is sold [AC/MWh]

�T time interval duration [h].

Variables

Pbuy,G
h,t portion of total power procured from the grid

by household h in period t [kW].
Pbuy,L

h,t portion of power procured from the local
neighborhood by household h in period t [kW].

Pbuy,T
h,t total power procured by household h in

period t [kW].
PESS,ch

h,t charging power of ESS of household h in
period t [kW].

PESS,dis
h,t discharging power of ESS of household h in

period t [kW].
PESS,used

h,t portion of the ESS discharging power of
household h used to satisfy self-consumption
in period t [kW].

PEV,ch
h,t charging power of EV of household h in

period t [kW].
PEV,dis

h,t discharging power of EV of household h in
period t [kW].

PEV,used
h,t portion of the EV discharging power of house-

hold h used to satisfy self-consumption in
period t [kW].

Pexcess
h,t excess power of household h in period t [kW].

Pmach
h,m,t power consumed by controllable appliance m

of household h while in period t [kW].
PN→TR

t total power flowing from neighborhood to
transformer in period t [kW].

PPV,used
h,t portion of the PV power of household h used

to satisfy self-consumption in period t [kW].
Prelease

h,t power capacity released of household h in
period t [kW].

Psell,ESS
h,t portion of the ESS discharging power of

household h injected to PCC in period t [kW].
Psell,EV

h,t portion of the EV discharging power of house-
hold h injected to PCC in period t [kW].

Psell,G
h,t portion of the power injected to PCC by house-

hold h that flows back to grid in period t
[kW].

Psell,L
h,t portion of the power injected to PCC by house-

hold h that is locally used in neighborhood in
period t [kW].

Psell,PV
h,t portion of the PV power of household h

injected to PCC in period t [kW].
Psell,T

h,t total power injected to PCC household h in
period t [kW].

PTR→N
t total power flowing from transformer to neigh-

borhood in period t [kW].
SOEESS

h,t SOE of ESS of household h in period t [kWh].

SOEEV
h,t SOE of EV of household h in period t [kWh].

u1
t binary variable. 1 if neighborhood is drawing

power from the transformer in period t; else 0.
ui

h,t binary variable. 1 if the power flows from
transformer to PCC/if EV is charging/if ESS
is charging (i = {2, 3, 4}) for household h in
period t; else 0.

x ph
h,m,p,t binary variables. 1 if phase p of control-

lable appliance m in household h is begin-
ning/ongoing/finishing (x = {y, u, z}) in
period t; else 0.

I. INTRODUCTION

A. Motivation

RECENT developments in automation, control and com-
munication infrastructure enable the modernization of

the existing power grid structure [1]. The so-called “smart-
grid” is a structure that integrates monitoring and control of
all the functional units of a power system from generation
to end-users and features bi-directional flow of energy and
information [2]. Demand response (DR) is a mechanism that
allows customers to participate into the electricity markets.
The utilization of DR can reduce the peak of the system load
and as a result can render the operation of the power system
more economical, reliable and environmentally friendly [3].
There are many DR programs that are addressed to large
industrial and commercial customers. However, a few DR pro-
grams are developed to engage residential end-users [4] that
are responsible for nearly 40% of the global electrical energy
consumption [5].

Recent changes that are being fostered at residential
end-user premises are likely to motivate system operators to
develop residential DR programs. Firstly, the electrification of
the transport sector through the commercialization of electric
vehicles (EV) will cause severe deviations of the household
load profiles from the current ones. Secondly, the reduction in
the prices of small scale distributed generation units such as
rooftop photovoltaics (PV) and energy storage systems (ESS)
may lead residential end-users to cover a portion of their load
from these sources or even inject energy back to the grid.
Furthermore, a typical household already contains appliances
that could be shifted within certain time intervals without
causing comfort violation of the residents (e.g., washing
machine). Nowadays, advanced metering infrastructure (AMI),
e.g., smart meters, and communication protocols such as the
home area network (HAN) allow for the coordination of the
residential load and potentially available energy production
and storage units in order to respect the targets of a DR pro-
gram through an energy management system (EMS) [6]. There
are mainly two types of DR programs that could be employed
at residential end-user level: direct load control (DLC) and
price-based DR through time-varying pricing tariffs. In the
first case, several appliances, e.g., refrigerators [7] are supplied
with a frequency sensitive relay that automatically discon-
nects the appliance when a frequency drop is noticed in the
grid. In the second case, the residential end-users receive
hourly varying signals through their smart meter in order to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PATERAKIS et al.: COORDINATED OPERATION OF A NEIGHBORHOOD OF SMART HOUSEHOLDS COMPRISING ELECTRIC VEHICLES 3

be motivated to shift their loads in order to achieve electricity
bill reductions [8], [9]. The presented study focuses on price
incentivized DR.

