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Abstract—The unpredictable and volatile nature of wind power
is the main obstacle of this generation source in short-term trad-
ing. Owing to the ability of demand side to cover wind power
imbalances, aggregated loads have been presented in the litera-
ture as a good complementary resource for the wind generation.
To this end, this paper proposes a technique to obtain the best
offering strategy for a hybrid power plant consisting of a wind
power producer and a demand response provider in the power
market. In addition, conditional value-at-risk is used to limit the
risk on profit variability. Finally, a detailed analysis of a realis-
tic case study based on a wind farm in Spain has illustrated that
joint operation of wind power producers and demand response
providers can increase the expected profit and reduce the potential
risks.

Index Terms—Hybrid power plant, wind power, demand
response, offering strategy, stochastic programming.

NOMENCLATURE

The main notation of the paper is expressed below for quick
reference. The other symbols are described as required.

A. Indices and Numbers
t (T ) Index (set) for hourly periods.
ω (Ω) Index (set) for scenarios.

B. Parameters
Wmax Wind farm capacity (in MWh).
α Confidence level.
β Risk-aversion parameter.
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ϑ∗ Fixed rate for each MW load reduction (in
C/MWh).

μ Maximum percent of the load did not need to
be recovered.

σ Factor which define relation of elasticity and
price.

η1,η2 Upper and Lower bound of demand response.
D0t Normal demand level in period t (in MWh).
γ Lower bound for offering to the intra-day

market.
ρω Occurrence probability of scenario ω.

C. Random Variables
Wtω Wind power in period t and scenario

ω (in MWh).
ϑD
tω,ϑI

tω Day-ahead and intra-day market price
(in C/MWh).

ϑ+
tω, ϑ

−
tω Positive/negative imbalances’ price

(in C/MWh).
R+

tω, R−
tω Positive/Negative imbalance ratios.

SCN Scenario.

D. Continuous Variable
PD
tω Day-ahead offer of wind power producers

(in MWh).
P I
tω Intra-day offer of wind power producers

(in MWh).
P sch
tω Scheduled power of wind power producer

(in MWh).
δtω Total deviation of wind power producer from

the scheduled power (in MWh).
δ+tω , δ−tω Positive/Negative deviation of wind power

producer from the scheduled power (in MWh).
PD,hpp
tω Day-ahead offer of hybrid power plant

(in MWh).
P I,hpp
tω Intra-day offer of hybrid power plant

(in MWh).
P sch,hpp
tω Scheduled power of hybrid power plant

aggregator (in MWh).
δ+,hpp
tω , δ−,hpp

tω Positive/Negative deviation of hybrid power
plant from the scheduled power (in MWh).

δhpp
tω Total deviation of hybrid power plant from the

scheduled power (in MWh).
LD
t Value of load reduction which offer to the

day-ahead market in period t (in MWh).
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LI
tω Value of load reduction which offer to the ID

market (in MWh).
Lsch
tω Demand side scheduled power (in MWh).

ξ Expected profit (C).
zω Auxiliary variable for calculating Conditional

Value-at-Risk in scenario ω.
var Auxiliary variable for calculating conditional

value-at-risk.

E. Function
E [·] Function to calculate the expected value by

using the summation of multiplied value
obtained from each scenario and the
occurrence probability of the related scenario.

I. INTRODUCTION

A. Aims and Scope

D UE to the environmental concerns and the fossil fuel cri-
sis, renewable energy resources (RERs) are increasing at

a rapid rate in many electricity systems throughout the world.
It is predicted that the share of the generation of RERs will be
more than 25% of the world’s electricity until 2035, of which a
quarter will be generated by the wind energy resources [1], [2].

Restructuring of power industry poses a competitive envi-
ronment with private players. Because of the uncertain, volatile
and undispatchable nature of the wind generation, wind power
producers (WPPs) can barely compete with conventional power
producers in the electricity market. Supporting schemes which
are based on the market such as fixed feed in-tariff and feed
in-tariff premium, i.e., a low and high limit that guarantees
minimum and maximum tariffs irrespective of the electricity
market prices, and non-market support schemes such as govern-
ment subsidies and tax exemption are different mechanisms that
are proposed and implemented for supporting WPPs in various
countries all over the world [3].

With respect to the improvement and growth of wind gen-
eration technologies and due to the nowadays tariff deficit
and negative economic conjunctures, supporting schemes men-
tioned above are gradually becoming less and less relevant.
These circumstances increase WPPs’ tendency to participate
in the electricity market to maximize their profit [4]. However,
WPPs face two main uncertain sources: wind power produc-
tion and market prices. Significant fluctuation of the wind
production and considerable uncertainty of prices cause major
variability and loss on WPPs profit. It is due to the fact that
WPPs are responsible for their energy deviations (difference
between the scheduled and actual production) which must
be covered in imbalance mechanism provided by expensive
sources. Therefore, it is absolutely crucial to develop an inno-
vative and practical short term offering strategy for WPPs and
enable them to hedge against these uncertainties.

B. Background and Approach

The publications in the area are generally classified into two
main approaches:

Firstly, numerous studies have attempted to provide and
improve an optimal offering strategy model for participation of
WPPs in the electricity market by themselves with respect to
the various market infrastructures and rules [4]–[8].

Secondly, other technologies, facilities, options and pro-
grams have been coordinated with WPPs in order to mitigate
the randomized behavior of the wind generation. Financial
options have been introduced to handle WPPs uncertainties in
[9]. Utilizing other technologies and facilities such as storage
devices [10], pumped-storage hydro plants [11], gas turbines
and compressed air energy storage [12] as supplemental energy
resources beside the wind farms are various solutions pro-
posed in the literature to reduce the variability and uncertainty
in the net output of the joint scheme of these facilities and
wind generators. Although, the storage can reduce the imbal-
ance cost stemmed from wind power fluctuations, the current
high investment cost of the storage makes it an uneconomic
solution. In recent years, it has been suggested that demand
response (DR) resources can be a flexible and cost-effective
option to handle the variability of WPPs [13]. Several publi-
cations have been appeared in recent years, studying the effect
of DR program for the wind power generation from different
points of view [14]–[17]. In this regard, reference [14] pro-
poses an approach to determine the proper value of the load
shifting from off-peak to peak from ISO’s viewpoint and under
the ISO’s direct load control for improving the utilization of
wind generation. Reference [15] utilizes the critical peak pric-
ing, which is one of the DR programs, from the view point
of load serving entity that has wind energy to sell to the day-
ahead (DA) market and investigates the optimal value of the
critical peak pricing. Reference [16] assesses the impacts of
DR resources as an alternative to manage the voltage profile.
In [17], the author evaluates the effect of market design and
rules as well as DR programs on reducing the impact of wind
power forecast errors. Nevertheless, a few researchers have
investigated the positive benefits of DR on the WPPs short term
trading from the WPPs’ viewpoint [18], [19]. Reference [19]
has proposed a platform for trading DRRs in a separate intra-
day (ID) market in order to improve the WPPs’ profit. Then the
model has been solved from WPPs’ point of view. In this situa-
tion, which the profit of demand side (DS) is not considered and
discussed, one question arises: How can the demand response
provider (DRP) be convinced and motivated to collaborate
with WPPs in such a market? In that paper, a separate market
named intra-day demand response exchange market is consid-
ered instead of conventional ID market for trading DR between
DR providers and DR users. Under this assumption, another
question which bears in mind is that: Who is responsible for the
cost and the process of procuring that market and how the sig-
nal of it can affect the conventional ID market in the same time?
In [19], the operation of WPPs and flexible loads in the DA mar-
ket has been analyzed. Reference [19] has totally ignored the
uncertainties related to the power market prices and has sup-
posed the market prices as the deterministic values and also the
risk related to the problem is not considered. It also obtain only
simple offering quantity and not offering curves. In addition,
the ID market which is specially good for renewable energy
resources and specifically for WPPs is not considered in it.
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The current paper focuses on the second approach and eval-
uates the effectiveness of the joint operation (JO) of the loads
with an existing wind farm, to form a hybrid wind-DR power
plant. Indeed, in this context, a hybrid power plant (HPP) of
wind farm that uses flexible loads as a storage device is con-
sidered. This paper considers the DR beside the wind power
simultaneously in the both DA and ID markets which has not
been proposed in the literature yet. We consider the related
uncertainties, i.e., wind production, DA market prices, ID
market prices, and balancing market prices, in the form of sce-
narios. Then, a three-stage stochastic programming model is
developed to obtain the optimal offering strategy for the JO of
WPP and DRP in the form of simple generation bids or even
offering curves and also compare it with uncoordinated opera-
tion (UO) of them to assess the benefits of the proposed method.
A risk measure tool is also employed to manage the risk of the
problem.