The operation of a single EMS under a dynamic pric-
ing DR program would attempt to shift as much load as
possible to relatively low price periods. Considering that
more customers would enroll to such programs in the future,
more severe power peaks could occur during relatively low
price periods causing violations to the voltage and current
limits of the distribution system and increase market price
volatility [10]. Additionally, the local distribution transformers
that serve neighborhoods of such households could be stressed
above their nameplate rating, causing failures and acceler-
ated ageing of the infrastructure [11], [12]. Evidently, another
option would be to upgrade the currently existing infrastruc-
ture capacity. Nevertheless, the main barriers in this case
are the high investment cost required [12], [13] and poten-
tial over-sizing of the assets since these upgrades would just
be provided to cover excessive loads for a limited amount of
time. It appears that the most effective solution is to utilize the
existing assets more efficiently. For this reason, it is of inter-
est to develop coordination strategies at the level of a local
distribution transformer in order to guarantee that the nominal
operational conditions of the infrastructure are achieved while
the residential end-users would still benefit from the dynamic
pricing signals.

B. Relevant Background

There are many studies that propose EMS algorithms in
order to optimally allocate the load of a single household. The
interested reader may refer to a previous work of the Authors
for more information regarding the state-of-the-art of EMS
algorithms [14]. Recently, several studies have treated the
problem of coordinating the activities of price-responsive res-
idential consumers considering the distribution infrastructure
operational limits. In [10] a DLC based residential end-user
coordination scheme is proposed in order to satisfy the distri-
bution system operational limits. A decentralized collaborative
coordination strategy is proposed in [15] to achieve minimal
cost for the load serving entity into the balancing mar-
ket. Another decentralized hierarchical approach is proposed
in [16] in order to achieve the maximal utility of a coalition of
residential consumers. Shao et al. [11] proposed a DR-based
load shaping strategy in order to mitigate the violation of
the rating of a distribution transformer serving a neighbor-
hood. Khamphanchai et al. [17] proposed a multi-agent based
DR algorithm to maintain the load of a distribution trans-
former that serves a neighborhood under a specific limit while
securing critical loads and mitigating the violation of the
comfort of the residents. In [18] a two-stage decentralized res-
idential load management strategy is proposed in which the
network operational constraints are considered through nodal
pricing. Also, in [19] a decentralized Lyapunov based cost
minimization algorithm is proposed in order to coordinate the
activities of a neighborhood of smart households in order to
achieve cost minimization and satisfy the transformer capac-
ity limits. In [20], authors presented an approach that is not

directly linked to transformer capacity but related to sustaining
a micro-grid system operation during fault conditions consider-
ing ESS, shiftable loads and distributed generation that can be
considered similar to transformer capacity limitations during
peak periods. In [21], a real-time retail price based dynamic
DR controller approach is presented for peak load reduction
in order to reduce the stress on power system assets during
critical periods. Besides, a different incentive based peak load
reduction strategy is also considered in [22] for load reduction
and voltage improvement.

These studies have provided seminal insights into the
problem of coordinating the smart household activities in
a smart grid concept. Nevertheless, there are several impor-
tant points that are not addressed. References [15] and [16]
disregard the operational constraints of the DS infrastructure.
References [10], [11], [17], and [20] do not consider the
dynamically varying prices in their proposed DR strategy.
References [18], [21], and [22] are based on pricing or incen-
tive based strategies that do not guarantee the satisfaction of
power system asset limitations due to relying on end-user pref-
erences. Finally, all the aforementioned studies do not consider
the possibility of bi-directional power flow and satisfaction of
transformer capacity limitations combined with pricing based
schemes.

C. Contribution and Organization of the Paper

This paper examines the simultaneous operation of sev-
eral smart household in the context of a smart neighborhood.
This study is based on a background of a detailed model of
each smart household with ESS, EV, PV and shiftable appli-
ances aiding minimization of cost under an hourly varying
price tariff scheme. Here, the operational problem of a smart
neighborhood is formulated as an optimization problem using
Mixed-Integer Linear Programming (MILP) with the objective
of minimizing the total energy procurement cost.

The main novel points of the proposed formulation are:
1. Bi-directional power flow is explicitly considered both

at the level of a single household and at neighbor-
hood level.

2. A two-step coordination strategy is proposed in order
to mitigate unfair usage of the distribution transformer
capacity during periods in which competitive behavior
would appear among the EMS of different households
(e.g., during low price periods, DR event).

The paper is organized as follows: the mathematical model
is developed in Section II. Afterwards, the proposed method-
ology is evaluated through a test case in Section III. Finally,
concluding remarks are presented in Section IV.

II. FORMULATION OF THE OPTIMIZATION PROBLEM

A. Overview of the Proposed Structure

The schematic diagram of a transformer serving a neigh-
borhood composed of multiple smart households is depicted
in Fig. 1. It should be noted that the point where all the
smart households and the transformer unit have a common
connection will be called “point of common coupling (PCC)”
hereafter.
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Fig. 1. The schematic diagram of a transformer serving a neighborhood
composed of multiple smart households.