C. Contribution

To the best of our knowledge, the main contributions of this
paper with respect to the current literature in the area can be
summarized as follows:

• The development of a two-stage stochastic decision mak-
ing model for participation of DR in the both DA and ID
competitive market.

• The development of an optimal offering strategy model
for the JO of a WPP and a DRP to maximize their
expected profit and control their risk to mitigate wind
power uncertainties.

• The development of a method to generate the scenarios
and proposing a simple way to consider the correlation
between the stochastic variables.

• The implementation and analysis of the proposed frame-
work on a realistic case study.

D. Paper Framework

The remainder of the paper is organized as follows: section II
presents a detailed description of the problem. Section III pro-
vides uncertainty characterization. Next, the mathematical for-
mulation of the problem is described in Section IV. Section V
provides results for a realistic case study. Section VI draws
conclusions.

II. PROBLEM DESCRIPTION

A. Market Framework

This paper considers a bi-directional multimarket including
three trading floors, shown in Fig. 1, as described below:

1) DA Market: In order to participate in the DA market
of day D+1 all the producers/consumers have to submit their
sales/purchases offer to the Market Operator (MO) before 10:00
A.M. of day D. Then, the Market Clearing Price (MCP) can
be derived through the conjunction of the supply and demand
curve.

2) Intra-Day Market: Due to the wide time horizon
between the closure of DA market and delivery time (14 hours

Fig. 1. Market framework.

in this case), after the closure of DA market, an adjustment mar-
ket may assist the participants to modify their offers. In this
trading floor, the producers can submit both purchase and sales
offers in order to correct their offers and react to the latest infor-
mation that is gained during the closure of DA market and ID
market. This trading floor is especially good for the producers
which are faced with uncertainty, e.g., WPPs. It should be noted
that this paper considers one adjustment market, i.e., ID market,
which remains open until 2 1

4 hours before real time generation
as shown in Fig. 1.

3) Balancing Market: Balancing markets, which are open
until 15 minutes before the real time, allows producers to cover
their imbalances. In fact, this trading floor guarantees the con-
tinuous balance between electricity production and consump-
tion. It should be noted that the imbalances may be positive
(higher generation) or negative (lower generation). According
to the total imbalances of the system, a dual-price balancing
market is considered in this context. The mechanism of the
imbalance prices has been extracted from [4].

B. Demand Side Modeling

Most consumers do not have the means to participate directly
in the power markets. Therefore, they need the services of an
aggregator in order to participate in these markets. Aggregation
service providers are therefore central players in the creation
of a vital DR program and demand side’s (DS’s) participation
in the power market. The main function of aggregation is to
determine and gather the flexibilities of the consumers to build
DR services.

DR seeks a shifting of load from on-peak to off-peak and
possibly a decrease in total load in response to time-based
rates or other forms of financial incentives. The DS contains a
large number of loads which can be categorized into three main
groups according to their flexibility:

• A part of loads is neither flexible to be shifted in time nor
to be deleted.

• A part of loads is flexible to shift back or forward in
time.

• A part of loads can be deleted and does not need to be
recovered.

In order to accommodate DR in the power markets, load con-
trol and demand side load management programs have been
designed and implemented in many competitive power markets.
These programs usually include a set of ISO-based programs
which permitted the demand side to provide interruptible loads
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as a commodity in the power market. For instance, New York
independent system operator utilizes DA demand response
program where the DS can offer the hourly load reduction in
DA market. If their offer is accepted, they will receive DA
Locational Based Marginal Price in addition to an incentive
based on the real time operation [20]. Because of the better pre-
diction after DA gate closure, DR also can be traded in an ID
market. For instance, California independent system operator
has designed participating load program to integrate DS in the
wholesale market. It includes non-spinning reserve and replace-
ment reserve which allows loads to participate in the DA and
ID markets to offer their load reduction. It should be mentioned
that, under these programs, loads are only permitted to bid their
reduction and they are treated in the same manner as generators
with respect to scheduling. If their offer is accepted, they will
be given a capacity payment in addition to an energy payment
based on the real time operation [21].

In order to develop an economic model for the participation
of DS in the power market, we assume that DR can be traded in
both DA and ID market and it is only allowed to bid its reduc-
tion in the same manner as generators offer their production. It
should be mentioned that in the proposed framework they will
be awarded an energy payment in addition to an incentive for
load reduction provided that their offer is accepted. As it will be
explained later, the value of the incentive depends on the time
horizon (low demand period, off peak period and peak period),
Market Clearing Price (MCP) and load curves.

C. Operation of an HPP in the Market

In the proposed platform, WPP and DRP act as a coordinated
unit. JO of WPP and DRP is more flexible and less risky than
independent operation. Indeed, the benefits of this scheme are
twofold.

1) WPP can utilize DR to cover its uncertainty and mitigate
the imbalance cost.

2) DR can profit from reducing its consumption during peak
period and recovering it by wind energy in the off-peak
period.

As it can be seen in Fig. 2, in the UO, WPPs submit their
generation offer and the DRPs submit their reduction bid inde-
pendently. According to the proposed scheme, for the JO of
WPP and DRP a central planner/manager is required. The so
called HPP aggregator is directly responsible for participat-
ing in the power market. Accordingly, firstly, HPP aggregator
gathers the information of WPP (e.g., predicted wind power)
and DRP (e.g., load shifting/reduction capability, initial hourly
load) and afterwards, devises the best offering strategy by
predicting market prices and based on the latest information,
technical constraints and market rules.

III. UNCERTAINTY CHARACTERIZATION

A. Stochastic Programming Approach

As it was discussed in the previous section, WPPs face two
major sources of uncertainty: availability of the wind generation
and market prices (DA, ID and balancing). In addition, DRP
problem described above is subject to the uncertainty of DA

Fig. 2. Schematic representation of the proposed configuration.

and ID market prices. In order to deal with the adverse finan-
cial effect of these uncertainties on the WPP and DRP offer,
they have been modeled as stochastic processes. To this end,
a multi-stage stochastic programming is employed to solve
WPP and DRP problem. Note that, each stage indicates a
trading floor. Therefore, the decision variables are accordingly
classified as the first-stage (here-and-now), second-stage (wait-
and-see1) and third-stage (wait-and-see2) decision variables.
The process of decision making and the decision variables
pertained to each stage is described below.

1) First-stage (Ω1): Decision making of the first stage should
be done before the realization of the stochastic process
becomes available and it should be independent of scenar-
ios. As mentioned above, the first-stage decision variables
are related to the DA market (PD

tω , LD
t ).