As it can be observed in Fig. 1, there is bi-directional
power flow between the households and the PCC, and sim-
ilarly, between the PCC and the grid across the transformer
unit. It is considered that two types of power transactions are
available, namely the power transactions between the neigh-
borhood and the grid, and also the local power transactions
within the neighborhood. As a result, the power that is con-
sumed by a household may be procured by the grid and/or be
produced locally and rendered available by other end-users by
allowing them to sell their excessive energy.

Each end-user may possess any combination of several
assets (EV, ESS, PV, controllable appliances) and techni-
cal capabilities such as vehicle-to-grid (V2G), vehicle-to-
home (V2H), ESS-to-grid (ESS2G), ESS-to-home (ESS2H),
PV-to-grid (PV2G) and PV-to-home (PV2H). All the con-
sumers are assumed to be contracted under an hourly-varying
pricing tariff scheme. Communication with the utility is
performed by means of a smart meter.

Regarding the pricing of the energy that is injected to the
PCC by each household, a net metering approach is adopted
and therefore the prices of buying and selling energy are
identical. Note that as current practice suggests, the whole-
sale market prices are directly passed (potentially, after–flat
rate–taxation) to the end-users [23].

Finally, the distribution transformer that is serving the
neighborhood is considered to be equipped with a transformer
load monitoring unit which enables the control of excessive
loading that may be harmful for the transformer unit due the
acceleration of the ageing effect [24].

The proposed model is deterministic similarly to other mod-
els in the literature [17]. Despite the fact that there are several
uncertainties related to the operation of the residential end-
users (e.g., PV production, EV arrival/departure time etc.),
a deterministic model instead of a stochastic one may be
justifiable for two reasons.

First, the economic value of considering uncertainty at the
scale of a few residential end-users is insignificant (scale of
a few cents), while the complexity of a stochastic optimization
problem is higher. In order to justify the solution of a stochas-
tic optimization problem, significant differences in the cost

savings should be noticed when considering the modeling of
uncertainty. Undoubtedly, this would be the case for a larger
consumer for whom the electricity bill constitutes a signif-
icant portion of the total expenses and the minimization of
cost would yield significant welfare gain. However, since the
differences in the daily hourly-time varying pricing schemes
are typically very small (based on the historical data of utilities
that offer such programs, e.g., [25], [26]), two typical measures
that are used in order to assess the advantage of formulat-
ing stochastic programming problems instead of deterministic
ones, namely the expected value of perfect information (EVPI)
and the value of the stochastic solution (VSS) [27], would have
a very little value in order to justify the additional complex-
ity resulting from the formulation of a stochastic optimization
problem. The rationale of the authors is further justified by the
results of a recently published work [28] in which the risk of
exposing the EMS scheduling to uncertainties is considered.
As it may be noticed in Tables IV and V of [28], the cost dif-
ferences for different levels of risk-aversion both under normal
operation and under DR request for a residential end-user are
of the scale of a few cents.

Second, in practice, there is the option of accurately learn-
ing the parameters of the end-user habits through adaptive
systems and therefore make accurate decisions in the major-
ity of the cases [29]. Besides, the fact that within an hour the
electricity price is the same, renders the actual cost differences
even less, significant providing in that way a natural degree of
“robustness” to the estimations of such adaptive systems (e.g.,
whether the EV arrives at 6pm or at 6:20pm is practically
indifferent from the economic point of view).

Taking into account end-user parameter related uncertain-
ties is economically and technically meaningful for larger
scale applications in which the behavior of a large number
of end-users may be considered using appropriate probabil-
ity distributions. A relevant discussion is performed in [30]
regarding the disjunction between the uncertain behavior of a
single EV and a fleet of EVs.

B. Mathematical Formulation

1) Objective Function:

Minimize

TNC =
∑

h

HCh

where

HCh =
∑

t

(
λ

buy
t · Pbuy,T

h,t · �T − λsell
t · Psell,T

h,t · �T
)
,∀h

(1)

The objective of the optimization problem (1) is to minimize
the total energy procurement cost of the smart neighbor-
hood (total neighborhood cost- TNC). As stated before, this
study focuses on a net-metering approach in which the price
of buying and selling energy is the same for the house-
holds. Nevertheless, (1) may be adapted to any other pricing
scheme regarding the energy that is sold back to the grid
(e.g., feed-in-tariff).

The grid related tariffs that are calculated based on the total
electricity consumption at the end of the billing period are
not considered in the objective function. In addition, if the
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grid related tariffs are calculated based on time-of-use princi-
ples, the proposed formulation is readily compatible with such
policies as well, simply by adding a summation term in the
objective function which aims at further minimizing the energy
usage during periods that are pre-defined by the utility.

It is to be noted that investment and asset degradation costs,
as well as appliance, control and communication infrastruc-
ture costs are not considered in the scope of this paper which
focuses on the impact of the proposed strategy on operational
costs.

2) Neighborhood Power Exchange Constraints: First of all,
the power drawn from the PCC from each household com-
prises two components as in (2), where Pbuy,L

h,t represents the
portion of the total power of household h that comes from
the power injections to the PCC from other households, while
Pbuy,G

h,t is the amount of power that is transferred from the
transformer side to household h. Similarly, the power sold
back to the PCC from each household comprises two com-
ponents as in (3), where Psell,L

h,t represents the portion of the
power injected to the PCC from household h that is used to
cover the power requirements of other households in the neigh-
borhood without passing through the transformer unit, while
Psell,G

h,t is the portion of the injected power to the PCC from
household h that flows through the transformer unit to the grid
side. Furthermore, the injected power to be used in the neigh-
borhood should be equal to the power that is being gathered
from local sources at every given period as enforced by (4).

Pbuy,T
h,t = Pbuy,G

h,t + Pbuy,L
h,t , ∀h, t (2)

Psell,T
h,t = Psell,G

h,t + Psell,L
h,t , ∀h, t (3)

∑

h

Pbuy,L
h,t =

∑

h

Psell,L
h,t , ∀t (4)

Equation (5) provides the total power that the neighborhood
draws from the transformer, while (6) specifies the total power
of the energy sold by the smart households and passes through
the transformer.

Constraints (7) and (8) limit the total energy that the neigh-
borhood may procure by the transformer and vice versa,
respectively. Note that the binary variables u1

t are necessary
in the mathematical model in order to force the transformer
to provide power only to one direction (either from the grid
to the neighborhood, or from the neighborhood to the grid)
during a given time interval.

∑

h

Pbuy,G
h,t = PTR→N

t , ∀t (5)

∑

h

Psell,G
h,t = PN→TR

t , ∀t (6)

PTR→N
t ≤ TRlim

t · u1
t , ∀t (7)

PN→TR
t ≤ TRlim

t ·
(

1 − u1
t

)
, ∀t (8)

To better illustrate the concept that constraints (2)-(8) imple-
ment, let us consider the following numerical example. In
Fig. 1 assume that Houses 1 and 2 have 0.5 and 1 kW of
surplus power that is injected to the PCC, respectively. At
the same time House 3 requires 2 kW of power to supply its
requirements. Therefore, the total 1.5 kW of reverse power

from House 1 and 2 will naturally flow to House 3 via the
PCC together with an additional 0.5 kW that is procured from
the grid and is transferred across the transformer in order to
satisfy the 2 kW required by House 3. A similar numerical
example can be also considered for reverse power flow, i.e.,
from the PCC to grid across the transformer unit, if the total
excess power injected to the PCC by some households exceeds
the power requirements of the rest of the households in the
neighborhood.

To sum up, the direction in which the energy flows is
defined by the power balance at the PCC. At each given time
interval either of the following conditions holds: several house-
holds, having satisfied their internal energy balance, inject their
excessive energy to the PCC, while other request energy from
the PCC. In case the locally available energy is less than the
energy that is required by the end-users with internal energy
deficit, then the energy deficit of the neighborhood is covered
by additional energy that is drawn by the PCC from the grid
through the transformer unit. In the opposite case, i.e., if the
locally available energy exceeds the demand of the end-users,
then the energy surplus of the neighborhood is injected from
the PCC to the grid through the transformer unit. Finally, if the
locally available energy matches the energy that is requested
by the end-users with internal energy deficit, then no energy
flows through the transformer.

At this point, the following should be clarified: since the
excess energy from any individual end-user is bought at the
market price according to the net metering principles, the end-
user de facto grants the right to the respective retailer to use it
in its energy transactions. As a result, energy that is injected
from the end-users to the PCC could not be physically dis-
sociated from the energy that is provided by the grid through
the transformer to the PCC and thus, no further separate con-
sideration regarding its allocation, different than the concepts
described in Section II-B4, to the end-users that request energy
is required.

3) Household Power Exchange Constraints:
a) Power balance: The power balance of each household

is described by (9).

Pbuy,T
h,t + PPV,used

h,t + PEV,used
h,t + PESS,used

h,t

= Lh,t + PEV,ch
h,t + PESS,ch

h,t +
∑

m

Pmach
h,m,t, ∀h, t (9)

b) Decomposition of power bought and sold:
Constraints (10), (11) and (12) define the energy transactions
between the house and the grid. The parameter N may be used
to impose limits to the power that may be drawn or injected
back to the grid as a part of an advanced DR strategy. If
no power limits are defined, then this parameter is set to a
sufficiently high positive value.