2) Second-stage (Ω2): While the DA market prices are
known for each time horizon, the decision variables of
this stage (wait-and-see1) are feasible for every possi-
ble realization of DA market prices. P I

tω , LI
tω , P sch

tω are
decision variables of the second-stage.

3) Third-stage (Ω3): Decision variables of the third and last
stage of the stochastic programming pertain to the balanc-
ing market. These decision variables (δ−tω , δ+tω) are made
after the whole stochastic variables are observed. Note
that, the decision variables of the third-stage are feasible
for each plausible realization of scenarios.

B. Scenario Generation

Stochastic variables of the problem, i.e., wind power and
market prices, are characterized by a set of discrete scenarios. A
hybrid intelligent model composed of a modified hybrid neural
network (MHNN) and enhanced particle swarm optimization
(EPSO) ([22], [23]) is used in this paper to generate scenar-
ios for each stochastic variable independently. The process of
scenario generation for wind power is described below. It
should be mentioned that the scenarios are generated in the
same manner for the other stochastic variables.
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1) Firstly, predict the wind power output for 30 days before
the offering day, and calculate prediction errors for each
hour of related days. With respect to the hourly prediction
errors, the probability distribution function (PDF) of wind
power forecast error should be estimated for each hour (in
this case 24 PDF).

2) Next, by predicting the wind power for offering day, and
according to the hourly PDF of error in the preceding step
a large number of scenarios are generated using roulette
wheel mechanism [24].

3) Finally a scenario reduction method is employed to
reduce the number of scenarios. Reference [25] pro-
poses two different scenario reduction techniques based
on Kontorvich distance. A fast forward selection algo-
rithm is used for diminishing the number of scenarios in
this paper.

In order to consider the correlation among the market
prices, instead of modeling ID and balancing market prices,
(ϑD − ϑI) and (R++R−−1) are modeled through scenarios,
respectively. This is a simple way to consider such correlation.
The correlation between market prices and wind power require

Algorithm 1. Process of scenario genaration

Require: Historical data and parameters as follows:
• Historical data related to wind power production (e.g.,

wind speed, temperature, pressure).
• Historical data related to DA, ID and balancing (positive

and negative) market prices.
• Number of scenarios in the initial and reduced scenario

sets for the wind power production (N1), DA market
prices (N2), ID market prices (N3) and balancing market
prices(N4).

1: Construct the time series related to i) the wind power pro-
duction, ii) DA market prices (ϑD), iii) the differences
between the ID and DA market prices (ΔϑI = ϑD − ϑI )
and, iv) the balancing market ratio1 (R = R+ +R− − 1)
for training the neural network.

2: Utilize the three-step approach which has been described in
section III-B to characterize:
• N1 scenarios for the wind power production (W );
• N2 scenarios for DA market prices (ϑD);
• N3 scenarios for the differences between the ID and DA

market prices (ΔϑI = ϑD − ϑI );
• N4 scenarios for the balancing market ratio (R = R+ +

R− − 1).

1Note that the imbalance market ratios are suitable for those markets which
very occasionally zero prices occur. For those markets which zero prices may
occur frequently, we can directly generate the positive and negative balancing
prices as following:

Firstly, construct the time series for ΔϑB = ϑ+ + ϑ− − 2ϑD . Note that,
the positive value of ΔϑB indicates the total negative imbalances and the neg-
ative value of ΔϑB indicates the total positive imbalances, which has been
shown in Fig. 3. Secondly, generate scenarios for ΔϑB . Next, for each scenario
of ΔϑB we have:

• If ΔϑB > 0 then ϑ+ = ϑD ; and ϑ− = ΔϑB + ϑD .
• If ΔϑB < 0 then ϑ− = ϑD ; and ϑ+ = ΔϑB + ϑD .

This mechanism covers the drawback of the imbalance ratios and can be
utilized even for the markets which zero prices frequently occur.

3: for w = 1 to total number of wind power production
scenarios (N1) do

4: for d = 1 to total number of DA market price scenarios
(N2) do

5: for i = 1 to total number of ID market price scenar-
ios (N3) do

6: ϑI(d, i) = ϑD(d)−ΔϑI(i)
7: for b = 1 to total number of balancing market

price scenarios (N4) do
8: if R(b) ≥ 1 then
9: R+(b) and R−(b) calculated as follows:{

R+(b) = 1; and ϑ+(d, b) = ϑD(d).

R−(b) = R(b); and ϑ−(d, b) = ϑD(d)×R(b).

10: else if R(b) < 1 then
11: R+(b) and R−(b) calculated as follows:{

R+(b) = R(b); and ϑ+(d, b) = ϑD(d)×R(b).

R−(b) = 1; and ϑ−(d, b) = ϑD(d).

12: end if
13: SCN(w, d, i, b) = [W(w); ϑD(d); ϑI(d, i);

(R+(b), R−(b))]
14: end for
15: end for
16: end for
17: end for

more research and is beyond the scope of this paper2.
Therefore, a symmetric scenario tree can be constructed by
generating related scenarios independently, and combining
them as follows. Firstly, N1 scenarios for the DA market price
are generated. Next, conditional on each realization of the DA
market prices, N2 possible realization of (ϑD − ϑI) are sim-
ulated. Afterwards, simulate N3 scenarios of the wind power
output for every realization of ID market prices. Finally, for
each realization of wind power, model N4 scenarios for imbal-
ance price ratios. Thus, the total number of scenarios is NΩ =
N1 ×N2 ×N3 ×N4. Algorithm 1 indicates the process of
scenario generation for one time period.

IV. MATHEMATICAL FORMULATION

A. Demand Side Offering Model

At first, the stochastic decision model for DS participation in
both DA and ID market is developed. Accordingly, the relation-
ship between price and demand is considered to be exponential
[26] as in (1).

Dt = k · exp (σ · ϑt) (1)

where, k is a constant. Notice that σ is a negative number.
The profit function of DS, S(C), for the demand Dt can be

2In order to consider the correlation between the wind production and the
market prices, a simple way is to consider the market prices as the inputs of neu-
ral network for wind power prediction and utilizing a feature selection method
to find possible correlation.
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Fig. 3. a) One sample scenario for DA prices and prices of the positive/negative
imbalances. b) graphical illustration of the series ΔϑB = ϑ+ + ϑ− − 2ϑD

in time horizon of a day. c) graphical illustration of the series R = R+ +
R− − 1 in time horizon of a day.

formulated as their benefits minus costs.

S (Dt) = B (Dt)−Dt · ϑt (2)

In order to maximize the DS profit, ∂S(Dt)
∂Dt

should be equal
to zero, thus,

∂S (Dt)

∂Dt
=

∂B (Dt)

∂Dt
− ϑt = 0 (3)

And therefore

∂B (Dt)

∂Dt
= ϑt (4)

Regarding to (1) and (4):

∂2B (Dt)

∂ (Dt)
2

∣∣∣∣∣
Dt=D0

=
∂ϑt

∂Dt

∣∣∣∣
Dt=D0

=
1

σ ·D0t
(5)

The Taylor series of DS benefit function around D0 are as
follows.

B (Dt) = B (D0t) + (Dt −D0t) · ∂B (Dt)

∂Dt

∣∣∣∣
Dt=D0

+
1

2
· (Dt −D0t)

2 · ∂
2B (Dt)

∂ (Dt)
2

∣∣∣∣∣
Dt=D0

(6)

Therefore, from (4), (5) and (6) we have

B (Dt) = B (D0t) + (Dt −D0t) · ϑt

+
1

2
· (Dt −D0t)

2 · 1

σ ·D0t
(7)

Equation (7) is the benefit function that mostly used in the
area for an aggregate model [26].

According to the market rules, the DS profit function in
response to the load reduction is comprised of several terms.

TABLE I
DIFFERENT SCHEMES FOR INCENTIVE PAYMENT

As mentioned in section II-B, this paper considers that DS will
be awarded an energy payment and an incentive for their load
reduction. In addition, load reduction imposes a cost on con-
sumers which should be considered in their profit function.
Thus, DS profit function can be expressed as follows.

DS profit =

Revenue︷ ︸︸ ︷
DS ene-pay +DS incentive −DS cost (8)

Where DSene-pay is the energy payment which for hour t is as
follows

DS ene-pay = (D0t −Dt) · ϑt (9)

To model the incentive, three different schemes have been
proposed in this context which are shown in Table I.

Policy scheme A: The incentive is paid on a pre-specified
fixed rate for each MW load reduction. Equation (10) represent
the incentive payment based on the fixed incentive rate scheme.

DSincentive = (D0t −Dt) · ϑ∗ (10)

Policy scheme B: In the second scheme, loads will be
awarded the capacity payment based on the market prices for
their load reduction and can be expressed as (11).

Policy scheme C: Period pricing is another scheme which
the incentive is given according to the time horizon and MCP.
Because of this, the demand curve is divided into three periods:
1) low demand period, 2) off-peak period and 3) peak period.
In the proposed model, the DS revenue is dependent on three
periods above and can be expressed as (11).

DSincentive = mt · (D0t −Dt) · ϑt (11)

where, the value of mt is presented in Table I.
Moreover, DS has a cost for load reduction. The difference

between DS profit function before and after load reduction
could be considered as DR cost. DRP is assumed to be a
price-taker, therefore, regarding to equations (2) and (7), we
have

S (Dt) = S (D0t) +
1

2
· (Dt −D0t)

2 · 1

σ ·D0t
(12)

Finally, based on the fixed rate incentive, the profit function
of DRP for hour t is achieved by substituting (9), (10) and (12)
into (8).

DSprofit = (D0t −Dt) · ϑt + (D0t −Dt) · ϑ∗

+
1

2
· (D0t −Dt)

2 · 1

σ ·D0t
(13)
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Suppose (D0t −Dt) = Lt is the value of DRP offer.
Therefore, the DRP profit in time horizon NT can be written
as (14)

DS profit =

NT∑
t=1

[
Lt · ϑt + Lt · ϑ∗ +

1

2
· 1

σ ·D0t
· (Lt)

2

]
(14)

Note that, for those markets which DRP are permitted to
purchase energy from the market, a penalty term should be
considered which the model is proposed in Appendix.

The DRP offer is limited by the technical constraint as below:

0 ≤ Lt ≤ η1 ·D0t ∀t (15)
NT∑
t=1

Lt ≤ μ ·
NT∑
t=1

D0t (16)

According to the market structure, the formulation is devel-
oped as a two-stage stochastic programming for DRP participa-
tion in both DA and ID market considering DA and ID market
price as the random variables. Accordingly, we have,

DSprofit = DSrevenue

∣∣∣∣DA market +DS revenue

∣∣∣∣ ID market −DScost

(17)

With respect to (14) and (17) we have:

Maximize
LD

t ∀t;Lsch
tω,LI

tω ∀t∀ω

{
ξDRP

profit

}
=

NT∑
t=1

⎡
⎢⎢⎢⎢⎣
EΩ1

[
ϑD
tω · LD

t + ϑ∗ · LD
t

EΩ2|Ω1

[
ϑI
tω · LI

tω + ϑ∗ · LI
tω+

1
2 · 1

σ·D0t
· (Lsch

tω

)2
]]
⎤
⎥⎥⎥⎥⎦ (18)

Subject to:

Lsch
tω = LD

t + LI
tω ∀t,∀ω (19)

0 ≤ LD
t ≤ η1D0t ∀t,∀ω (20)

0 ≤ Lsch
tω ≤ η1D0t ∀t,∀ω (21)

NT∑
t=1

Lsch
tω ≤ μ ·

NT∑
t=1

D0t ∀ω (22)

where, constraint (19) defines the total scheduled load reduc-
tion offer in the both DA and ID markets. Constraint (20) limits
DRP’s load reduction offer in the DA market. Constraint (21)
bounds the total scheduled load reduction offer. Notice that, the
flexibility of load (load shifting and interruption range) is mod-
eled through constraints (20)–(22). The lower bound of these
constraints are zero, because the DRP are only permitted to bid
its load reduction in the same manner that generators offer their
production. Firstly, the load shifting/interruption capability of
the individual consumers should be declared to DRP through
communication/decision tools as shown in Fig. 2. Afterwards,
DRP estimates the load shifting and interruption range of the
total aggregated load and models them by means of η and μ.
DS interruption range is defined by μ. In fact, the minimum per-
centage of the load which is needed during the day is indicated

by (1− μ)× 100%. This percentage of load must be recovered,
even if shifted in the time horizon of a day. Therefore, DRP can
offer μ ·∑NT

t=1 D0t in the appropriate period during the time
horizon of a day as a generation resource.

It should be mentioned that each term (ϑ∗ · Lt) in (18)
should be replaced with mt (ϑt · Lt) to obtain the model for
two other incentive schemes.

B. Wind Power Producer Offering Model

The WPP offering strategy model corresponding to the
expected value of daily profit function according to the pro-
posed market framework and considering the market prices
(DA, ID and balancing market price) and wind generation as
random variables can be expressed as equation (23).

Maximize
PD

tω, P I
tω,P sch

tω ,δ+tω,δ−tω ∀t∀ω; zω ∀ω; var

{
ξWPP

profit

}
=

NT∑
t=1

⎡
⎢⎢⎢⎢⎣
EΩ1

[
ϑD
tω · PD

tω + EΩ2|Ω1

[
ϑI
tω · P I

tω

+EΩ3|Ω2,Ω1

[
ϑD
tω ·R+

tω · δ+tω
−ϑD

tω ·R−
tω · δ−tω

]]]
⎤
⎥⎥⎥⎥⎦

+ β

(
var − (1− α)

−1
NΩ∑
ω=1

ρωzω

)
(23)

The objective function (23) to be maximized is comprised
of two terms: i) the expected profit of WPP which is equal
to its revenue, since its generation cost is assumed to be
zero. Revenue from selling energy in DA market plus the rev-
enue/cost from selling/purchasing energy in ID market plus the
revenue from the positive energy deviations in the balancing
market minus the cost of negative energy deviations in the bal-
ancing market constitutes the expected revenue of WPP which
is represented within the bracket; and ii) the CVaR multiplied
by a weighting factor β, which allows to manage the degree of
risk-aversion for WPP.