Psell,T
h,t = Psell,PV

h,t + Psell,EV
h,t + Psell,ESS

h,t , ∀h, t (10)

Pbuy,T
h,t ≤ N · u2

h,t, ∀h, t (11)

Psell,T
h,t ≤ N ·

(
1 − u2

h,t

)
, ∀h, t (12)

Note that the binary variables u2
h,t are necessary in the math-

ematical model in order to enforce the fact that a house may
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only draw or inject power back to the grid at a given time
interval.

c) Electric vehicle: The EV model employed in
this study is described by (13)-(19) for each household.
Equation (13) defines the usage of power that comes from
discharging the EV (V2H or V2G). Constraints (14) and (15)
limit the charging and discharging power of the EV, respec-
tively. The state-of-energy (SOE) of the EV battery is defined
by (16) and (17), while (18) stands for the minimum and
maximum SOE of the EV in order to avoid deep-discharge.
Finally, (19) states that the EV should be fully charged at the
end of the time horizon.

PEV,used
h,t + Psell,EV

h,t = DEEV
h · PEV,dis

h,t , ∀h, t (13)

0 ≤ PEV,ch
h,t ≤ REV,ch

h · u3
h,t, ∀h, t ∈

[
Ta

h , Td
h

]
(14)

0 ≤ PEV,dis
h,t ≤ REV,dis

h ·
(

1 − u3
h,t

)
, ∀h, t ∈

[
Ta

h , Td
h

]

(15)

SOEEV
h,t = SOEEV,ini

h,t + CEEV
h · PEV,ch

h,t · �T

− PEV,dis
h,t · �T, ∀h, if t = Ta

h (16)

SOEEV
h,t = SOEEV,ini

h,t−1 + CEEV
h · PEV,ch

h,t · �T

− PEV,dis
h,t · �T, ∀h, t ∈

(
Ta

h , Td
h

]

(17)

SOEEV,min
h ≤ SOEEV

h,t ≤ SOEEV,max
h , ∀h, t ∈

[
Ta

h , Td
h

]

(18)

SOEEV
h,t = SOEEV,max

h , ∀h, if t = Td
h (19)

Note that the binary variables u3
h,t are necessary in the math-

ematical model in order to enforce the fact that the EV may
only charge or discharge at a given time interval.

d) Energy storage system: The constraints that model
the operation of the ESS of each household (20)-(25) are sim-
ilar to the ones describing the operation of the EV. The basic
difference is that unlike the EV, the ESS is available at the
household premises all day.

PESS,used
h,t + Psell,ESS

h,t = DEESS
h · PESS,dis

h,t , ∀h, t (20)

0 ≤ PESS,ch
h,t ≤ RESS,ch

h · u4
h,t, ∀h, t (21)

0 ≤ PESS,dis
h,t ≤ RESS,dis

h ·
(

1 − u4
h,t

)
, ∀h, t (22)

SOEESS
h,t = SOEESS

h,t−1 + CEESS
h · PESS,ch

h,t · �T

− PESS,dis
h,t · �T, ∀h, t ≥ 1 (23)

SOEESS
h,t = SOEESS,ini

h , ∀h, if t = 1 (24)

SOEESS,min
h ≤ SOEESS

h,t ≤ SOEESS,max
h , ∀h, t (25)

Note that the binary variables u4
h,t are necessary in the math-

ematical model in order to enforce the fact that the ESS may
only charge or discharge at a given time interval.

e) Controllable appliances: A typical household con-
tains loads that operate on a predefined cycle, by means that
both the duration of their operation as well as their con-
sumption during operational phases is known (e.g., washing-
machine and dishwasher). The EMS may shift their operation
in order to exploit low-price periods. This type of loads is

modeled using (26)-(31) for each household. Equation (26)
implies that the power that the appliance m is consuming dur-
ing period t depends on the operating phase that is currently
active. Constraint (27) states that a machine cannot be in more
than one operating phase simultaneously. Equations (28)-(30)
enforce the phase sequence logic. Finally, (31) enforces the
number of times a specific appliance must operate during the
horizon. These constraints assume that there is not a user-
preference related to when the appliances should perform their
task. Nevertheless, if such options need to be considered,
appropriate time limits may be enforced to (26)-(31).

Pmach
h,m,t =

∑

p

(
u ph

h,m,p,t · P ph
h,m,p

)
, ∀h, m, t (26)

∑

p

u ph
h,m,p,t ≤ 1, ∀h, m, t (27)

y ph
h,m,p,t = z ph

h,m,p,
(

t+Tdur
h,m,p

), ∀h, m, p, t (28)

y ph
h,m,p,t − z ph

h,m,p,t = u ph
h,m,p,t − u ph

h,m,p,(t−1), ∀h, m, p, t > 1

(29)

z ph
h,m,p,t = y ph

h,m,p+1,t, ∀h, m, p < |P|, t

(30)∑

t

y ph
h,m,p,t = Nh,m, ∀h, m, p (31)

f) PV production: Equation (32) implies that the avail-
able PV production may be used to cover a portion of the
household load and if it exceeds it, it is sold back to the grid.