In (23), the term (ϑD
tω · PD

tω) indicates the revenue from DA
market, the term (ϑI

tω · P I
tω) shows the revenue/cost from ID

market, the term (ϑD
tω ·R+

tω · δ+tω) expresses the revenue from
the positive energy deviations in the balancing market, and
the term (ϑD

tω ·R−
tω · δ−tω) indicates the cost of negative energy

deviations in the balancing market in period t and scenario ω.
Note that, if the scenarios of the balancing market prices are
generated directly, then the term (ϑD

tω ·R+
tω) should be replaced

by (ϑ+
tω) and the term (ϑD

tω ·R−
tω) should be replaced by (ϑ−

tω).
Due to the market rules and technical constraints, short term

trading problem of WPP includes the following constraints:

0 ≤ PD
tω ≤ Wmax ∀t,∀ω (24)

P sch
tω = PD

tω + P I
tω ∀t,∀ω (25)

0 ≤ P sch
tω ≤ Wmax ∀t,∀ω (26)

δtω = Wtω − P sch
tω ∀t,∀ω (27)

δtω = δ+tω − δ−tω ∀t,∀ω (28)

0 ≤ δ+tω ≤ Wtω ∀t,∀ω (29)

0 ≤ δ−tω ≤ Wmax ∀t,∀ω (30)(
PD
tω − PD

tω′
) · (ϑD

tω − ϑD
tω′
) ≥ 0 ∀t,∀ω,∀ω′ (31)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

PD
tω = PD

tω′ ∀t,∀ω,∀ω′ : ϑD
tω = ϑD

tω′ (32)

P I
tω = P I

tω′ ∀t,∀ω,∀ω′ : ϑD
tω = ϑD

tω′ (33)

γ · PD
tω ≤ P I

tω ≤ γ · PD
tω ∀t,∀ω (34)

−
NT∑
t=1

[
ϑD
tω · PD

tω + ϑI
tω · P I

tω+
ϑD
tω

(
R+

tω · δ+tω −R−
tω · δ−tω

) ]+ var − zω ≤ 0 ∀ω

(35)

zω ≥ 0 ∀ω (36)

Constraint (24) limits the WPPs’ offer in the DA market.
Constraint (25) represents the total scheduled energy in both
DA and ID markets. Constraint (26) bounds the total sched-
uled energy. Constraint (27) defines the total deviation incurred
by WPP. Constraints (29) and (30) state the positive and neg-
ative deviations cap, respectively. Constraints (31) and (32)
are related to the offering curve which the first one imposes
non-decreasing condition and the second one imposes non-
anticipative condition for the DA energy offer. Constraint (33)
models the non-anticipative condition for the decision made
in the ID market. Constraint (34) limits the energy that WPP
can sell/purchase in ID market to the certain percentage of the
energy sold in the DA market. As mentioned in section II-A,
ID markets supposed to be adjustment market and it is only for
decreasing the imbalances and therefore a generator should not
systematically sell energy if it is not capable of producing it at
all. Constraints (35) and (36) relate to the calculation of CVaR.

In the stochastic programming model, the risk management
is an important issue. CVaR can provide practical large scale
calculation, since it can be modeled through linear program-
ming approach. In addition, it can be readily incorporated into
the optimization problem [27]. Therefore, it used in this work
as a risk measurement.

C. Hybrid Power Plant Offering Strategy Model

By integrating WPP and DR model, the offering strategy for
HPP is derived as follows:

ξ HPP
profit = HPPrevenue − DScost (37)

Therefore

Maximize
P

D,hpp
tω , P

I,hpp
tω ,P

sch,hpp
tω , ,δ

+,hpp
tω ,δ

−,hpp
tω LI

tω ,Lsch
tω ∀t∀ω;LD

t ∀t; zω ∀ω; var{
ξHPP

profit

}
=

NT∑
t=1

⎡
⎢⎢⎢⎢⎢⎢⎣

EΩ1

[
ϑD
tω · PD,hpp

tω

+EΩ2|Ω1

[
ϑI
tω · P I,hpp

tω + 1
2
· 1
σ·D0t

· (Lsch
tω

)2
+EΩ3|Ω2,Ω1

[
ϑD
tω ·R+

tω · δ+,hpp
tω − ϑD

tω ·R−
tω · δ−,hpp

tω

]]]

⎤
⎥⎥⎥⎥⎥⎥⎦

+ β

(
var − (1− α)−1

NΩ∑
ω=1

ρωzω

)
(38)

Subject to:

0 ≤ PD,hpp
tω ≤ Wmax + η1D0t ∀t,∀ω (39)

P sch,hpp
tω = PD,hpp

tω + P I,hpp
tω ∀t,∀ω (40)

0 ≤ P sch,hpp
tω ≤ Wmax + η1D0t ∀t,∀ω (41)

δhpp
tω = Wtω + Ltω − P sch,hpp

tω ∀t,∀ω (42)

δhpp
tω = δ+tω − δ−tω ∀t,∀ω (43)

0 ≤ δ+,hpp
tω ≤ Wtω + Ltω ∀t,∀ω (44)

0 ≤ δ−,hpp
tω ≤ Wmax + η1D0t ∀t,∀ω (45)(

PD,hpp
tω − PD,hpp

tω′

)
· (ϑD

tω − ϑD
tω′
) ≥ 0 ∀t,∀ω,∀ω′ (46)

PD,hpp
tω = PD,hpp

tω′ ∀t,∀ω,∀ω′ : ϑD
tω = ϑD

tω′ (47)

− γ · PD,hpp
tω ≤ P I,hpp

tω ≤ γ · PD,hpp
tω ∀t,∀ω (48)

−
NT∑
t=1

[
ϑD
tω ·PD,hpp

tω + ϑI
tω ·P I,hpp

tω + 1
2 · 1

σ·Dt,0
·(Lsch

tω

)2
+ϑD

tω ·R+
tω · δ+,hpp

tω − ϑD
tω ·R−

tω · δ−,hpp
tω

]

+ var − zω ≤ 0 ∀ω (49)

zω ≥ 0 ∀ω (50)

Lsch
tω = LD

t + LI
tω ∀t,∀ω (51)

η2D0t ≤ LD
t ≤ η1D0t ∀t,∀ω (52)

η2D0t ≤ Lsch
tω ≤ η1D0t ∀t,∀ω (53)

NT∑
t=1

Lsch
tω ≤ μ ·

NT∑
t=1

D0t ∀ω (54)

Lsch
tω = Lsch

tω′ ∀t,∀ω,∀ω′ : ϑD
tω = ϑD

tω′ (55)

LI
tω = LI

tω′ ∀t,∀ω,∀ω′ : ϑD
tω = ϑD

tω′ (56)

Note that, the subscript hpp stands for the hybrid power plant.
Note that, the WPP and DRP constraints are combined

through equations (39)–(50). The HPPs’ offer in the DA market
is limited by constraint (39). In (39), Wmax + η1D0 defines the
maximum capacity of the HPP where the first term is related
to the wind farm capacity and the second term is related to the
DRP. The HPP is considered to be a generation company and
therefore, the lower limit of (39) is equal to zero. Constraint
(40) indicates the total scheduled power with respect to the
DA and ID offers. Constraint (41) limits the scheduled power
of HPP. Constraints (42)–(45) characterize the total, negative,
and positive imbalances of the HPP based on the wind power
production, scheduled power and the values of DR. Constraints
(46) and (47) provide the offering curves. Constraint (48) deter-
mines the lower and upper bound of the ID offer with respect
to the DA offer. Constraints (49) and (50) are required for the
risk calculation. Constraints (51)–(56) model the flexible load
where (55) and (56) are added to state the non-anticipativity of
decision in ID market. The lower limits of constraints (52)–(53)
have decreased from zero to η2D0t. This is due to the fact that
DS can utilize wind energy and increase their load in JO.

V. CASE STUDY

In order to assess the performance of the proposed strat-
egy, a realistic case study based on a wind farm in Spain has
been studied in this section following the rules of the Spanish
electricity market.
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A. Data

The proposed approach has been implemented on a realis-
tic case study based on the Sotavento wind farm [28] in Spain.
The total wind capacity is 17.56 MW. The wind power stochas-
tic process is modeled through the method described in section
III-B based on the methodology in [23]. Note that the histori-
cal data of year 2010 are the main inputs to train the artificial
neural network. The scenarios for market prices are character-
ized by aforementioned three-step method based on the forecast
engine in [24]. The historical data of demand and market prices
used in this context belong to the electricity market of Iberian
Peninsula as addressed in [29].

The uncertainties appertained to the problem are modeled
through a symmetric scenario tree which respectively con-
sists of ten, five, and six scenarios for DA, ID, and balancing
market prices in addition to ten scenarios for the wind gen-
eration. Therefore, the scenario tree includes 3000 scenarios
(10× 5× 10× 6).

The simulation result is represented for one week (7 March
2010-13 March 2010). It is assumed that 1

1500 of the total
loads of the Spanish electricity market is aggregated and they
participate in the market by means of a DRP.

B. GAMS/MATLAB Interface

In order to implement the proposed model, firstly the process
of scenario generation and reduction according to the aforemen-
tioned approach is carried out through MATLAB. Afterwards,
these data, i.e., inputs of optimization problem, are imported
to General Algebraic Modeling System (GAMS) [30] with
GAMS/MATLAB Interface [31]. Next, the optimization prob-
lem has been solved using GAMS. Finally the output data of
GAMS are exported to MATLAB for more analysis. It should
be mentioned that all the simulations are carried out on a com-
puter with 6 GB of RAM, and the offering strategy problem
has been solved using CPLEX 12 under GAMS on a Windows-
based personal computer Intel® CORETMi7 with processors
clocking at 2.1 GHz and 6 GB of RAM in less than one minutes.

C. Results and Discussion

The proposed models are capable of producing either “opti-
mal generation bids” or “optimal offering curves” based on the
market rules. The generation bids that are submitted to the DA
market indicate an energy quantity and possibly a price quantity
which in the case of WPP and HPP are submitted at zero price
for assurance that the bids get accepted. Some of the electricity
markets allow their participants to submit offering curves rather
than generation bids. The offering curves which are submitted
to DA market shows a curve which the offered energy quantity
can be different for each prices. Both of the cases are discussed
below.

1) Optimal Energy Quantity: Firstly, the condition terms
in constraints (32) and (47) are not included in the optimiza-
tion problem. In this case, by considering β = 0 (risk neutral
problem), the solution of the optimization models provides the
optimal energy quantity for the daily market. Fig. 4 shows the

Fig. 4. Optimal offering quantity in the DA market for three different configu-
rations.

Fig. 5. Hourly DRP bids on March 8, 2010.

Fig. 6. Scheduled DR in JO for different realization of DA market prices on
March 9, 2010.

optimal energy quantity for each time period in two days of
the test week obtained for each configuration. As it can be
seen from the offering quantity, the joint unit offering quan-
tity increases during peak hours due to the participation of DS.
Moreover, JO and UO of WPP and DRP are compared in this
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TABLE II
EXPECTED PROFIT IN THE DA MARKET FOR TEST WEEK

Fig. 7. Hourly expected profit in (C) for three different configuration on March
11, 2010.

figure. Indeed, in JO the optimal quantity is more sensitive to
the market prices because of the presence of DR. Note that the
DS recovers itself (store more energy) during off-peak hours in
JO by using the wind energy. On the other hand, in UO, DRP
only offers its load reduction to the daily market in the peak
hours. In addition, the correlation between the JO offers and
load curve increases 26.61% compared with the independent
operation.

Fig. 5 shows the operation of aggregated consumers for one
of the scenarios considered (#scenario1). Note that the DRP
decreases its load during peak hours and recovers it in off-peak
hours by wind energy.

Fig. 6 shows the optimal changes in the behavior of the
coordinated DS for each realization of daily market prices.

Table II represents the expected profit of different configura-
tions in the test week. According to the results, HPP’s expected
profit increases, since DRR mitigate the WPP’s uncertainty as
well as a more efficient operation, increasing the power sold
during the peak hours and increasing the end users’ consump-
tion (store more energy) in the off-peak hours. Thus, the opera-
tion of the coordinated unit causes an increase for the both wind
farm and DRP, since the expected profit of the coordinated farm
is more than the sum of the expected profit which is achieved
for independent operation. Notice that the expected profit is
increased 3.61% during the test week. The models parameters
which are used in the case study are [α, σ, η1, η2, μ, γ, ϑ

∗] =
[0.95,−0.3, 0.2,−0.2, 0.04, 0.3, 27.68]. It should be mentioned
that the value of ϑ∗ is equal to the mean value of DA market
prices on February 2010.

The total expected profit for each time period obtained
for two configurations in DA market is depicted in Fig. 7.
According to the obtained values, in some hours (19:00-22:00)
the expected profit in UO is more than JO one. This is due to the
fact that DRP receives incentive in UO which is not paid in JO.

Fig. 8. Optimal Offering Curves on March 10, 2010.

2) Optimal Offering Curves: Secondly, the condition term
in constraints (32) and (47) is included in the optimization prob-
lems. In this case, the solution of the optimization problems
includes the optimal offering curves rather than only energy
quantity. The results for hours (16:00-22:00) are shown in
Fig. 8. In hours 16:00 and 17:00, the offers of JO are zero for
the price lower than 5.46 C/MWh. In this case, all of the wind
energy is consumed by demand side. But, if the price of DA
market increases, the offered value will raise.

The results, as seen in Fig. 8, indicate that in hours 16:00 and
17:00 the offered values have diminished in JO comparing to
the UO. This result can be explained by the fact that the max-
imum amount of DA market price scenarios for these hours is
16.52 C/MWh and it is lower than the scenarios of prices for
other hours. Therefore, due to the low market price in these
hours, HPP decreases its bids and the wind energy is consumed
by the demand side. On the other hand, in hours 18:00-22:00 the
offer curves of JO are higher than one of UO. In this time hori-
zon, the demand side decreases its consumption and therefore,
the HPP aggregator can offer more production in the market.
Note that, β is considered to be 0.5 in this section. According
to the amounts, the JO is more flexible and increases its offer by
the increment of the prices more than the uncoordinated one.

3) Impact of Incorporating Risk into the Problem: In the
previous cases, β is chosen to be 0. To study the impact of risk
aversion, the expected profit of WPP and HPP as well as the
CVaR are calculated where β increases from 0 to 0.6 with an
interval of 0.1. As it can be seen from Table III, if β changes
from 0 to 0.6, then CVaR increases 36.3% and the expected
value decreases 3.0% for HPP. According to these results, with
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TABLE III
COMPARISON OF WPP’S PROFIT AND RISK FOR DIFFERENT VALUES OF β

ON MARCH 9, 2010

a low decrease in the expected profit, e.g. 3.0%, the risk of
experiencing low profit is diminished very well. Therefore, it
can be concluded that CVaR metric can control the risk of the
HPP. According to the Table III, for WPP, the CVaR increases
1117C and the expected profit decreases 4.1%. For JO of WPP
and DRP, the results are even better. In this situation, the CVaR
increases 1152.7C and the value of expected profit decreases
3.0% which yields better results with respect to the UO. In other
words, for a moderate decrease in the expected profit, a signif-
icant increase in CVaR is achieved which is desirable. Also, in
the last row of Table III, the ratio −�(CVaR)

�(ξ)
is computed. The

higher value of the ratio −�(CVaR)
�(ξ)

means lower decrease in the
expected profit and/or more increase in CVaR. Accordingly, the
higher ratio indicates that the risk of the profit variability is con-
trolled better. The result shows that the ratio is higher in the
JO with respect to the others. Therefore, it confirms that the
JO of WPP and DRP is an effective alternative to diminish the
profit variability, risk of experiencing low profit and improve
the competitiveness of the WPP in the power market.