PPV,used
h,t + Psell,PV

h,t = PPV,pro
h,t , ∀h, t (32)

4) Coordination Strategy: According to the current prac-
tice (e.g., [26], [27]) utilities that offer time-varying pricing
schemes are offering uniform prices to all their consumers.
More specifically, the consumer is directly exposed to the mar-
ket prices. Even in the scenario of passing nodal prices to the
consumers, the EMSs of a neighborhood would receive the
same prices. This leads to an adverse effect that is usually
referred to as “DR concentration” which in essence means
that by assuming that an EMS is a rational agent that acts on
behalf of the residential end-user, it is logical to deduce that
each EMS would allocate as much power as possible to the
relatively lowest price periods. As a result, it is not necessary
that dynamic pricing based DR will always lead to peak power
reductions.

The behavior of the EMS may cause concerns as regards the
utilization of the local transformer which of course has limited
capacity. If the transformer capacity limit is neglected, then
the optimization problem renders an optimal solution that cor-
responds to minimizing each individual household cost. This
solution is fair from the point of view that each individual end-
user may equally benefit from the dynamic pricing scheme.
However, it is not practically a feasible case since transformer
overloading, especially due to relatively long lasting EV charg-
ing loads, would potentially damage this important distribution
asset (e.g., ageing acceleration).
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Fig. 2. Flow chart of the proposed coordination strategy.

Since the objective function as expressed by (1) involves
the minimization of the total neighborhood energy procure-
ment cost, different optimal solutions may exist in terms of
combinations of optimal household costs. In that case, tak-
ing into account that (7) limits the total available transformer
capacity, unfair allocation of power to different households
may be noticed, especially during relatively low price peri-
ods. If the transformer limit is inconsiderately incorporated
in the optimization problem as a constraint, then, a solution
that favors one end-user over the other may occur. For exam-
ple, one highly power intensive household may be allowed
to procure power of the grid that stands for the 50% of the
capacity of the transformer, while, the rest of the house-
holds would have to share the remaining 50%. Evidently,
this is an unfair situation as regards the utilization of the
transformer.

To mitigate this negative implication, a power alloca-
tion strategy is proposed that comprises the solution of two
optimization problems, as it is displayed in Fig. 2.

The proposed strategy promotes the fair usage of the trans-
former capacity in the following way: firstly, the transformer
capacity is assumed to be equally distributed among the
end-users that are connected to the LV side of the same
local distribution transformer. The household costs are then
optimized from the perspective of each individual EMS.

Practically, in the first step, the households are considered to
be constrained by the uniformly distributed capacity (UDCt)

of the transformer as expressed by (33) and (34). The indica-
tor parameter step is set to 1 and the optimization problem is
solved. As a result, the optimal cost of the houses HC′

h is ren-
dered known. This result could be considered fair but it may
lead to underutilization of the transformer capacity since it is
natural that several households are not fully exploiting their
individually allocated capacity and as a result, there is spare
capacity that could be used by other households that request
more power.

Despite the fact that initially the transformer capacity is
equally distributed to the consumers, they do not own this
capacity which belongs to the utility. At this point, it is logical
to assume that the rest of the households should have access
to this unexploited transformer capacity by allowing them to
draw more power (Pexcess

h,t ) than their initially allocated trans-
former capacity as expressed by (35). Naturally the request
for more power renders a better optimal cost for the house-
hold that is given this right. However, also in this case, the
optimal cost of any other household should not be reduced in
comparison with the initial power allocation (this implies that
the households utilize at least as much capacity as initially).
For this reason, constraint (36) is enforced.

Practically, to solve the second optimization problem, the
indicator parameter step is set to 2 and the optimization prob-
lem is solved considering also (35) and (36) that state that the
houses may exceed the uniformly distributed capacity but the
new individual household costs (HCh) should be at least equal
to what they achieved in the previous step. This constraint pre-
vents the cost of several households to be increased in favor
of others and especially those that do not need to consume
more power than the uniformly distributed capacity in order
to further minimize their individual cost.

The presented approach is also consistent with DR events
that may be also issued by the DSO during specific hours.

UDCt = TRlim
t

|H| , ∀t (33)

Pbuy,G
h,t ≤ UDCt, ∀h, t, if step = 1 (34)

Pbuy,G
h,t ≤ UDCt + Pexcess

h,t , ∀h, t, if step = 2 (35)

HCh ≤ HC′
h, ∀h, t, if step = 2 (36)

It is also interesting to notice that effective coordination
could be achieved under the hypothesis that each individual
end-user receives a suitably differentiated energy price sig-
nal (potentially complementary, i.e., one consumer receives
relatively low prices when the other consumer connected to
the LV side of the same local transformer receives relatively
high prices). However, this is a highly complex task because
of the number of the consumers that should be considered,
compromises the basic rationale of hourly-varying pricing (to
capture short-term cost of electricity in the market) and defi-
nitely it is not aligned with the current practice as regards the
hourly-varying pricing of the energy.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SMART GRID

Fig. 3. Inelastic load of house 1 (single person household).

Fig. 4. Inelastic load of house 2 (couple working during the day).

III. TESTS AND RESULTS

A. Input Data

The mathematical model described above has been imple-
mented in GAMS v.24.1.3. and the optimization problem is
solved using the commercial solver CPLEX v.12.

The utilized optimization interval is 5 minutes (0.083h) and
as a result there are 288 periods. To demonstrate the proposed
methodology, a sample neighborhood consisting of 3 houses
that are supplied by a 25kVA single phase pole mounted
transformer is considered, similarly to [11]. The houses are
assumed to host different kinds of consumers.

The first house (house 1) is occupied by a single person
that works during typical week-day hours. The corresponding
inelastic load profile is presented in Fig. 3. The second house
(house 2) has two residents that work during typical week-
day hours. The inelastic load of this household is depicted in
Fig. 4. Finally, the third house (house 3) is assumed to be
occupied by a four-member family with a non-working parent
and its inelastic consumption is portrayed in Fig. 5. These
load profiles are created considering several typical domestic
appliances the nominal power and the duration of usage of
which are presented in Table I [31], [32].

All the three households are considered to be equipped with
a washing machine and a dishwasher that have the ability to be
appropriately shifted by the household EMS. The operational
details of these appliances are presented in Table II [33].

Furthermore, each household has a battery based ESS and
a rooftop PV installation. Since the households are consid-
ered to be close to each other, a normalized (per 1kW of
installed capacity) photovoltaic power curve is used for all the
houses (Fig. 6) measured in Yildiz Technical University, in
March 2013.

Fig. 5. Inelastic load of house 3 (four-member family).

TABLE I
HOUSEHOLD APPLIANCES DATA

TABLE II
OPERATIONAL PHASES OF CONTROLLABLE APPLIANCES

Fig. 6. PV production per 1kW installation.

There are already different types of EVs available on the
market. For each household, a suitable EV to satisfy the needs
of the residents is selected [34].
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TABLE III
ASSET DATA OF EACH HOUSEHOLD

Fig. 7. Hourly energy price signal.

Data concerning the EV, the PV and the ESS of each house-
hold are presented in Table III. It is also assumed that the
capability of selling energy back to the grid through V2G,
ESS2G and PV2G is also available. These assets may be also
used to partly or fully cover household energy needs through
V2H, ESS2H and PV2H options.

The retailer announces a price signal for the 24h of the
optimization horizon as displayed in Fig. 7. The prices are
adapted from [25]. It has been stated before that the customer
is reimbursed at the same price for the energy that is sold from
the household back to the grid according to the net metering
principles.

B. Results and Discussion

If the transformer capacity limit is not enforced, as expected,
the optimization of each household EMS would render its min-
imum optimal cost. Nevertheless, all the households would
allocate as much load related to the EV charging activities
and the controllable appliances as possible to the relatively

Fig. 8. Total transformer load.

TABLE IV
ECONOMIC RESULTS

low price periods. As a result, during these periods, the dis-
tribution transformer would be overloaded. This condition is
depicted in Fig. 8 that presents the total daily transformer load.

In practice, short-term transformer overloading is
acceptable [11], especially during hours with relatively
low temperature. However, as it can be noticed in Fig. 8, the
transformer is overloaded with an average of 123.2% for one
hour and such a continuous overloading may be harmful for
the transformer service life. This result is consistent with the
one depicted also in Fig. 5 of [11].

In Table IV the optimal energy procurement cost of each
household is presented for different coordination strategies. As
stated before in case that the transformer is not limiting the
total power that may be drawn, the minimum optimal cost is
achieved. If the available capacity is equally divided among the
households, then the optimal cost for all the houses increases.
Following this strategy, the transformer limit is not violated;
however, the usage of the available capacity is not yet efficient.

Furthermore, if the only limit considered is the total capac-
ity of the transformer, competitive behavior of the EMS of
houses 1-3 may appear during low-price periods. This results
into an increased cost for house 1 in favor of houses 2 and 3
even though it appeared to be the only house that would not
violate the UDC. Finally, the proposed strategy guarantees that
the cost of a household may not be increased more than the
cost in the first step (UDC constrained).

One may notice that the prices presented in Table IV exhibit
minor differences. However, the proposed strategy that pro-
motes the fair allocation of the transformer capacity offers two
benefits: 1) since hourly pricing schemes are directly linked
with the market prices that may be volatile, residential end-
users may be exposed to unstable price signals. In such a case
the presented strategy guarantees that no house incurs exces-
sive costs in favor of others due to limiting its allowable load.
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Fig. 9. Hourly energy analytics for house 1.

Fig. 10. Hourly energy analytics for house 2.

2) In several cases, the transformer load monitoring unit may
receive a signal to further constrain its capacity during a spe-
cific period (DR event). In that case, the proposed strategy
would allow all the households to request power from the
transformer if it facilitates the minimization of their cost.