In order to assess the effect of risk aversion parameter on the
optimal offers of WPP and HPP, we have evaluated the optimal
“offering curves” and “generation bids” for the different values
of β. Fig. 9 shows the offering curves for two sample hours for
different values of β. The results of this study indicate that when
the WPP and HPP become more risk averse, by increasing the β
value in the models, they intend to reduce the expected energy
of their scheduled power (power offered to the DA and ID mar-
ket) in the hopes that their extra generation can be traded in the
balancing market at the still competitive prices. For example,
according to the Fig. 9, for t = 20, when β is equal to zero (risk
neutral problem), the HPP tend to offer the maximum capacity
but as it becomes more risk averse (β = 0.4), the optimal offer-
ing curve changes and it prefers to reduce their offers in the
hopes that it still can sell its extra production in the balancing
market at a competitive prices.

4) Impact of Different Incentive Schemes: Finally, the
impact of different incentive schemes proposed in section IV-A
is assessed by comparing the expected profit which is achieved
through each scheme. Table IV shows the expected profit of
these schemes. Based on the results, this scheme can only affect
the expected profit of DRP since in the JO there is not incen-
tive payment. Indeed, this is one of the benefits of the proposed
configuration. As can be seen, the added value is decreased as
the incentive payment is increased.

Fig. 9. Optimal offering curves for different values of β in two sample hours
on March 10, 2010.

TABLE IV
DIFFERENT INCENTIVE SCHEMES ON MARCH 9, 2010

VI. CONCLUSION

This paper proposed a procedure to derive the strategic offer
for HPP selling energy in the pool-based market. The problem
has been formulated as the three-stage stochastic program-
ming which can be solved using available commercial solver.
Numerical results validated the ability of the proposed frame-
work to identify the strategic offer resulting in maximum profit.
In addition, it indicated that the JO of WPP and DRP causes
an improvement in the expected profit as well as controlling
the risk to manage the profit losses comparing to the inde-
pendent operation. Moreover, the proposed method increased
the correlation among the offers and the load curve which this
can help to decrease the undispatchable nature of the wind
power and reduce the variability of the power system with more
wind farms. In this paper, it is demonstrated that JO of wind
farms and DRR in the short term trading can be achieved by
the proposed formulation. In addition to the DA market, DRR
accommodated to the ID market which is more effective to cope
with the wind power uncertainties.

APPENDIX

In the case of load increase, a penalty term should be consid-
ered in the DRP’s model. Accordingly, the DRP profit function
is comprised of several terms as follows:

DS Profit = DS ene-pay +

{
Incentivet : load reduction

Penaltyt : load increase

}

−DS cost (57)
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where, Incentivet and Penaltyt indicate the value of whole
incentive/penalty for the load reduction/increase in time period
t, respectively. According to the equation (57), in the case of
load reduction (Lt > 0), the DRPs receive an energy payment
plus an incentive for their load reduction minus the cost of
reducing their energy. In the case of load increase (Lt < 0),
the DRPs should pay the price of extra energy in addition to the
penalty for their load increase and also the cost resulted from
increasing their energy. Note that, the cost term is negative in
both situations (load reduction and increase).

Therefore, problem (57) in time horizon NT can be stated as
follows:

DS Profit =

NT∑
t=1

[
Lt · ϑt +

{
Lt · inct : if Lt ≥ 0

Lt · pent : if Lt < 0

}

+
1

2
· 1

σ ·D0t
· (Lt)

2

]
(58)

where, inct and pent indicate the value of incentive/penalty
for each MW load reduction/increase in time period t. These
parameters are determined according to the ISO criteria.

The second term of problem (58) is a piecewise function.
Therefore, it cannot be solved through optimization techniques.
A simple approach to surmount this obstacle is to define a
binary variable Bt, per period, indicating the direction, load
reduction or increase, of the DRP bid. Therefore, the problem
(58) can be recast as:

DS Profit =

NT∑
t=1

[
Lt · ϑt + Lt · inct ·Bt

+Lt · pent · (1−Bt) +
1

2
· 1

σ ·D0t
· (Lt)

2

]
(59)

subject to

Lt ≤ M ·Bt (60)

− Lt ≤ M · (1−Bt) (61)

Note that, Bt is equal to 1 for the load reduction and 0
otherwise.

The second and third terms in problem (59) are both inte-
ger, due to the utilization of binary variables Bt, and non-linear,
because of the product of variables Lt ·Bt and Lt · (1−Bt).
Solving mixed-integer non-linear programming problem is, in
general, complex due to the lack of theoretical results guaran-
teeing its existence and uniqueness. Fortunately, the second and
third terms in problem (59) can be simply transformed into a
mixed-integer linear one.

The Incentivet is the product of a limited continuous vari-
able, Lt, a binary variable Bt, and also a parameter inct,
therefore it can be stated as the following linear inequalities.

0 ≤ Incentivet ≤ M ·Bt (62)

Lt · inct −M(1−Bt) ≤ Incentivet ≤ Lt · inct
+M(1−Bt) (63)

and also the penaltyt term can be expressed as follows:

−M · (1−Bt) ≤ Penaltyt ≤ 0 (64)

Lt · pent −MBt ≤ Penaltyt ≤ Lt · pent +MBt (65)

where, M is a large positive number exceeding any maximum
feasible value of |Lt|, |Lt · pent| and |Lt · inct|.

REFERENCES

[1] Global Wind 2012 Report [Online]. Available: http://www.gwec.net,
accessed on 2013.

[2] J. Aghaei and M. I. Alizadeh, “Demand response in smart electricity grids
equipped with renewable energy sources: A review,” Renew. Sustain.
Energy Rev., vol. 18, pp. 64–72, Feb. 2013.

[3] C. Hiroux and M. Saguan, “Large-scale wind power in european electric-
ity markets: Time for revisiting support schemes and market designs?,”
Energy Policy, vol. 38, no. 7, pp. 3135–3145, Jul. 2010.

[4] J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Short-term trading
for a wind power producer,” IEEE Trans. Power Syst., vol. 25, no. 1,
pp. 554–564, Feb. 2010.

[5] G. Bathurst, J. Weatherill, and G. Strbac, “Trading wind generation in
short term energy markets,” IEEE Trans. Power Syst., vol. 17, no. 3,
pp. 782–789, Aug. 2002.

[6] A. Botterud et al., “Wind power trading under uncertainty in LMP
markets,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 894–903, May
2012.

[7] M. Zugno, J. Morales, P. Pinson, and H. Madsen, “Pool strategy of a
price-maker wind power producer,” IEEE Trans. Power Syst., vol. 28,
no. 3, pp. 3440–3450, Aug. 2013.

[8] L. Baringo and A. J. Conejo, “Offering strategy of wind-power producer:
A multi-stage risk-constrained approach,” IEEE Trans. Power Syst.,
Apr. 2015, to be published.

[9] K. W. Hedman and G. B. Sheblé, “Comparing hedging methods for wind
power: Using pumped storage hydro units vs. options purchasing,” in pre-
sented at the 9th Int. Conf. Probab. Methods Appl. Power Syst. (PMAPS),
Stockholm, Sweden, 2006.

[10] M. Black and G. Strbac, “Value of bulk energy storage for managing
wind power fluctuations,” IEEE Trans. Energy Convers., vol. 22, no. 1,
pp. 197–205, Mar. 2007.

[11] A. A. Sanchez de la Nieta, J. Contreras, and J. Munoz, “Optimal coordi-
nated wind-hydro bidding strategies in day-ahead markets,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 798–809, May 2013.

[12] J. B. Greenblatt, S. Succar, D. C. Denkenberger, R. H. Williams, and
R. H. Socolow, “Baseload wind energy: Modeling the competition
between gas turbines and compressed air energy storage for supplemental
generation,” Energy Policy, vol. 35, no. 3, pp. 1474–1492, Mar. 2007.

[13] R. Gramlich and B. Darren, “Getting smart about wind and demand
response,” Wind Syst. Mag., 2009, to be published.