The total transformer load that emerges from the application
of the proposed two-step strategy is also depicted in Fig. 8. It
can be seen that the transformer is loaded at its nominal capac-
ity during the lowest price periods (3am-5am). Also, during
6-7pm energy is injected from the neighborhood to the grid.
Figures 9–11 the hourly energy analytics of each household
under the proposed strategy are presented. The following are
observed:

• In all three houses the power from the PV installation is
used to cover self-needs as long as it is available.

• The ESS is charging during 7am and 8am. On the other
hand, it is used as an energy source in order to cover
a portion of the household load during 2-4pm for all the
houses. The ESS operation is justified by the fact that
7 and 8 am offer the lowest electricity prices before the
noon price peaks.

• As soon as the EVs arrive at the household they con-
tribute to the household energy needs through V2H mode.
These are periods of relatively high prices and as a result
the EMS attempt to avoid buying energy from the grid.

Fig. 11. Hourly energy analytics for house 3.

Fig. 12. Decomposition of the neighborhood load into grid and locally
available power.

Especially, during 8pm the load of house 2 is exclusively
supplied by the energy that is available in the EV. The EV
charging is performed from 3am to 5am for all houses.
These periods are the lowest price periods of the day.

• The controllable appliances (washing machine and dish-
washer) of all the households are also shifted between
3am and 5am. In order to comply with the capacity limit
of the transformer the starting periods are different. The
dishwasher starts up at 4:15am, 3:45am and 3:25am and
the washing machine at 3:55am, 3:05am and 3:55am for
houses 1-3, respectively.

The energy that a household buys may be supplied by the
grid through the transformer (transformer-to-neighborhood,
TR2N) or it may be injected by other houses to the PCC
(neighborhood-to-neighborhood, N2N). Figure 12 portrays the
decomposition of the total energy that is procured by the
neighborhood into TR2N and N2N, under the proposed strat-
egy. The energy drawn by the houses during the time horizon
comes mainly from the grid. Nevertheless, it is noticed that
during 4-8pm a significant portion of the neighborhood load
is served by locally available energy. This energy comes from
the V2G operation. After the EVs satisfy the household load at
a given period (in order to avoid buying energy from the grid),
they inject excess energy back to the grid in order to profit
from the electricity prices that are above the average price of
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TABLE V
EV ARRIVAL TIME SCENARIOS

Fig. 13. Total transformer load for different EV arrival time scenarios.

TABLE VI
COMPUTATIONAL STATISTICS

the day. As a result, the transformer loading during these peri-
ods is relatively low despite the fact that the households have
high inelastic load.

As a further study, the impact of different EV arrival times
on the distribution transformer load is presented. Two sce-
narios (S1 and S2), as shown in Table V, are obtained using
random sampling using the approach proposed in [30]. The
relevant results are illustrated in Fig. 13. In S1, since two cars
arrive in periods during which the prices are higher than those
in the following periods, even if the energy that is injected
from the neighborhood to the grid is reduced in comparison
with the normal case, it is still profitable for the households to
sell energy back to the PCC through V2G mode. In S2, as all
the three EVs arrive in later periods in which the prices are
relatively low, the energy that flows through the transformer
to the grid side is drastically reduced as it is not profitable
to sell energy back to the PCC and then charge the EV. Note
that in all cases, the proposed strategy is successful in avoiding
overcoming the power limitation of the transformer.

The computational statistics of the presented case study are
provided in Table VI. The total solution time, considering an
optimality gap of 0%, is 24 secs on a modern laptop computer
(i7 at 2.4GHz, 4GB of RAM, 64bit Windows) and less than
1 sec in a workstation (two 6-core processors at 3.46 GHz,
96 GB of RAM, 64-bit Windows). As the computational capa-
bilities of embedded systems that are needed to implement
EMS increase, it appears that such complex algorithms will
be practically applicable even for larger-scale systems.

IV. CONCLUSION

In this study, the operation of a neighborhood of smart
households equipped with an EMS was studied. Under
a dynamic pricing scheme, the EMS aim to minimize their
individual energy procurement cost. Furthermore, a coordina-
tion strategy was proposed in order to satisfy the transformer
capacity limits while promoting its economically fair usage by
the households. All possible bi-directional power flows were
considered in this study between each house and the grid and
also between the houses which constitute the neighborhood.
The application of the proposed approach would incentivize
the users to shift their consumption in order to achieve lower
electricity bills. Also, taking into account that the share of elec-
tric vehicles in the transportation market will increase in the
following years, the proposed strategy promotes a smoother
introduction of this new type of load at residential level. The
presented case study is an example that could be expanded to
neighborhoods of more houses, as it is suggested by the min-
imal computational time. The study of the impact of different
consumer profiles and the effect of different price signals on
the distribution transformer and the economic results, as well
as the degradation of the equipment and especially the ESS
because of frequent cycling of the batteries, will be the subject
of future works to be pursued by the Authors.
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