[14] Z. Zhao and L. Wu, “Impacts of high penetration wind generation and
demand response on LMPS in day-ahead market,” IEEE Trans. Smart
Grid, vol. 5, no. 1, pp. 220–229, Jan. 2014.

[15] X. Zhang, “Optimal scheduling of critical peak pricing considering wind
commitment,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 637–645,
Apr. 2014.

[16] A. Rabiee, A. Soroudi, B. Mohammadi-Ivatloo, and M. Parniani,
“Corrective voltage control scheme considering demand response and
stochastic wind power,” IEEE Trans. Power Syst., vol. 29, no. 6,
pp. 2965–2973, Nov. 2014.

[17] M. Amelin, “An evaluation of intraday trading and demand response for
a predominantly hydro-wind system under nordic market rules,” IEEE
Trans. Power Syst., vol. 30, no. 1, pp. 3–12, Jan. 2015.

[18] E. Heydarian-Forushani, M. Parsa Moghaddam, M. Sheikh-El-Eslami,
M. Shafie-Khah, and J. Catalao, “Risk-constrained offering strategy of
wind power producers considering intraday demand response exchange,”
IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1036–1047, Oct. 2014.

[19] J. Mohammadi, A. Rahimi-Kian, and M.-S. Ghazizadeh, “Aggregated
wind power and flexible load offering strategy,” IET Renew. Power
Gener., vol. 5, no. 6, pp. 439–447, Nov. 2011.

[20] J. H. Doudna, “Overview of california ISO summer 2000 demand
response programs,” in Proc. Power Eng. Soc. Winter Meeting, 2001,
vol. 1, pp. 228–233.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AGHAEI et al.: RISK-CONSTRAINED OFFERING STRATEGY FOR AGGREGATED HYBRID POWER PLANT 13

[21] P. Jazayeri et al., “A survey of load control programs for price and sys-
tem stability,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1504–1509,
Aug. 2005.

[22] N. Amjady, A. Daraeepour, and F. Keynia, “Day-ahead electricity price
forecasting by modified relief algorithm and hybrid neural network,” IET
Gener. Transmiss. Distrib., vol. 4, no. 3, pp. 432–444, Mar. 2010.

[23] N. Amjady, F. Keynia, and H. Zareipour, “Wind power prediction by a
new forecast engine composed of modified hybrid neural network and
enhanced particle swarm optimization,” IEEE Trans. Sustain. Energy,
vol. 2, no. 3, pp. 265–276, Jul. 2011.

[24] N. Amjady, J. Aghaei, and H. A. Shayanfar, “Stochastic multiobjective
market clearing of joint energy and reserves auctions ensuring power sys-
tem security,” IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1841–1854,
Nov. 2009.

[25] N. Growe-Kuska, H. Heitsch, and W. Romisch, “Scenario reduction and
scenario tree construction for power management problems,” in Proc.
Power Tech. Conf., 2003, vol. 3, pp. 1–7.

[26] F. C. Schweppe, R. D. Tabors, M. Caraminis, and R. E. Bohn, Spot
Pricing of Electricity. Norwell, MA, USA: Kluwer, 1988.

[27] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general
loss distributions,” J. Banking Finance, vol. 26, no. 7, pp. 1443–1471,
2002.

[28] Sotavento Wind Farm [Online]. Available: http://www.sotavento
galicia.com/

[29] Red Eléctrica de España, e·sios [Online]. Available: http://www.esios.
ree.es/web-publica

[30] B. A. McCarl et al. (2014). McCarl GAMS User Guide [Online].
Available: http://www.gams.com

[31] M. C. Ferris, R. Jain, and S. Dirkse. (2011). GDXMRW: Interfacing
GAMS and MATLAB [Online]. Available: http://www.gams.com

Jamshid Aghaei (M’12–SM’15) received the B.Sc.
degree in electrical engineering from Power and
Water Institute of Technology, Tehran, Iran, and the
M.Sc. and Ph.D. degrees from Iran University of
Science and Technology, Tehran, Iran, in 2003, 2005,
and 2009, respectively. His research interests include
renewable energy systems, smart grids, electricity
markets, and power system operation and restructur-
ing. He is a member of the Iranian Association of
Electrical and Electronic Engineers.

Mostafa Barani received the B.Sc. degree from
Bu-Ali Sina University, Hamedan, Iran, and the
M.Sc. degree from Shiraz University of Technology,
Shiraz, Iran, in 2012 and 2015, respectively, both
in electrical engineering. He is currently a Teacher
with Marvdasht Branch, Islamic Azad University,
Marvdasht, Fars, Iran. His research interests include
stochastic modeling, renewable energy resources,
operation of electricity market, forecasting, and
demand-side management.

Miadreza Shafie-khah (S’08–M’13) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Tarbiat Modares University, Tehran, Iran, in
2008 and 2012, respectively. He is a Postdoctoral
Fellow with the Laboratory of Sustainable Energy
Systems, University of Beira Interior (UBI), Covilha,
Portugal. He is working on the EU-funded FP7
project SiNGULAR. His research interests include
power market simulation, market power monitoring,
power system optimization, operation of electricity
markets, price forecasting, and smart grids.

Agustín A. Sánchez de la Nieta (M’15) received
the B.S. and Ph.D. degrees in industrial engineering
from the University of Castilla-La Mancha, Ciudad
Real, Spain, in 2008 and 2013, respectively. He
is currently a Postdoctoral Fellow with UBI and
INESC-ID, and a Researcher in European project
“SiNGULAR”, FP7, with the University of Beira
Interior, Covilha, Portugal. His research interests
include power systems planning and economics, elec-
tricity markets, forecasting, and risk management for
renewable energy sources.

João P. S. Catalão (M’04–SM’12) received the
M.Sc. degree from the Instituto Superior Tećnico
(IST), Lisbon, Portugal, and the Ph.D. degree and
Habilitation for Full Professor (“Agregação”) from
the University of Beira Interior (UBI), Covilha,
Portugal, 2003, 2007, and 2013, respectively.
Currently, he is a Professor with the Faculty of
Engineering, University of Porto (FEUP), Porto,
Portugal, and a Researcher with INESC-ID–Lisbon,
Lisbon, Portugal. His research interests include
power system operations and planning, hydro and

thermal scheduling, wind and price forecasting, distributed renewable gener-
ation, demand response and smart grids. He has been the Primary Coordinator
of the EU-funded FP7 project SiNGULAR (“Smart and Sustainable Insular
Electricity Grids Under Large-Scale Renewable Integration”), a 5.2 million
euro project involving 11 industry partners. He has authored or coauthored
more than 400 publications, including, among others, 126 journal papers, 248
conference proceedings papers and 20 book chapters, with an h-index of 25
(according to Google scholar), having supervised more than 30 post-docs,
Ph.D. and M.Sc. students. He is the Editor of the books entitled Electric
Power Systems: Advanced Forecasting Techniques and Optimal Generation
Scheduling (CRC Press, 2012) and Smart and Sustainable Power Systems:
Operations, Planning and Economics of Insular Electricity Grids (CRC Press,
2015). He is an Editor of the IEEE TRANSACTIONS ON SMART GRID and
the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, and an Associate
Editor of the IET Renewable Power Generation. He was the Guest Editor-in-
Chief for the Special Section on Real-Time Demand Response of the IEEE
TRANSACTIONS ON SMART GRID, published in December 2012, and he is
currently the Guest Editor-in-Chief for the Special Section on Reserve and
Flexibility for Handling Variability and Uncertainty of Renewable Generation
of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY. He was the recipi-
ent of the 2011 Scientific Merit Award UBI-FE/Santander Universities and the
2012 Scientific Award UTL/Santander Totta. Also, he has won four Best Paper
Awards at IEEE conferences.


